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SUMMARY

Dopamine (DA) neurons in the ventral tier of the substantia nigra pars compacta (SNc) 

degenerate prominently in Parkinson’s disease, while those in the dorsal tier are relatively spared. 

Defining the molecular, functional, and developmental characteristics of each SNc tier is crucial 

to understand their distinct susceptibility. We demonstrate that Sox6 expression distinguishes 

ventrally and dorsally biased DA neuron populations in the SNc. The Sox6+ population in 

the ventral SNc includes an Aldh1a1+ subset and is enriched in gene pathways that underpin 

vulnerability. Sox6+ neurons project to the dorsal striatum and show activity correlated with 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondence: d-dombeck@northwestern.edu (D.A.D.), r-awatramani@northwestern.edu (R.A.).
AUTHOR CONTRIBUTIONS
Experiments were conducted by M.P.L., M.A., G.C.-B., and S.G. Human analyses were performed by F.C., M.D., and J.-F.P. Sox6 
mouse lines were generated by G.C.B. Intersectional viral vectors were provided by K.D., C.R., L.F., and Y.S.K. Y.C.M. provided the 
guinea pig anti-Lmx1a antibody. Transcriptome analysis was performed by N.N., Z.G., and O.A.M.-R. The manuscript was written by 
M.P.L., M.A., and R.A. The project was supervised by R.A. and D.A.D.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.celrep.2021.109975.

DECLARATION OF INTERESTS
The authors declare no competing interests.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2021 November 22.

Published in final edited form as:
Cell Rep. 2021 November 09; 37(6): 109975. doi:10.1016/j.celrep.2021.109975.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


acceleration. Sox6− neurons project to the medial, ventral, and caudal striatum and respond to 

rewards. Moreover, we show that this adult division is encoded early in development. Overall, 

our work demonstrates a dual origin of the SNc that results in DA neuron cohorts with distinct 

molecular profiles, projections, and functions.

Graphical Abstract

In brief

In this study, Pereira Luppi et al. refine the landscape of midbrain dopamine neurons through Sox6 
lineage analysis to shed light on dorsal and ventral substantia nigra pars compacta from molecular, 

anatomical, functional, and developmental perspectives.

INTRODUCTION

The substantia nigra pars compacta (SNc), a key dopamine (DA) neuron containing 

cluster, is heterogeneous in its composition. Even before the discovery of (DA) 6 

decades ago, Hassler demonstrated that in post-mortem Parkinson’s disease (PD) brains 

neurodegeneration is more prominent in the ventral SNc than in the dorsal SNc, a finding 

that has been corroborated using immunolabeling techniques for DA neuron markers 

(Damier et al., 1999; Giguère et al., 2018; Kordower et al., 2013; Liu et al., 2014; Mendez et 

al., 2005; Yamada et al., 1990) and has led to the description of a ventral and dorsal tier of 
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the SNc. Uncovering the molecular, anatomic, and functional differences between these tiers 

would help explain their susceptibility in PD, yet they are still to be fully elucidated.

Besides distinctions based on selective vulnerability, recent studies suggest physiological 

and functional heterogeneity of SNc DA neurons. Physiologically, SNc neurons differ 

by their T type calcium channel-mediated rebound excitability (Evans et al., 2017), 

hyperpolarization-activated cyclic nucleotide-gated (HCN) channel current size (Lerner et 

al., 2015), or burstiness (Farassat et al., 2019). Functionally, some SNc neurons respond to 

rewarding stimuli, while others located in the lateral SNc or SN pars lateralis (SNpl) also 

respond to aversive stimuli (Lerner et al., 2015; Matsumoto and Hikosaka, 2009; Menegas 

et al., 2018). Axons of SNc neurons projecting to the dorsal striatum (DS) display activity 

time locked to locomotion, whereas those projecting ventrally appear to be more reward 

responsive (Howe and Dombeck, 2016). During movement, some are activated during 

acceleration, and some are unresponsive (Dodson et al., 2016; Howe and Dombeck, 2016; da 

Silva et al., 2018). These studies find major differences across the mediolateral (M-L) axis 

(Farassat et al., 2019; Lerner et al., 2015) or across the dorsoventral (D-V) axis (Evans et al., 

2017) of the SNc. To better integrate and extend these findings, a deeper understanding of 

SNc heterogeneity is key to deciphering the pleiotropic functions of this structure.

To examine SNc heterogeneity at the molecular level, single-cell profiling has been used to 

group DA neurons based on similar molecular signatures. Recent studies have revealed the 

presence of several putative DA neuron subtypes (Hook et al., 2018; Kramer et al., 2018; 

La Manno et al., 2016; Poulin et al., 2014; Saunders et al., 2018; Tiklová et al., 2019). 

For instance, our lab and others have identified a DA neuron population defined by the 

expression of transcription factor Sox6 and aldehyde dehydrogenase Aldh1a1 (Panman et 

al., 2014; Poulin et al., 2014), located in the ventral SNc, that was selectively vulnerable 

in a toxin model of PD. Despite this promising start toward SNc classification, defining 

the complete catalog of the cellular constituents of the SNc remains a work in progress, 

in part because of the technical limitations of single-cell transcriptomic analyses, as well 

as the closely related nature of these neurons (Poulin et al., 2016). How these molecularly 

defined subtypes align with dorsal and ventral tiers remains to be fully addressed. Moreover, 

if there is such a fundamental difference in vulnerability, then it opens the possibility that it 

is encoded early in development.

All midbrain DA neurons originate from the Shh+/Foxa2+/Lmx1a+ embryonic floor plate 

(FP) (Andersson et al., 2006; Blaess et al., 2011; Joksimovic et al., 2009; Metzakopian 

et al., 2012; Yan et al., 2011), which can be subdivided roughly into a medial Sox6+ and 

a lateral Sox6−/Wnt1+/Otx2+ progenitor domain (Nouri et al., 2020; Panman et al., 2014; 

Prakash et al., 2006). Current models disagree on the molecular identity of the medial versus 

lateral progenitor domain descendants, with some studies suggesting that medially located 

progenitors represent a key anlage for SNc neurons (Blaess et al., 2011; Panman et al., 2014) 

and others suggesting that the lateral progenitor domain is also a prominent source of SNc 

neurons (Brown et al., 2011; Joksimovic et al., 2009). In addition, none of these studies 

have explained the developmental underpinnings of dorsal and ventral tier neurons. Using 

lineage tracing tools to understand SNc diversity from a developmental perspective could 
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reinforce the robustness of adult single cell-based taxonomic dendrograms (Arendt et al., 

2019; Fiorenzano et al., 2021).

This study aims to shed light on dorsal and ventral SNc DA neurons from 

molecular, functional, and developmental perspectives. First, we demonstrate that the 

SOX6+,ALDH1A1+ population exists in the human ventral SNc and is selectively 

diminished in post-mortem PD brains. Second, we reveal that Sox6 expression defines a 

population of neurons that are more ventrally located and enriched in molecular pathways 

that could underpin vulnerability. Furthermore, we uncover a dorsal Sox6− population that 

includes neurons expressing Calb1 and Slc17a6 (Vglut2), genes associated with resilience 

to neurodegeneration. We describe distinct projection patterns and functions of Sox6+ and 

Sox6− neurons, validating this fundamental SNc division. Moreover, we reveal distinct 

developmental histories between these neuronal cohorts that demonstrate a dual embryonic 

origin of the SNc. Our work facilitates a more granular definition of the cellular landscape 

of the SNc, beyond current schemes obtained by single-cell profiling studies, and provides 

insights into the selective vulnerability of ventral tier neurons in PD.

RESULTS

SOX6+,ALDH1A1+ DA neurons in the human ventral SNc are vulnerable in PD

Previous single-cell profiling analyses of murine SNc have identified a subset of DA neurons 

that co-expresses Sox6 and Aldh1a1 (La Manno et al., 2016; Poulin et al., 2014). This 

subset was selectively vulnerable in a mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) model (Poulin et al., 2014). To evaluate whether a similar neuron type exists in the 

human SNc (hSNc) and whether it is vulnerable in PD, we performed immunolabeling in 

control and PD post-mortem brains. In control brains, we observed a defined ALDH1A1+ 

subset localized ventrally in the hSNc (Figures 1A and 1B), the majority of which co

expressed SOX6+ (83.8% ± 3.4%; Figures 1C and S1B). To assess their vulnerability, we 

investigated PD brains and age-matched controls (Table S1). As expected, TH+ neurons 

were significantly reduced in PD brains (70.0% ± 4% reduction compared to control brains; 

Figures 1B and S1A), but most important, SOX6+,ALDH1A1+ DA neurons were more 

diminished in numbers than other DA neurons. TH+,SOX6+,ALDH1A1+ showed an 82.1% 

± 3.7% reduction compared to controls, while other DA subtypes showed a 50.3% ± 6.8% 

reduction compared to controls (Figure 1D). To characterize resilient DA neuron cohorts, we 

stained sections for TH, CALBINDIN-D28k (CB), and ALDH1A1. Most CB+ DA neurons 

were ALDH1A1−, although a small subset expressed ALDH1A1 (Figures 1E and S1B). In 

PD brains, CB+ DA neurons were less affected than other DA neuron subtypes (TH+,CB+ 

13% ± 13.9% reduction compared to controls, other DA subtypes 69.4% ± 4.4% reduction 

compared to controls; Figure 1F). In conclusion, our experiments showed that a selectively 

vulnerable population in the ventral hSNc co-expresses SOX6 and ALDH1A1.

Sox6 expression distinguishes dorsally and ventrally biased cohorts in the murine SNc

Sox6 expression is a primary factor that distinguishes DA neurons (La Manno et al., 

2016; Panman et al., 2014; Poulin et al., 2014), making it an excellent genetic entry 

point to understand DA neuron diversity in mice. Sox6 is widely expressed in SNc DA 
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neurons (Panman et al., 2014; Poulin et al., 2014), but also in DA neuron progenitors 

(Panman et al., 2014), GABAergic neurons, and glia intermingled and in the vicinity of 

the SNc. Therefore, to specifically visualize post-mitotic Sox6+ and Sox6− DA neurons, 

we developed a simultaneous intersectional/subtractive strategy using our validated lines 

Sox6-FSF-Cre and Th-2A-Flpo. In this model, Cre activity is restricted to Sox6+,Th+ 

neurons. When combined with a RC-Frepe reporter, Sox6−,Th+ neurons (Cre−, Flpo+) 

express mCherry while Sox6+,Th+ neurons (Cre+, Flpo+) express GFP (Figure 2A). In the 

SNc of Sox6-FSF-Cre, Th-2A-Flpo, RC-Frepe adult brains, most DA neurons were GFP+ 

(70.0% ± 3.1%; Figures 2B and 2C). However, we observed a clear population of mCherry+ 

DA neurons, indicating either insufficient levels or complete lack of Sox6 expression. We 

also observed a small subset of mCherry+ neurons within the boundaries of the SNc, 

especially at the dorsal edge, that lacked TH immunolabeling (12.9% ± 0.01% of the SNc 

total mCherry+ population), in addition to mCherry+,TH− neurons above the SNc (Figure 

2B).

Remarkably, reporter-labeled cells displayed a biased spatial distribution: GFP+ neurons 

appeared to be ventrally enriched and mCherry+ neurons appeared to be dorsally enriched, 

although there was significant intermingling (Figures 2B and 2D). We took two approaches 

to quantify the spatial distribution of TH+,GFP+ and TH+,mCherry+ cells. First, we bisected 

the SNc into a ventral half and a dorsal half (see Method details). We found GFP+ DA 

neurons approximately evenly distributed between these halves, whereas 70.4% ± 4.3% of 

mCherry+ DA neurons were located in the dorsal half (data not shown). Second, we plotted 

the spatial coordinates of SNc TH+,mCherry+ and TH+,GFP+ DA neurons relative to line of 

best fit given all SNc cells (Figures S2A–S2A”‘). A histogram of the coordinate distance to 

the reference line showed that mCherry+ neurons were biased dorsally, while GFP+ neurons 

were distributed mainly ventrally but also intermingled with mCherry+ neurons in the dorsal 

SNc (Figure 2D). Since the mCherry+ population had fewer cells than the GFP+ population, 

we normalized the counts and observed a statistically significant difference in the centroids 

of the spatial distribution of GFP+ and mCherry+ neurons (Figure 2E). Finally, along the 

rostrocaudal axis of the SNc, our analysis showed that GFP+ neurons were more abundant 

than mCherry+ neurons, and that the latter were biased dorsally at all section levels (Figures 

S2B and S2C).

Other DA neuron clusters also exhibited a distinct proportion of reporter-labeled DA 

neurons: the SNpl appeared contiguous with the dorsal mCherry+ cells and was also 

predominantly mCherry+ (81.8% ± 6.0%; Figures 2B and 2C). In the ventral tegmental 

area (VTA), most DA neurons expressed mCherry (69.0% ± 3.0%; Figures 2B and 2C), 

indicating that they lacked or had insufficient levels of Sox6 expression. Nonetheless, 

we observed a GFP+ population in the VTA, located mainly in the parabrachial region. 

The retrorubral field (RRF), however, showed an even proportion of GFP+ and mCherry+ 

neurons, with significant intermingling (Figures S2D and S2E). In the interfascicular, 

paranigral, rostral linear, and caudal linear nuclei, the GFP+ population was less abundant 

(not shown).

To investigate whether the Aldh1a1+ population is fully or partially included in the 

Sox6+ (GFP+) population, we examined Aldh1a1 expression in Sox6-FSF-Cre, Th-2A

Luppi et al. Page 5

Cell Rep. Author manuscript; available in PMC 2021 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Flpo, RC-Frepe adult brains. In the SNc, ALDH1A1+ neurons, ventrally located, were 

mostly embedded in the GFP+ population (Figure 2F). Specifically, 86.7% ± 6.4% of the 

ALDH1A1+ neurons were GFP+, consistent with our hSNc data (Figure S1B). Furthermore, 

61% of the GFP+ cells in the SNc were ALDH1A1+ (Figure 2F’), indicating the presence of 

both Sox6+,Aldh1a1+ and Sox6+,Aldh1a1− populations, in line with previous studies (Poulin 

et al., 2014).

Since Sox6 and Calb1 are key drivers of variance in single-cell studies (Poulin et al., 2014), 

we performed CB staining in Sox6-FSF-Cre, Th-2A-Flpo, RC-Frepe brains. CB+ neurons 

localized dorsally in the SNc, with high and low immunolabeling levels, as previously 

shown (Gerfen, 1985; La Manno et al., 2016) (Figure 2G). Remarkably, we found that the 

majority of mCherry+ neurons in the SNc co-expressed CB (79.3%; Figure 2G’). This was 

also the case in the VTA, 87.2% ± 2.1%, and the SNpl, 90.3% ± 6.6% (data not shown). 

Our findings strongly suggest that Sox6 expression divides the murine SNc into a Sox6+ 

population biased to the ventral SNc (vSNc) and a Sox6− population biased to the dorsal 

SNc (dSNc) and SNpl. In addition, Aldh1a1+ neurons are largely included in the Sox6+ 

vSNc, and a substantial portion of the Sox6− dSNc/SNpl expresses Calb1.

Sox6+ and Sox6− neurons display large transcriptomic differences, some of which may 
underpin selective vulnerability

To determine the molecular differences between ventral Sox6+ and dorsal Sox6− DA 

neurons, we performed bulk RNA sequencing (RNA-seq) in sorted mCherry+ and GFP+ 

cells from the SNc of adult Sox6-FSF-Cre, Th-2A-Flpo, RC-Frepe mice. Our analysis 

revealed large and significant differential gene expression between these two populations 

(Figures 3A and 3B; Table S2). Consistent with our recombinase-based labeling strategy 

and our previous results (Figure 2), Sox6 and Aldh1a1 were preferentially expressed in 

GFP+ neurons. In addition, genes likely to confer distinctive properties on neurons, such 

as Drd2, Vmat2, Kcnj6, and Kcns3, were significantly enriched in the GFP population, 

whereas others such as the ion transport regulator Fxyd6, neuroglobin (Ngb), and Slc17a6 
(Vglut2) were enriched in the mCherry population (Figure 3A). In situ hybridization of 

Fxyd6, Ngb, and Vglut2 confirmed their expression in mCherry+,TH+ neurons in the dSNc 

and SNpl (Figure S3A). These markers were also expressed in mCherry+,TH− neurons 

located above the TH+ SNc. In contrast, somatostatin (Sst) was differentially expressed in 

the mCherry population, but was found only in mCherry+,TH− neurons above the SNc, 

indicating that some of these cells were included in our transcriptomic analysis (Figure 

S3A). These mCherry+,TH− neurons, like the TH+ cohorts, have a history of Th expression, 

and they are FOXA2+ indicative of a FP origin (data not shown). We postulate that these 

cells are related to dSNc DA neurons but fail to initiate or maintain robust expression of the 

DA program, and are therefore TH−.

Our results indicated that the Sox6+ population includes Aldh1a1+ DA neurons (Figures 

2F and 3A), which are vulnerable in PD models; therefore, we asked whether PD risk 

loci identified by genome-wide association studies (GWASs) (Nalls et al., 2019) were 

differentially expressed in the Sox6+ population. Interestingly, we found that six PD loci 

were enriched in the GFP, but none were enriched in the mCherry cohort (false discovery 
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rate [FDR] < 0.1; green squares, Figure 3A). Consistent with this, when we performed 

unbiased pathway enrichment analysis using gene set enrichment analysis (GSEA), a PD

linked gene set was differentially expressed in GFP+ neurons (4th highest enrichment score 

[ES], q = 0.04; Figures 3C and 3D). In total, our GSEA analysis revealed 11 pathways 

differentially enriched in the GFP population (q < 0.05), some of which appear to be 

highly relevant to existing theories of PD pathogenesis (Surmeier, 2018). For example, 

three of these pathways were relevant to mitochondrial electron transport and ATP synthesis 

(electron transport and complex I biogenesis; Figures 3C, 3D, and S3B). Several immune

related pathways were also differentially enriched in GFP+ neurons, including innate 

immunity and Toll-like receptor (TLR) signaling (Figure S3B), which have been of recent 

interest in PD research (Cebrián et al., 2014; Dzamko et al., 2017).

Our simultaneous intersectional/subtractive strategy to access Sox6+ and Sox6− SNc 

populations allowed us to better interpret available single-cell sequencing datasets. We 

plotted differentially expressed genes using the DropViz platform (Saunders et al., 2018) 

(clusters 4–1 to 4–9 represent DA neurons; Figure S4). Interestingly, Sox6 expression 

discriminates between clusters 4–3, 4–5, 4–6, 4–7, 4–8, and 4–9 (Sox6+) and 4–1, 4–2, 

and 4–4 (Sox6−), consistent with our previous findings showing Sox6 expression as a key 

driver of variance (Poulin et al., 2014). Accordingly, we hypothesized that clusters 4–3, 4–5, 

4–6, 4–7, 4–8, and 4–9 represent the GFP population. Aldh1a1, Kcns3, Atp2a3, Serpine2, 

and Satb1, significantly enriched in Sox6+ neurons, were highly expressed in these clusters. 

Conversely, clusters 4–1, 4–2, and 4–4 expressed a combination of Calb1, Vglut2, and 

Fxyd6, which we have shown to be enriched in Sox6− neurons (Figures 2G, 3A, and S3A), 

suggesting these could represent the mCherry population. Thus, we hypothesize that clusters 

4–1, 4–2, and 4–4 represent together the VTA, dSNc, and SNpl, all predominantly Sox6− by 

our previous analysis (Figure 2). We attempted to match Sox6− clusters with these midbrain 

areas and found that Otx2 and Lpl, known ventromedial VTA markers (Poulin et al., 2020a), 

were practically exclusive to cluster 4–1. Calb1 was more widely expressed, in accordance 

with our results (Figure 2G), although more prominently in the Sox6− clusters, consistent 

with our previous study (Poulin et al., 2014). Thus, cluster 4–2, expressing Calb1, Fxyd6, 

and Vglut2, but not Otx2 and Lpl, can be associated with dSNc and SNpl, predominantly 

mCherry+ regions. All in all, Sox6− (mCherry+) cells are similar in that they lack Sox6, 

but express Calb1, Fxyd6, and/or Vglut2. However, Otx2 and Lpl allow us to distinguish 

between dSNc/SNpl (4–2; 4–4) and VTA (4–1).

In conclusion, our results provide direct evidence of substantial molecular distinctions 

between Sox6+ and Sox6− neurons, and that Sox6+ neurons are enriched in known 

pathways of DA neuron vulnerability. Moreover, the transcriptomic dataset derived from 

our intersectional/subtractive labeling scheme provides an informative resource, readily 

combinable with single-cell transcriptomics analyses for a more granular classification of 

DA neurons such as localizing neurons of the dSNc/SNpl.

Sox6+ and Sox6− neurons have distinct projections and functional responses

Our intersectional/subtractive labeling approach (Figure 2) labels Sox6+ and Sox6− DA 

neurons in the SNc but also in VTA and RRF, thus confounding analysis of the axonal 
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projections of SNc neurons. To establish the projection targets of nigral Sox6+ and Sox6− 

neurons, we used an intersectional/subtractional viral strategy (Figures 4A and 4B) that 

labeled mainly SNc cells, with few VTA cells labeled (Figures 4D and S5B). Adult SNc 

of Sox6-FSF-Cre, Th-2A-Flpo mice were injected with CreOn/FlpOn-EYFP and CreOff/

FlpOn-mCherry viruses, simultaneously labeling Sox6+ and Sox6− cohorts. Projections from 

Sox6+ and Sox6− populations targeted distinct areas of the caudo-putamen (CP) along the 

M-L, D-V, and rostro-caudal (R-C) axes (Figures 4C, S5C, and S5F). mCherry fibers from 

Sox6− neurons densely innervated the CP mainly in the medial and ventral areas, including 

the nucleus accumbens (ACB), and the tail of the striatum (TS) (Figure 4C). In rostral (CPr) 

and intermediate (CPi) sections, mCherry fibers were denser toward ventral areas, and in 

DS, they were strongly biased toward the medial striatum (Figure 4F). Conversely, EYFP 

fibers (Sox6+) densely innervated the DS, but showed no obvious bias along the M-L axis, 

unlike mCherry axons (Figures 4C and 4F). Labeled fibers were sparse in the ACB, except 

in parts of the core and lateral shell (Figure 4C). In more caudal sections (CPc), the D-V and 

M-L gradients become less prominent (Figure 4C). mCherry innervation is also particularly 

prominent in the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) 

(Figures 4C and S5), in agreement with a previous report (Yamaguchi et al., 2018). To rule 

out biases from virus and/or fluorophore distribution, we repeated these experiments with a 

different set of viruses that label the same populations in reverse colors, with similar results 

(Figures S5D–S5F).

Because of the anatomical proximity of the SNc and VTA, it is technically challenging to 

label all of the SNc while avoiding all VTA cells. To confirm that the projection patterns 

observed were not due to the VTA cells labeled, we repeated the experiment with a smaller, 

more lateral viral injection, which spared the VTA but failed to fully label the medial SNc 

(Figures S5A–S5C). While the projection patterns were similar as shown in Figure 4C, 

projections into the ACB core and olfactory tubercle were absent in these mice (Figures 

S5A–S5C). In the dorsal CP, EYFP axons were sparser in medial regions, possibly due to 

medial SNc cells not labeled in this strategy (Figures S5A–S5C), in accordance with Lerner 

et al. (2015). Overall, the Sox6+ projection pattern agrees with our previous work (Poulin 

et al., 2018). Here, we additionally show that the Sox6− population of the dSNc/SNpl has 

markedly distinctive projections, including more densely to the medial, ventral, and tail of 

the striatum. This roughly matches the projections of Calb1+ neurons, consistent with the 

fact that Sox6− neurons are largely Calb1+ (Figure 2G).

A previous study reported a subset of DA axons with fast signaling associated with 

locomotion in the dorsal CP (Howe and Dombeck, 2016). This motor-associated DA 

signaling was found in DS projecting axons, while more ventral axons responded to rewards. 

Combined with our anatomical observation, this suggests that these motor-associated 

dopamine neurons would be included in the Sox6+ population. To confirm this, we used 

fiber photometry to record calcium transients on genetically defined axons in behaving mice. 

We labeled Sox6+ or Sox6− SNc DA neurons with calcium indicator GCaMP6f by injecting 

Sox6-FSF-Cre, Th-2A-Flpo mice with either an intersectional (AAV-COn/FOn-GCAMP6f) 

or subtractional (AAV-COff/FOn-GCaMP6f) virus (Figure 4G). Following viral injections, 

head-restrained mice received unexpected random water rewards while running freely on a 

cylindrical treadmill (Howe and Dombeck, 2016) (Figure 4H), at the same time we recorded 
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calcium transients using one-photon fiber photometry. Recordings from Sox6+ axons in 

DS showed calcium transients time locked to acceleration and no detectable response to 

rewards, as expected (Howe and Dombeck, 2016) (Figure 4I, top), confirming that the 

Sox6+ population includes motor-associated DA neurons. This does not, however, exclude 

the possibility of additional diversity within Sox6+ neurons (Poulin et al., 2020a). Recording 

from Sox6− axons in the CP proved more challenging (particularly in mid-depth), due to 

labeling inefficiencies of the available virus, as well as the lower density of Sox6− axons in 

the CP. However, in two mice, we observed reward-locked calcium transients in ventral CP 

axons of Sox6− neurons (Figure 4I, bottom right). As expected, in these same recordings, we 

did not detect any acceleration-locked calcium transients (Figure 4I, bottom).

Sox6+ and Sox6− neurons have distinct developmental histories

Sox6 expression is restricted to a subset of DA progenitors (Panman et al., 2014). Thus, 

we investigated whether differences observed between Sox6+ and Sox6− neurons could be 

encoded early in development. To this end, we designed a multi-pronged series of lineage 

tracing experiments to capture the full history of Sox6 expression from the progenitor stage.

We analyzed Sox6-FSF-Cre, CAG-Flpe, RC-Frepe embryos at embryonic day (E)11.5 and 

observed GFP+ cells located medially in the Lmx1a+ domain (Figure 5A), consistent 

with Sox6 embryonic expression (Panman et al., 2014). This result confirmed that our 

strategy appropriately labeled progenitors in the midbrain FP. Thus, we obtained a Sox6-Cre 

mouse line from our existing Sox6-FSF-Cre line, by permanently deleting the frt-flanked 

stop cassette with CAG-Flpe (Figure S6A). To create a cumulative fate map of Sox6 
while simultaneously labeling Sox6+ and Sox6− populations, we crossed Sox6-Cre to 

Th-2A-Flpo and RC-Frepe. In Sox6-FSF-Cre animals (Figure 2), the intersectional reporter 

RC-Frepe labels only postmitotic cells expressing Sox6, whereas in Sox6-Cre animals, Cre 

recombination in RC-Frepe can occur in both progenitors and post-mitotic neurons, labeling 

with GFP all of the neurons that have expressed Sox6 at any point in their history and with 

mCherry those DA neurons that have never expressed sufficient levels of Sox6 (Figure 5D).

We examined Sox6-Cre, Th-2A-Flpo, RC-Frepe embryos at the end of DA neurogenesis, 

E14.5 (Figure 5B). In these brains, GFP+ and mCherry+ cells had a distinct distribution 

as they emanated from the FP into the mantle zone. GFP+ cells were densely located 

medially, likely migrating radially and then tangentially at the pial surface as previously 

reported (Bodea et al., 2014; Panman et al., 2014; Vaswani et al., 2019). mCherry+ cells 

were prominent laterally, with some GFP+ cells intermingled. Interestingly, we observed a 

few mCherry+,GFP+ cells, also seen in E16.5 embryos, indicating that some DA neurons 

activate Sox6 expression postmitotically (Figure S6B).

To determine the contribution of Sox6 expression to the adult midbrain, we analyzed 

Sox6-Cre, Th-2A-Flpo, RC-Frepe brains. In the SNc, we observed a prominent ventral 

TH+,GFP+ population and a less abundant dorsal TH+,mCherry+ population (Sox6+ and 

Sox6− history, respectively; Figure 5C). Conversely, the SNpl was predominantly populated 

by TH+,mCherry+ neurons. We compared the percentage of GFP and mCherry-expressing 

cells in Sox6-Cre versus Sox6-FSF-Cre animals and found no statistically significant 

difference in SNc, SNpl, and RRF. However, there were more GFP+ cells in the VTA of 
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Sox6-Cre animals compared to Sox6-FSF-Cre (p = 0.06; Figure 5E). In fact, in Sox6-FSF

Cre brains, we observed mCherry+ cells throughout the VTA with some GFP+ cells in the 

parabrachial region (Figure 2B), whereas in Sox6-Cre brains, we also observed GFP+ cells 

in the paranigral region and the interfascicular nucleus.

Since Sox6 and Otx2 have complementary expression (Panman et al., 2014), we analyzed 

Otx2 expression in the cumulative and the post-mitotic analyses. In Sox6-Cre, Th-2A-Flpo, 

RC-Frepe brains (Figure S6C), the OTX2 signal was low/residual in SNc neurons with no 

apparent difference between GFP+ and mCherry+ cells. In contrast, in the VTA, several 

neurons co-expressed GFP and OTX2. In Sox6-FSF-Cre, Th-2A-Flpo, RC-Frepe brains, 

most OTX2+ cells in the VTA were mCherry+ (Figure S6D). These results suggest that 

Sox6+ progenitors can contribute to Otx2+ neurons. It is possible that the sporadic labeled 

cells observed in the lateral progenitor domain gave rise to some Otx2+ VTA neurons. 

Alternatively, medial Sox6+ progenitors could contribute to Otx2+ neurons, indicating some 

developmental flexibility.

The OTX2 staining also confirmed our analysis in Figure S4 that distinguished VTA from 

dSNc/SNpl. We found that many mCherry cells in the VTA expressed Otx2 robustly, but 

mCherry populations in the dSNc/SNpl showed weak/residual OTX2 signal. We observed 

similar results with Lpl expression, which was robust in ventromedial VTA neurons, 

but low/residual in dSNc/SNpl populations (not shown). This confirms that the dSNc/

SNpl populations are distinct from mCherry+ cells in the VTA. To investigate whether 

this difference manifests early in development, we examined OTX2 expression in E14.5 

embryos. Rostral sections had fewer OTX2+,mCherry+ cells in contrast to caudal sections, 

where many are observed (Figure S6E), suggesting that rostral mCherry+ cohorts contribute 

to the dSNc and SNpl, while caudal mCherry cohorts contribute to the OTX2+ ventromedial 

VTA.

Finally, we investigated how the Sox6+ cohort was represented in Aldh1a1+, Calb1+, and 

Vglut2+ populations in adult Sox6-Cre, Th-2A-Flpo, RC-Frepe brains. In the SNc, most 

ALDH1A1+ neurons co-expressed GFP, 85% ± 3% (Figure 5F). Conversely, in the VTA, 

77.4% ± 1.4% of ALDH1A1+ neurons co-expressed mCherry (not shown). These data 

strongly suggest that the Aldh1a1+ population has predominantly Sox6+ history in the SNc 

but not in the VTA. CB+ neurons, however, appear to lack Sox6 expression in both areas. 

The majority of CB+ neurons were mCherry+ in the SNc (80% ± 3%) (Figure 5G) and in the 

VTA (84.7 ± 5%; data not shown). Interestingly, in the VTA, the proportion of GFP+,CB+ 

neurons was slightly higher in the cumulative versus the postmitotic analysis, confirming 

our finding of more GFP+ neurons in the VTA of Sox6-Cre brains (Figure 5E). Overall, 

aside from the small GFP+,CB+ population, most Calb1+ neurons never expressed Sox6; 

therefore, they must derive from Sox6− progenitors. Next, we analyzed Vglut2, a marker that 

appears almost complementary to Sox6 (Figure S4). We performed in situ hybridization and 

found that 12% ± 2% of the TH+ SNc neurons expressed Vglut2, consistent with previous 

reports (Kouwenhoven et al., 2020). Expectedly, Vglut2+,TH+ neurons were heavily biased 

toward the mCherry+ cohort in the SNpl (85.6% ± 3% of Vglut2+ DA neurons were 

mCherry+; Figure 5H) and in the VTA (92.2 ± 8%, not shown). In the SNc, 48.5% ± 6% 

of the Vglut2+ DA neurons co-expressed mCherry (not shown). These numbers suggest that 
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Vglut2+ neurons, especially in the SNpl and VTA, lack sufficient Sox6 expression to drive 

recombination throughout their history. In conclusion, dSNc/SNpl neurons that have never 

experienced significant levels of Sox6 in their history must predominantly originate from 

embryonic Sox6− progenitors, a key finding of our work. The Sox6 dorsoventral division of 

the SNc must be, at least in part, encoded in the FP progenitors, strongly suggesting a dual 

developmental origin of the SNc.

Sox6+ FP progenitors are biased toward a vSNc fate

Our cumulative Sox6 analysis showed that Sox6− dSNc neurons (mCherry+ and Calb1+) 

must predominantly originate from Sox6− progenitors. Sox6+ neurons (GFP+ and Aldh1a1+) 

in the vSNc, however, either derived from Sox6+ progenitors or acquired Sox6 expression 

postmitotically. Since cumulative fate maps cannot distinguish whether Sox6 expression 

occurred in progenitors, post-mitotic neurons, or both, we used our PRISM (progenitor 

restricted intersectional fate mapping) approach to obtain a bona fide Sox6 fate map (Poulin 

et al., 2020b). PRISM elements include a Cre driver (in this case, Sox6-Cre) a Nestin-driven 

Flpo recombinase Nes-LSL-Flpo (NSF), and a Flpo-dependent reporter, RC-LacZ, encoding 

for β-galactosidase (βGal) (Figure 6A). Flpo expression depends on Cre and Nestin; thus, 

the reporter is restricted to progenitors expressing Sox6, and it excludes labeling of DA 

neurons expressing Sox6 postmitotically (Lendahl et al., 1990).

First, we validated the progenitor specificity of PRISM using Vglut2-Cre, since Vglut2 is 

expressed in nascent post-mitotic DA neurons (Kouwenhoven et al., 2020) (Figure S7A). 

As expected, few to no TH+ cells were labeled with the reporter in adult brains (Figure 

S7B), confirming that PRISM does not label post-mitotic neurons expressing the Cre driver. 

Second, we determined the maximum recombination potential of PRISM specifically in DA 

neurons, using EIIa as Cre driver, since EIIa is active at the one/two-cell stage (Figure 

S7C). We calculated an efficiency of 66.7% ± 2% in the SNc and 71.5% ± 0.01% in the 

VTA (Figure S7D), in line with the overall PRISM efficiency (Poulin et al., 2020b). This 

efficiency level provides a more complete picture of descendants, compared to genetically 

induced fate mapping strategies.

To confirm progenitor labeling, we analyzed Sox6-Cre, Nestin-LSL-Flpo, RC-LacZ 

embryos at E11.5. Sox6+ progenitors (βGal+) were largely localized medially in the 

embryonic Lmx1a+ domain (Figure 6B). Since not every medial progenitor was labeled, 

we compared Sox6-Cre, Nestin-LSL-Flpo, Ai65F (Flpo reporter encoding for tdTomato) to 

Sox6-Cre, Ai9 (Cre reporter encoding for tdTomato) at E12.5, the peak of DA neurogenesis. 

In brains of both genotypes, tdTomato+ cells were biased toward the medial Lmx1a+ domain 

(Figures S7E and S7F). Furthermore, the proportion of tdTomato+,LMX1A+/LMX1A+ cells 

in the PRISM embryo was 77% of the Sox6-Cre, Ai9 embryo (Figure S7F), roughly 

consistent with the overall PRISM efficiency (Poulin et al., 2020b) and the efficiency in 

DA neurons (Figure S7D).

PRISM provides a progenitor-restricted fate map in the adult brain. In adult Sox6 PRISM 

brains, we observed βGal+ DA neurons in the SNc, as well as the VTA (Figure 6C). We 

also observed βGal+,TH− cells in the rostral linear nucleus (not shown), characterized by 

low TH immunoreactivity. In the SNc, 28.7% ± 2.5% of the TH+ neurons originated from 
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Sox6+ progenitors (42.9%, adjusted by PRISM efficiency; Figure 6D). To rule out possible 

recombination inefficiency due to a rox-flanked destabilized EGFP cassette in the Nestin

LSL-Flpo construct, we deleted the cassette using Dre-deleter mice to reduce the distance 

between the loxP sites. The adult fate map with a Dre-deleted Nes-LSL-Flpo showed a result 

similar to that of the undeleted construct (Figure S7G). Notwithstanding our several efforts 

to account for efficiency, we interpret our data cautiously to include the possibility of some 

amount of temporal delay due to sequential recombination. Therefore, we conclude that at 

minimum, ~40% of the SNc is derived from Sox6+ progenitors, although this could be an 

underestimation.

Next, we sought to determine the propensity of Sox6 progenitors to contribute to Sox6, 

Aldh1a1, and Calb1 populations. In the SNc ~92% of TH+,βGal+ fate-mapped neurons 

maintained SOX6 expression, whereas in the VTA, a substantial proportion of TH+,βGal+ 

were SOX6− (not shown), further supporting that some VTA neurons originate from Sox6+ 

progenitors but downregulate Sox6. Moreover, in Sox6-Cre PRISM brains, we found 

that 70.7% ± 6% of the βGal+ neurons co-expressed ALDH1A1+ (Figures 6E and 6G), 

and 11.6% ± 2.4% of the βgal+ neurons co-expressed CB (Figures 6F and 6G); these 

CB+ neurons tended to be located more medially in the SNc. We concluded that Sox6+ 

progenitors have a higher propensity to generate Sox6+ and Aldh1a1+ neurons than Calb1+ 

neurons.

To corroborate our findings, we generated a Sox6-CreERT2 knockin line (Figure S7H). 

Although this approach suffers from substantial mosaicism, among other limitations, it is a 

well-established technique to temporally restrict the activation of the reporter (Joyner and 

Zervas, 2006). In Sox6-CreERT2, Ai9 E11.5 brains, tdTomato+ progenitors localized mainly 

to the medial domain of the embryonic FP, as expected (Figure S7I). We followed the fate 

of the reporter-labeled cells in P0 brains and observed tdTomato+,TH+ neurons in the SNc, 

but also in the VTA/interfascicular region (Figures S7J and S7K). Our results indicate that 

Sox6+ progenitors contribute to a significant number of SNc neurons, but also to the VTA.

DISCUSSION

Despite emerging data on DA neuron heterogeneity, little is known about its developmental 

basis. This study demonstrates a dual embryonic origin of the SNc that results in neuronal 

cohorts with different molecular characteristics, projections, functions, PD pathways, and 

vulnerability (Figure 7).

The recent identification of putative DA subtypes (Poulin et al., 2020a) motivated us 

to examine whether preferential loss of one of them underpins the anatomically based 

observations on selective vulnerability in PD (Damier et al., 1999; Kordower et al., 2013; 

Mendez et al., 2005; Yamada et al., 1990). Here, we show the presence of a ventrally 

located SOX6+,ALDH1A1+ population in human control brains, and that these neurons are 

selectively diminished in post-mortem PD brains; in contrast, CB+ cells were resilient. Our 

findings are consistent with previous reports using ALDH1A1 and CALB1 as markers (Liu 

et al., 2014; Yamada et al., 1990), as well as recent studies depicting ventral enrichment of 

SOX6+ neurons in the human SNc (Kamath et al., 2021; Monzón-Sandoval et al., 2020). 
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In mice, we found that Sox6+ neurons displayed large transcriptomic differences from 

Sox6− neurons that are likely to underpin their different properties (Figure 7A). Sox6+ 

neurons are enriched in pathways for ATP synthesis and therefore may carry a higher 

bioenergetic burden than Sox6− neurons (Surmeier et al., 2017). Increased ATP synthesis 

is likely required to support their continual activity during locomotion, but over time this 

may lead to oxidative stress in this population. Interestingly, immune-related gene sets are 

also enriched ventrally, including those for TLR signaling and major histocompatibility 

complex class II (MHC class II) pathways, both of which recently have been implicated in 

PD pathogenesis (Cebrián et al., 2014; Dzamko et al., 2017). Our study also showed that 

dorsal Sox6− cells were enriched for Calb1 and Vglut2 expression. Vglut2 has been recently 

identified as a marker of resilient DA neurons in toxin models, likely conferring resistance 

by way of Bdnf/TrkB signaling or by the facilitation of cytosolic DA clearance into vesicles 

(Shen et al., 2018; Steinkellner et al., 2018). Vglut2+ DA neurons have also been observed 

in primate SNc (Root et al., 2016). Calb1, however, could confer resiliency based on its 

calcium buffering properties (Inoue et al., 2019; Surmeier et al., 2017). Overall, our study 

reveals molecular distinctions between Sox6+ and Sox6− SNc neurons, some of which likely 

account for their selective vulnerability.

Sox6− dorsal and Sox6+ ventral SNc neurons showed distinctive projection patterns (Figure 

7A). Extending our previous work (Poulin et al., 2018), here, we show that Sox6+ neurons 

densely innervate the DS; however, with a subtractive strategy, not used in Poulin et al., 

we reveal that Sox6− axons sparsely innervate the DS and instead project more densely to 

the medial and ventral striatum, including potentially part of the lateral ACB. An inverted 

projection pattern was previously reported in rodents and primates (Fallon and Moore, 1978; 

Gerfen, 1985; Haber et al., 2000), but it has not been observed consistently across all studies 

(Matsuda et al., 2009; Prensa and Parent, 2001); therefore, it has not been depicted in recent 

models of SNc projections to the CP (Björklund and Dunnett, 2007; Vogt Weisenhorn et 

al., 2016). Potential overlap of Sox6+ and Sox6− axonal arbors as shown here and in a 

recent study (Simmons et al., 2019), together with the diverging criteria used to define the 

dorsoventral division of the SNc and the partially intermingled nature of these neurons, all 

may be reasons for these inconsistent findings. Importantly, these anatomical findings can 

explain the patterns of striatal innervation observed in PD brains (Kordower et al., 2013); 

fibers projecting to the medial striatum are likely preserved because they originate from 

relatively spared Sox6− neurons in the dSNc, most of which are also Calb1+.

The Sox6− cohort also extends into the SNpl. Using single-cell transcriptomic datasets, we 

were able to identify Sox6− cells, Vglut2+ and Calb1+, and we localize these to the SNpl. 

Consistent with previous genetically and anatomically defined projection maps (Kim et al., 

2014; Menegas et al., 2018; Poulin et al., 2018), we find substantial innervation of the 

TS. The SNpl-to-TS projection has recently been shown to have distinctive properties and 

encode threat prediction (Menegas et al., 2018). Watabe-Uchida and Uchida (2018) have 

postulated that this population may be considered a separate and orthogonal DA axis to the 

traditional reward-encoding axis. Our findings that these SNpl neurons are predominantly 

part of the developmentally encoded Sox6− cohort support the notion that these neurons 

have distinct functional properties.
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Recent studies have revealed that the activity of some SNc neurons is time locked to 

movement initiation and acceleration, thereby rejecting the dogma that slow variations in 

firing (tens of seconds to minutes) in these same neurons bias animals toward or away from 

movement (Howe and Dombeck, 2016). A study measuring DA axon calcium transients 

in the CP suggested that axons encoding locomotion and reward signals were distinct; 

transients time locked to locomotion were prominent in the dorsal CP, but reward-locked 

transients were prominent in the ventral CP (Howe and Dombeck, 2016). Here, we extend 

these findings by demonstrating that Sox6+ cohorts encompass a population with calcium 

transients time locked to acceleration. Although further work is required to understand 

whether the Sox6+ cohort is homogeneous in its locomotion response, together with our data 

showing selective degeneration of SOX6+,ALDH1A1+ neurons in PD and the projections 

of the Sox6+ cohort to the dorsal CP, we propose a role for the Sox6+ cohort in motor 

control. This conclusion is consistent with a recent study showing that ablation of ~80% of 

Aldh1a1+ neurons in the SNc results in motor learning and walking speed deficits (Wu et al., 

2019). Contrary to axons of Sox6+ neurons, those of Sox6− neurons densely project to the 

ventromedial striatum and the ACB, and respond to reward stimuli.

Toward understanding the basis of SNc neuron diversity, we provide evidence that the SNc 

has a dual embryonic origin (Figure 7B). From our multi-pronged lineage analysis, we find 

that the dSNc/SNpl is predominantly derived from Sox6− progenitors. These progenitors 

are enriched in the lateral FP. More caudally, these lateral FP progenitors give rise to 

Otx2+ neurons in the ventromedial VTA (Figures 7 and S6), consistent with the model of 

Panman et al. (2014). In contrast, Sox6+ progenitors enriched in the medial FP give rise 

to neurons in the SNc, with a greater propensity for Aldh1a1+ compared to Calb1+ fates. 

However, some of the cells in the vSNc originate from Sox6− progenitors but upregulate 

Sox6 post-mitotically. This conclusion finds support in the following observations: (1) 

some transient double-reporter-positive cells are observed at embryonic stages in Sox6-Cre, 

Th-2A-Flpo-based experiments (Figure S6B), and (2) even after accounting for PRISM 

efficiency, our progenitor restricted fate map does not label the entire vSNc. Nonetheless, 

because of potential temporal delay due to sequential recombination in PRISM fate maps, 

in conjunction with the slightly earlier birth of the SNc (Bye et al., 2012), it is difficult 

to exclude the possibility that a greater fraction of the vSNc was derived from Sox6+ 

progenitors. Overall, however, we provide evidence that SNc neuron fate is, at least in part, 

encoded in FP progenitors. Subsequent molecular refinements, coupled with differential 

migrations, and axon guidance mechanisms, then culminate in the elaborate and diversified 

midbrain DA system seen in the adult (Bodea et al., 2014; Brignani et al., 2020; Chabrat 

et al., 2017; La Manno et al., 2016; Prasad and Pasterkamp, 2009; Tiklová et al., 2019; 

Vaswani et al., 2019).

Sox6+ progenitors also contribute to DA neurons in the VTA, many of which are located 

in the parabrachial region and which continue to maintain Sox6 expression. However, some 

descendants were also observed in more ventromedial VTA regions, although some of these 

downregulate Sox6 during differentiation. The latter finding is supported by the observation 

that several GFP+ cells of the VTA are OTX2+ (Figure S6), and it suggests that all DA 

progenitors may not be completely fixed in their lineage. This would be in accordance 

with recent postulates on cell fate determination in the CNS, in which neurons converge 
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on stable states through a process of gradient descent, using “configurational codes” that 

are somewhat plastic and evolve during development (Mayer et al., 2018). An alternative 

explanation could be that some low-level Sox6-expressing cells in the lateral progenitor 

domain, superseded the threshold of recombination and contributed to the VTA fate map.

Understanding DA neuron diversity is a key step toward clarifying the myriad functions of 

midbrain DA neurons. Leveraging the power of intersectional/subtractive genetic methods 

and Sox6 as an anchor, we provide a developmental perspective into how this diversity 

may be generated in the early embryo, and in doing so, we provide clarification to adult 

taxonomic schemes. Further work will be required to define molecules that may induce 

Sox6 in the FP, as well as define the functional role and direct targets of Sox6, toward the 

diversification of DA neurons.

Limitations of the study

In addition to the technical limitations that have been discussed throughout the Results 

section, we highlight the following: human—post-mortem human studies should be followed 

up with anterior-posterior stereological analyses; mouse—whether Sox6− populations are 

truly negative or express low levels that are below either the recombination threshold or the 

sensitivity of single-cell RNA-seq, remains to be determined. Despite this caveat, we were 

able to show that these genetically defined populations are distinct in several different ways. 

With respect to our fate-mapping experiments, we deduced that dorsal SNc/SNpl neurons 

originated from Sox6− progenitors; future experiments should aim to directly label lateral FP 

progenitors and determine their fate.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Rajeshwar Awatramani (r

awatramani@northwestern.edu).

Materials availability—Mouse lines generated in this study will be shared upon request 

upon completion of Material Transfer Agreement due to institutional policy and will be 

deposited to a mouse repository (e.g., MMRRC).

Data and code availability

• Bulk RNaseq data have been deposited at Gene Expression Omnibus and are 

publicly available as of the date of publication.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the Lead Contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient information—Tissue samples, clinical and neuropathology data, were supplied by 

the Parkinson’s UK Brain Bank funded by Parkinson’s UK, a charity registered in England, 

in Wales (258197) and Scotland (SC037554). In total, fifteen PD patients between 67–92 

years of Braak stages V-VI were evaluated. Cases were age-matched to controls (details in 

Table S1). All post-mortem analyses were approved by the Ethical Research Committee of 

the Centre Hospitalier Universitaire de Québec (#2016–2564).

Mice—All animals used in this study were maintained and cared following protocols 

approved by the Northwestern Animal Care and Use Committee. Cre and Flpo mouse lines 

were maintained heterozygous by breeding to wild-type C57BL6 mice. Reporter lines were 

maintained homozygous. The Sox6-FSF-Cre and Sox6-FSF-CreERT2 lines were generated 

at Northwestern University by the Transgenic and Targeted Mutagenesis Laboratory as 

previously described (Poulin et al., 2018). To obtain Sox6-FSF-CreERT2, we replaced the 

Cre cassette with a CreERT2 cassette (Poulin et al., 2018). We crossed Sox6-FSF-Cre and 

Sox6-FSF-CreERT2 to CAG-Flpe to obtain Sox6-Cre and Sox6-CreERT2 lines, respectively.

For postmitotic or cumulative analyses, we crossed Sox6-FSF-Cre or Sox6-Cre to Th-2A

Flpo (Poulin et al., 2018), RC-Frepe (JAX 029486) and harvested brains at P56 and P21

P30, respectively. Both males and females were used for all adult brain analyses. As reported 

in Poulin et al. (2018), Th-2A-Flpo has > 99% recombination efficiency in DA neurons. 

For projection and functional analyses, Sox6-FSF-Cre mice were crossed to Th-2A-Flpo 

mice, and offspring were used for viral injections at 3 to 5 months old. To obtain progenitor 

labeling at E11.5, Sox6-FSF-Cre animals were crossed to CAG-Flpe, RC-Frepe (Figure 

5A). To obtain progenitor labeling at E12.5, Sox6-Cre animals were crossed to Ai9 (JAX 

007909). For PRISM analysis, we used our newly generated Nes-LSL-Flpo (NSF) line 

(Poulin et al., 2020b), Ella-Cre (JAX 003724), Slc17a6-Cre (Vglut2) (JAX 028863), and 

Sox6-Cre, crossed to RC-FA (RC-LacZ), that was derived by crossing the intersectional 

reporter RC-Fela (Jensen et al., 2008) (gift from S. Dymecki) with the beta-actin Cre-deleter 

mouse (JAX 003376). To establish maximum efficiency of PRISM, Nes-LSL-Flpo was 

first crossed to EIIa-Cre. Offspring with a deletion of the loxP-STOP-loxP cassette (Nes

Flpo) was next crossed to RC-FA. This breeding strategy assured that loxP-STOP-loxP 

cassette preceding Flpo was excised in the germline. To permanently delete the rox-flanked 

destabilized eGFP cassette (d4GFP) in Nes-LSL-Flpo, this PRISM line was crossed to 

a Dre-deleter mice as previously described (Poulin et al., 2020b). Brains of adult males 

and females were harvested at P21 for all PRISM-related experiments mentioned above. 

For progenitor-anchored fate maps at E11.5 and E12.5, Nes-LSL-Flpo was crossed to 

Sox6-Cre with RC-FA and Ai65F (JAX 032864), respectively. For genetically induced fate 

map experiments, tamoxifen (Sigma Aldrich, prepared in corn oil) was administered by IP 

injection to pregnant dams of E9.5 Sox6-CreERT2, Ai9 (2 mg/40 g). For all embryonic time 

points, the morning of the day when a vaginal plug was detected was designated as E0.5.

METHOD DETAILS

Identification of anatomical borders in human tissue by Nissl staining—We 

referred to published work (Damier et al., 1999; Mai and Paxinos, 2012; Olszewski and 
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Baxter, 1954) to define human substantia nigra (hSNc) anatomical borders and used Nissl 

staining to confirm the rostro-caudal level of the sections. Sections were deparaffinized by 

heated treatment (65°C), treated with citrisolv, (Decon laboratories Inc., #1601) rehydrated 

in ethanol gradients (70%, 50% and 25% for 2 min) and incubated in cresyl violet solution 

for 20 min followed by dehydration in ethanol gradients (25%, 50%, 70%, 95%, 100%) 

and citrisolv. Slides were coverslipped with DPX mounting medium (Electron Microscopy 

Sciences #13512) and observed under a Nikon Eclipse E800 bright field microscope.

Immunofluorescence in hSNc—Sections were deparaffinized followed by incubation 

in citrisolv, hydration steps with ethanol gradients (100%, 95%, 70%, and 50%) and quick 

rinse in PBS - 0.2% Tween. Sections were next incubated in a pre-heated antigen retrieval 

solution of 10mM citrate buffer (pH6.2) (Sigma-Aldrich, #W302600–1KG-K) for 30 min 

at 95°C and cooled for 1 hour at RT. Sections were then rinsed in wash buffer (PBS - 

0.2% Tween - 5% BSA (BioShop, ALB001.500) - 2.5% Triton X (Sigma-Aldrich, T8787) 

and incubated in blocking solution (5% BSA, 2.5% Triton X, 10% donkey serum (Sigma

Aldrich, D9663) for 1 hour at RT. Finally, sections were incubated overnight at RT in 

blocking solution with the following primary antibodies: rabbit anti-SOX6 (Sigma-Aldrich, 

#HPA001923, 1:100), sheep anti-TH (Pel-Freez Biologicals, #P60101–0, 1:1000), mouse 

anti-ALDH1A1 (Sigma, #SAB5300519, 1:200), rabbit anti-CALBINDIN-D-28K (Millipore, 

#AB1778, 1:500). Subsequently, sections were rinsed three times in wash buffer. Secondary 

antibodies were diluted in blocking solution and incubated for 2 hours and 30 min at RT 

with Alexa Fluor 488 donkey anti-rabbit IgG (Life Technologies, #A21206, 1:500), Alexa 

Fluor 546 donkey anti-sheep IgG (Life Technologies, #A21098, 1:500) and Alexa Fluor 647 

donkey anti-mouse IgG (Life Technologies, #A 31571, 1:500). Sections were then washed 

three times and incubated 7 min at RT in DAPI (Molecular probes by Life Technologies, 

#D3571), rinsed 3 times, washed for 5 min in ethanol 70% and incubated for 5 min at RT in 

autofluorescence eliminator reagent (Millipore, #2160) followed by three washes in ethanol 

70% for 1 min. Slides were ultimately dried and coverslipped using fluoromount G (Electron 

microscopy, #17984–25). To ensure antibodies specificity, positive and negative controls 

were included. For SOX6 positive control, human tissue was obtained from cases with 

brain metastases which are known to be immune reactive for SOX6. Negative controls were 

performed by omitting the primary antibody. Images of human SNc (hSNc) were acquired 

on the slide scanner Zeiss Axio Scan.Z1 with Zen 2.3 lite software. High magnifications 

were obtained on Zeiss LSM 800 confocal laser microscope with Zen 2.1 software. Images 

were acquired by z series and reconstructed in Fiji software.

Immunofluorescence in mouse tissue—Embryonic brains were harvested and fixed 

in 1% or 4% PFA-PBS for an amount of time depending upon age, cryoprotected in 30% 

sucrose-PBS before OCT embedding and sectioning at 16–20 μm on a cryostat. Adult brains 

were perfused and fixed overnight with 4% PFA-PBS, cryoprotected in 30% sucrose-PBS 

solution, snap frozen in dry-ice and sectioned at 20–25 μm on a microtome. Sections were 

rinsed in PBS and blocked in 5% normal donkey serum in PBS 0.3% Triton X for 30 min 

at room temperature (overnight at 4°C for staining with goat anti-Aldh1a1), then incubated 

with primary antibodies diluted in blocking solution overnight at 4°C. Antigen retrieval: 

Tissue was post-fixed 5 min in 4% PFA-PBS, rinsed in PBS, treated with antigen unmasking 
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solution (Vector Laboratories) and heated in a microwave for 5–10 minutes depending on 

the primary antibody, then blocked for 1 hour and incubated overnight at 4°C with primary 

antibodies diluted in the blocking solution. The following day, sections were rinsed in 

PBS and incubated with secondary antibodies at room temperature, followed by PBS rinse 

and mounting. Primary antibodies: rabbit and sheep anti-TH (Pel-Freez, 1:500 and 1:250, 

respectively), chicken anti-GFP (Abcam, 1:1500), rabbit anti-mCherry (Abcam, 1:1000), 

rat anti-mCherry (Abcam, 1:1000), mouse anti-CB (Abcam, 1:500), rabbit anti-OTX2 

(Proteintech, 1:500), goat anti-ALDH1A1 (Abcam, 1:1000), rabbit anti-Lmx1A (Millipore, 

1:1000, antigen retrieval), guinea pig anti-LMX1A (Gift from Dr. Yongchao C. Ma, 

1:20,000, antigen retrieval), goat anti-βGal (Biogenesis, 1:1500), rabbit anti-RFP (LSBio, 

1:1000, antigen retrieval), rat anti-DAT (Santa Cruz, 1:200). Secondary antibodies: Alexa 

488, −555, and −647 (Molecular Probes) or Cy3 and Cy5 (Jackson Immuno Research), 

diluted 1:250 in blocking solution with DAPI (1mg/mL; Sigma).

In situ hybridization—RNAscope assay was performed on 4% PFA fixed brains (as 

explained above), using the fluorescent multiplex kit from Advanced Cell Diagnostic 

according to manual instructions for detection of Slc17a6, (Vglut2) (Mm-Slc17a6-C3; 

ACD #319171) Sst, (Mm-Sst-C3; ACD #404631) Ngb, (Mm-Ngb-C3; ACD #876171) 

Fxyd6, (Mm-Fxyd6-C3; ACD #430971). We combined this method with standard 

immunofluorescence for mCherry and TH as explained above, performing RNAscope first. 

16 μm sections were obtained with a cryostat. Slides were coverslipped with ProLong 

Gold antifade reagent (Sigma). We determined Vglut2 positivity by counting the number 

of puncta surrounding a cell’s nucleus. All cells were observed to have basal expression 

of Vglut2. Any cell that had 10 or more distinct, clustered, puncta were considered Vglut2 
positive. All images for this study were obtained on Olympus BX61VS slide scanner, 

confocal Nikon A1R-spectral microscope, Nikon W1 Dual Cam Spinning Disk Confocal at 

Northwestern University Center for Advanced Microscopy/Nikon Imaging Center, or Leica 

TCE SPE DMI4000 B (Dr. Dimitri Krainc, Northwestern University). Figures were prepared 

in Adobe Illustrator.

Isolation of dorsal and ventral SNc for transcriptome analysis—Sox6-FSF-Cre, 

Th-2A-Flpo, RC-Frepe adult brains (P56 and older) were used for bulk RNaseq analysis. 

Anesthetized mice were rapidly decapitated and the SNc was carefully dissected at ~1 mm 

coronal thickness using a brain matrix (Kent Scientific #RBMS-200C) and further trimmed 

under an epi-fluorescent microscope, avoiding other dopaminergic populations. Samples 

were processed with the Papain Dissociation System (Worthington Biochem #LK003150) 

following the manufacturer’s recommendations. However, we substituted the provided EBSS 

solution with ACSF buffer (200 mM Sucrose, 2.6 mM KCl, 10 mM MgCl2, 0.5 mM CaCl2, 

26 mM NaHCO3, 1.27 mM NaH2PO4 and 10 mM Dextrose; equilibrated with 5% CO2/95% 

O2; pH 7.3). Tissue was dissociated in 20U papain per mL in ACSF, 1mM of L-cysteine, 

and 0.5mM EDTA. At the end, cells pellets were re-suspended in 400 μL of cold ACSF 

enriched with 1% B27, 1% BSA and DAPI, then FACS sorted. Roughly an equal number 

of mCherry+ (Sox6−) and GFP+ (Sox6+) cells were collected from 3 independent animals, 

and each sample was processed individually. Total RNA was prepared according to Ambion 

mirVana miRNA isolation kit (Life technology, AM1561).
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RNA-sequencing and analysis—The stranded mRNaseq was conducted in the 

Northwestern University NUSeq Core Facility. Total RNA samples were checked for quality 

using RINs generated from Agilent Bioanalyzer 2100. RNA quantity was determined with 

Qubit fluorometer. The Illumina TruSeq Stranded mRNA Library Preparation Kit was used 

to prepare sequencing libraries of high-quality RNA samples (RIN > 7). The Kit procedure 

was performed without modifications. This procedure includes mRNA enrichment and 

fragmentation, cDNA synthesis, 3′ end adenylation, Illumina adaptor ligation, library 

PCR amplification and validation. Illumina NextSeq500 NGS Sequencer was used to 

sequence the libraries with the production of single-end, 75 bp reads. The quality of 

reads, in FASTQ format, was evaluated using FastQC (v0.11.7). Reads were trimmed 

to remove Illumina adapters from the 3′ ends using cutadapt (v1.14) (Martin, 2011). 

Trimmed reads were aligned to the Mus musculus genome (mm10/GRCm38.p6) using 

STAR (version 020201) (Dobin et al., 2013). Read counts for each gene were calculated 

using htseq-count (version 0.6.1p1) (Anders et al., 2015) in conjunction with a gene 

annotation file for mm10 obtained from Ensembl (http://useast.ensembl.org/index.html). 

Normalization and differential expression were calculated using DESeq2 (version 1.14.1) 

that employs the Wald test (Love et al., 2014). The cutoff for determining significantly 

differentially expressed genes (Table S2) was an FDR-adjusted p value less than 0.05 

using the Benjamini-Hochberg method. A pathway analysis was performed using Metascape 

(http://metascape.org) to identify significant pathways among the significantly differently 

expressed genes.

Data visualization—Volcano plot: After aligning the sequences and calculating the 

number of reads obtained for each gene, we used DESeq2 (Version 3.10) (Love et al., 2014) 

to estimate fold-change (FC) difference and significance between GFP+ and mCherry+ 

populations. DESeq was applied to the normalized counts using negative binomial 

distribution. False discovery rate (FDR < 0.1) and −1.4 < FC > 1.4 were used as the 

parameters to select genes that have a significant expression change. GSEA: To analyze 

enrichment of gene sets between GFP+ and mCherry+ populations, we used GSEA software 

v4.0.2, freely available from the Broad Institute (https://www.gsea-msigdb.org/gsea/

%3chttps://urldefense.proofpoint.com/v2/url?

u=http-3A__software.broadinstitute.org_gsea_index.jsp&d=DwMFAw&c=yHlS04HhBraes5

BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=q3PUTvWH-

k7Xg3m5Xu4sgxcoX1GSmOsPCLxG3Gp_YWuadKi8GxI1hS07DWXW9OVf&m=DxuT1t

LCsjQY122nzFQBXGrXiIEWgjUk267rtpz0REI&s=bENoDJQckIp8TSIOCehptZttSrNMD

9kAuhGiAJgdyjQ&e=.) (Mootha et al., 2003; Subramanian et al., 2005). First, we converted 

genes in our mouse RNaseq dataset to human homologs using the Human and Mouse 

Homologs list available from The Jackson Laboratory website (http://

www.informatics.jax.org/homology<https://urldefense.proofpoint.com/v2/url?

u=http-3A__www.informatics.jax.org_homology&d=DwMFAw&c=yHlS04HhBraes5BQ9u

eu5zKhE7rtNXt_d012z2PA6ws&r=q3PUTvWH-

k7Xg3m5Xu4sgxcoX1GSmOsPCLxG3Gp_YWuadKi8GxI1hS07DWXW9OVf&m=DxuT1t

LCsjQY122nzFQBXGrXiIEWgjUk267rtpz0REI&s=HZWtPgdN1VRlokcmHqekpXhS8nA

hYslkvjbdefMOZLg&e=>). A total of 15828 genes were subsequently used for GSEA. 

Next, we compared GFP+ to mCherry+ populations using a curated collection of gene sets, 
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“Canonical Pathways,” available from MSigDB (Liberzon et al., 2011; Subramanian et al., 

2005). All default settings were used for the analysis, except for a minimum gene set size of 

25 and use gene set for permutation type (recommended by GSEA for analyzing fewer than 

seven samples). Heatmap: we used pheatmap R package (version 1.0.12) to build a heatmap 

from reads counts. Log2FC threshold was set to 0.65, and alpha to 0.05. Genes were filtered 

by FDR < 0.05 to obtain the heatmap.

Projections in adult brains—The SNc of Sox6-FSF-Cre, Th-2A-Flpo adults (6–8 weeks 

old, n = 3) were injected with AAV5 -hSyn-CreOn/FlpOn-EYFP UNC AV8357 and AAV8 

EF1α-CreOff/FlpOn-mCherry (gift from K. Deisseroth) viruses (Figures 4A, 4B, and S5A). 

For Figure S5D, viruses used were AAV5-EF1α-DIO-mCherry #AV4311B (abbreviated as 

AAV-CreOn-mCherry) and AAVdj-hSyn-CreOff/FlpOn-eYFP (gift from K. Deisseroth) (n 

= 3). Four weeks later, brains were perfused with 4% PFA-PBS and fixed overnight in 4% 

PFA-PBS. The following day, after PBS washes, brains were processed to prepare 25μm 

sections on a freezing microtome. Immunofluorescence for mCherry and GFP (eYFP) was 

performed on floating sections as described above. Epifluorescence images were acquired on 

an Olympus Slide Scanner VS120.

For the histograms of Figures 4E and 4F, sections for CPr and CPi of n = 3 mice above were 

used. A rectangle was drawn for each section in dorso-ventral and medio-lateral direction, as 

depicted in Figures 4E and 4F, left. These areas were divided into 25 bins and the % of total 

fluorescence for each mCherry and eYFP was calculated in each bin.

One-photon fiber photometry—For calcium fiber photometry, adult mice (6–8 weeks 

old) of Sox6-FSF-Cre, Th-2A-Flpo genotype were injected within the SNc with either 

AAV8 EF1α-CreOn/FlpOn-GCaMP6f or AAV8-EF1α-CreOff/FlpOn-GCaMP6f (gifts from 

K. Deisseroth), respectively (Figure 4G). n = 9 mice were used for Sox6+ recordings, and n 

= 10 for Sox6−. Mice were head-fixed over a cylindrical treadmill and allowed to run freely. 

Non-predicted water rewards were delivered through a waterspout, at random intervals. 

200μm core optic fibers were placed into dorsal striatum for Sox6+ recordings (X ± 1.8, Y 

0.5, Z 1.9 mm) and in the ventral striatum for Sox6− recordings (X ± 1.8, Y 0.5, Z 3.9 mm). 

A 470nm LED was used for illumination and emitted light was diverged onto the PMT using 

a 505-sp dichroic and a 540nm/50 filter. Fluorescence was recorded at 4000 Hz and binned 

at 100 Hz. Mice with no significant transients were excluded (none for Sox6+ and 8 for 

Sox6−. We confirmed through histology that in most mice few Sox6− axons were labeled, 

not enough to reach the detection threshold of fiber photometry). %ΔF/F was calculated as 

in Howe and Dombeck (2016) Triggered averages were calculated for reward delivery and 

accelerations exceeding 1ms−2 GCaMP expression and fiber placement were checked by 

immunofluorescence for GFP performed on floating sections as described above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Human samples—For quantification, the hSNc was first identified and delineated on 

each slide using Nissl staining. Adjacent slides were used for staining where anatomical 

delimitations were reproduced. The shape of each region was delineated using Zen 2.3 

lite software and both single and double-labeled neurons were counted. Student’s t tests 
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were used between two means with a Welch correction when the homogeneity of variance 

could not be confirmed with Bartlett’s test. Two-way ANOVA followed by Tukey’s post 

hoc analyses was used when two categorical data such as “group,” “sex” or “levels of 

analyzed brains” were investigated. No significant statistical differences between sex were 

identified. Likelihood ratio analysis of contingency tables with Pearson’s method was used 

in the investigation of categorical data such as “sex.” P values under 0.05 were considered 

significant. All statistical analyses were performed using Prism (Graphpad). Data were 

expressed as mean ± SEM and each point depicted on the graphs represents one sample.

Mouse samples—We referred to the mouse brain Allen Reference Atlas (by Wiley) 

and Paxinos G. & Franklin K. B (second edition by Academic Press) to identify brain 

section levels and establish anatomical boundaries in conjunction with TH expression. 

Multi-channel images were processed in Fiji to draw boundaries and perform cell counts. All 

counted cells were DAPI+ and all DA neurons counted were TH+ or DAT+. Specifically, 

GFP+ and mCherry+ cells counted for Figures 2C–2E, 5E, S2B, S2C, and S2E, were also 

TH+. Cell counts on adult brains were performed on three brains per genotype and three 

to six matching sections across the rostro-caudal axis (Allen atlas levels B-2.88 to B-3.52 

for SNc, VTA, SNpl and −3.88 for RRF). We quantified 3 sections for all experiments with 

CB and ALDH1A1 staining, and for PRISM efficiency in adult brains. For Sox6-FSF-Cre, 

Th-2A-Flpo, RC-Frepe analysis in Figure 2 and S2, we quantified 5 brains, 4 sections 

each. For in situ hybridization of Vglut2, we quantified 3 brains, 6 sections each. For 

quantifications at E12.5, we analyzed 3 sections per brain, 3 brains per genotype.

For the first approach to characterize spatial distribution of reporter-labeled cells, we 

performed a bisection of the SNc for dorsal-ventral analysis performed in ImageJ. First, 

a dorsal and a ventral SNc boundary was drawn. The length of each boundary was divided 

into 10 segments, marked by ticks on the boundary line. Starting from one end, a vertical 

line was drawn to join the first tick on the dorsal boundary to the first tick on the ventral 

boundary, the process was repeated for the subsequent 9 ticks. Finally, a bisector line was 

drawn by crossing each midpoint of the 10 vertical lines. mCherry+TH+ and GFP+TH+ 

cells were counted on each half. These data are not included in figures but are discussed in 

the results section.

For the second approach, to characterize spatial distribution of reporter-labeled cells, we 

plotted histograms of cell spatial distribution across the dorso-ventral axis of the SNc 

in Figures 2D, 2E, and S2C (example diagram Figures S2A–S2A”‘). xy coordinates for 

mCherry+TH+ and GFP+TH+ cells were obtained with ImageJ cell counter plugin. The 

angle and the dorso-ventral center of the SNc was obtained using a line of best fit given 

all SNc cells, and dorso-ventral coordinates were defined perpendicular to this line. Bins 

for the histograms are 15 μm wide. For Figures 2E and S2C mCherry and GFP cells 

were normalized separately by relative probability (sum of each histogram = 100%). 

The centroids for each population on each section were plotted on Figure 2E right. 4 

rostro-caudal sections were analyzed for each n = 3 mice. In Figure S2C, histograms were 

calculated separately for each rostro-caudal section. In Figures 2D and 2E, all sections for 

each mouse were counted together. Shaded area is SEM. For Figure S7F, we obtained xy 

coordinates for all LMX1A+ and tdTomato+ cells in 3 brains with ImageJ cell counter 
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plugin, 3 sections each. A vertical line was drawn at the midline, and distance to the midline 

calculated for each cell. For left 2 plots, a histogram (5.5 μm bin) was obtained for each 

strategy. For the right plot, we calculated the % of tdTomato+ cells at each distance from the 

midline for each strategy.

For genetically induced fate mapping analysis (Figures S7H–S7K), we used six animals and 

at least ten TH+ midbrain sections were counted per brain. All values were expressed as 

mean ± SEM. Student’s t test was used for statistical comparisons and p values lower than 

0.05 were considered significant. Analysis was performed in MATLAB.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The SNc derives from Sox6+ and Sox6− progenitors, indicating a dual origin

• Sox6+ and Sox6− DA neuron cohorts have distinctive projections to the 

striatum

• Sox6+ DA neurons are enriched in pathways and genes that may underpin 

vulnerability

• Sox6+,Aldh1a1+ neurons are selectively vulnerable in PD
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Figure 1. SOX6+,ALDH1A1+ neurons in human SNc are vulnerable in PD while CALBINDIN
D28k+ neurons are relatively spared
(A and B) TH+,ALDH1A1+ labeling in control and PD brains. In PD brains, ALDH1A1 

staining appears brighter in the nuclei compared to controls, as previously described in a 

6-OHDA model (Stott and Barker, 2014).

(C) High magnification of SOX6+,ALDH1A1+ DA neurons (arrowheads) in a control brain.

(D) SOX6+,ALDH1A1+ DA neurons versus other DA neurons in hSNc of PD as a 

percentage of control brains (p = 3.1 × 10−4; controls are set at 100%, n = 14 controls, 

n = 15 PD).

(E) High magnification of CALBINDIN-D28k+ (CB+) DA neurons in a control brain.

(F) CB+ DA neurons versus other subtypes in PD as a percentage of control brains (p = 7.3 × 

10−4, n = 14 controls, n = 15 PD).

Scale bars: (A) 1,000 μm, (B) 100 μm, and (C and E) 50 μm. Error bars are SEMs. vSNc, 

dSNc: ventral and dorsal substantia nigra pars compacta. hSNc: human substantia nigra pars 

compacta.
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Figure 2. Sox6 expression defines a dorsal-ventral division of the murine SNc
(A) Simultaneous intersectional/subtractional genetic labeling strategy.

(B) Example of an adult Sox6-FSF-Cre, Th-2A-flpo, RC-Frepe brain. Some mCherry+ cells 

are observed above the SNc, lacking TH immunoreactivity (*).

(C) Average number of TH+,mCherry+ (red bars) and TH+,GFP+ (green bars) in the main 

DA neuron areas. p values: SNc = 0.014, SNpl = 0.004, VTA = 0.008.

(D) Histogram of spatial coordinates of TH+,GFP+ or TH+,mCherry+ cells; TH+,mCherry+ 

neurons are biased dorsally.

(E) Left: histogram of spatial coordinates of TH+,GFP+ or TH+,mCherry+ cells normalized 

to total TH+,GFP+ or TH+,mCherry+ cells. Right: centroid of GFP+ and mCherry+ 

populations for each section of each mouse included in left panel (4 sections per brain) 

(p = 6 × 10−7).

(F) GFP+ cells co-express ALDH1A1 (SNc).

(F’) Percentage of GFP+ (Sox6+) and mCherry+ (Sox6−) neurons co-expressing ALDH1A1 

in the SNc. p = 0.02.

(G) Most mCherry+ cells express CALBINDIN-D28k (CB) (SNc). CB signal intensity 

varies from low (yellow arrowhead) to high (white arrowhead).

(G’) Percentage of GFP+ (Sox6+) and mCherry+ (Sox6−) neurons co-expressing CB in the 

SNc. p = 0.0007.
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Scale bars: 200 μm. Error bars (C’, F’, and G’) and shaded areas (D and E) are SEMs. S+: 

Sox6+, S−: Sox6−. (A)–(E) n = 5, (F) and (G) n = 3.

Luppi et al. Page 30

Cell Rep. Author manuscript; available in PMC 2021 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Transcriptomic analysis of Sox6+ and Sox6− SNc cohorts
(A) Volcano plot showing gene expression differences between GFP+ (Sox6+) and mCherry+ 

(Sox6−) cells. Green squares are PD risk loci.

(B) Unbiased clustering of Sox6+ and Sox6− samples, n = 3 each.

(C) Gene set enrichment analysis (GSEA) plots of gene sets enriched in the Sox6+ 

population associated with mitochondrial function and ATP synthesis (top, center) and PD 

(bottom). The peak of the curve indicates the enrichment score (ES), black lines below the 

curve, to the left of the peak, indicate the genes contributing the most to the peak (leading 

edge subset). q < 0.05 in all plots.

(D) Dot plot of GSEA ES in pathways enriched in Sox6+ neurons.

Luppi et al. Page 31

Cell Rep. Author manuscript; available in PMC 2021 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Sox6+ and Sox6− populations have distinct and inverted projection patterns
(A) Genetic strategy used to simultaneously label Sox6+ and Sox6− neurons and their 

projections in adult brains.

(B) Schematic showing injection location (SNc).

(C) Projections across the rostro-caudal axis of the striatum from Th+Sox6+ dSNc neurons 

(EYFP, top), from Th+Sox6− vSNc neurons (mCherry, center), and merged images (bottom).

(D) Representation of labeled cells in the midbrain corresponding to (C). Each dot 

represents 3 labeled cells.

(E) Histogram of normalized fluorescence for EYFP and mCherry axons along the 

dorsoventral axis of the striatum (CPr and CPi). Left, representation of the region of the 

striatum used for quantification.
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(F) Histogram of normalized fluorescence for EYFP and mCherry axons along the 

mediolateral axis of the striatum (CPr and CPi). Left, representation of the region of the 

striatum used for quantification.

(G) Schematic showing strategy used to label Sox6+ or Sox6− neurons in different mice with 

GCaMP6f.

(H) Simplified representation of experimental setup.

(I) Recording of Sox6+ (top) and Sox6− (bottom) axons in the dorsal and ventral striatum, 

respectively in the regions of most dense innervation for each population. Left: schematic 

of recording location for each population. Center: triggered average at acceleration onsets 

(acceleration in black, %ΔF/F in red/green) (Sox6+ n = 9, Sox6− n = 2). Right: triggered 

average at reward delivery, %ΔF/F scale same as in the center (Sox6+ n = 6, Sox6− n = 2).

Shaded areas (E, F, I) are SEMs. Scale bar, 500 μm. CPr: caudate putamen rostral; Cpi: 

caudate putamen intermediate; CPc: caudate putamen caudal; TS: tail of the striatum; ACB: 

nucleus accumbens.

(A)–(F) n = 3.
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Figure 5. Sox6 cumulative fate map
(A) Sox6-FSF-Cre, CAG-Flpe, RC-Frepe brain at E11.5 (mCherry not shown).

(B) Sox6-Cre, Th-2A-Flpo, RC-Frepe brain at E14.5.

(C) Adult Sox6-Cre, Th-2A-Flpo, RC-Frepe brain (n = 9).

(D) In Sox6-FSF-Cre, Th-2A-Flpo, RC-Frepe brains, DA neurons expressing Sox6 
postmitotically (after the onset of Th expression) are labeled with GFP. In Sox6-Cre, Th-2A

Flpo, RC-Frepe brains, Cre activation no longer depends on Th; thus, TH+ DA neurons 

expressing Sox6 at any point in their history are labeled with GFP.

(E) Comparison of cumulative versus postmitotic labeling. In VTA, there are more GFP+ 

neurons in the cumulative analysis (p = 0.06).

(F and G) SNc of Sox6-Cre, Th-2A-Flpo, RC-Frepe brains labeled with ALDH1A1, or 

CALBINDIN-D28k+ (CB+) (GFP, triangles; mCherry arrowheads).
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(H) In the SNpl, the majority of Vglut2+ neurons are TH+,mCherry+ (arrowheads), while 

only a few are TH+,mCherry− (triangles). *Typically GFP+, lost during in situ hybridization.

Scale bars: (A) 50 μm; (B) 100 μm; (C) 200 μm. Error bars are SEMs. (A, B, and E–G) n = 

3.
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Figure 6. Sox6 progenitor fate map
(A) Schematic of PRISM alleles.

(B) Sox6-Cre, Nestin-LSL-Flpo, RC-LacZ (from here on Sox6 PRISM) at E11.5. βGal+ 

progenitors (Sox6+) are located medially in the Lmx1a+ floor plate.

(C) Sox6 PRISM adult brains show TH+,βGal+ neurons in the SNc and VTA (n = 8).

(C’) High magnification of SNc TH+,βGal+ cells (arrowheads) and TH+,βGal− cells 

(triangles).

(D) Average TH+,βGal+/TH+ neurons in Sox6 PRISM adult brains, also corrected by 

PRISM efficiency; p = 0.1.

(E) High magnification of Sox6 PRISM SNc neurons co-expressing TH, ALDH1A1, and 

βGal.

(F) Sox6 PRISM SNc cells co-expressing dopamine transporter (DAT), CALBINDIN-D28k 

(CB), and βGal. Most CB+,DAT+ cells are βGal− (triangles). For reference, arrowhead 

shows a βGal+,DAT+,CB− cell.

(G) Percentage of βGal+ cells that express ALDH1A1 or CB in the SNc and VTA of Sox6 

PRISM adult brains (p values: SNc p = 0.008, VTAp = 0.5).

Scale bars: (C) 200 μm; all other scale bars, 50 μm. Error bars are SEMs. (B and D–G) n = 

3.
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Figure 7. Distribution of Sox6+ and Sox6− neurons, their projections, and developmental origin
(A) In an adult midbrain section, Sox6+ DA neurons (green) ventrally biased in the SNc and 

in the parabrachial VTA are enriched in Aldh1a1 as well as in PD pathways and electron 

transport pathways. These neurons project to the dorsal striatum. Sox6− DA neurons (red) 

are enriched in Calb1 and/or Vglut2, and project to the medial, ventral, and tail of the 

striatum.

(B) Model depicting main contribution of Sox6 progenitors to the SNc: Sox6+ and Sox6− 

progenitors give rise to vSNc and dSNc/SNpl neurons, respectively (left), indicating a 

dual developmental origin of the SNc. Some neurons in the vSNc can also acquire 

Sox6 expression postmitotically (green gradient surrounding arrow). Main contribution of 

Sox6 progenitors to the VTA: in more caudal regions of the embryo, Sox6− progenitors 

predominantly give rise to ventromedial VTA neurons (right), and RRF neurons (not 

shown). However, Sox6+ progenitors give rise to neurons localized in the parabrachial 

region, some of which maintain Sox6 expression (solid green arrow), while others localized 

in the paranigral region downregulate Sox6 (gradient green arrow). In these more caudal 

regions, smaller contributions of Sox6+ and Sox6− can be found in the SNc and RRF.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Chicken Polyclonal anti-GFP Abcam Cat# ab13970; RRID: AB_300798

Rat Monoclonal anti-mCherry Thermo Fisher Cat# M11217; RRID: AB_2536611

Goat Polyclonal anti-βgal Bio-Rad Cat# 4600–1409; RRID: AB_2307350

Mouse monoclonal anti-CALBINDIN-D-28K Sigma Cat# C9848; RRID: AB_476894

Rabbit Polyclonal anti-OTX2 Proteintech Cat# 13497–1-AP; RRID: AB_2157176

Goat Polyclonal anti-Aldh1a1 R&D Systems Cat# AF5869; RRID: AB_2044597

Rabbit Polyclonal anti-Sox6 Sigma Cat# HPA001923; RRID: AB_1080065)

Guinea pig Polyclonal anti-Lmx1a Gift from Yongchao C. 
Ma

N/A

Rabbit Polyclonal anti-Lmx1a Millipore Cat# AB10533; RRID: AB_10805970

Rabbit Polyclonal anti-CALBINDIN-D-28K Millipore Cat# AB1778; RRID: AB_2068336

Mouse Monoclonal anti-ALDH1A1 Sigma Cat# SAB5300519

Rat Polyclonal anti-DAT Santa Cruz Biotech Cat# sc-32258; RRID: AB_627400

Mouse Monoclonal anti-RFP Abcam Cat# ab125244; RRID: AB_10973556

Sheep Polyclonal anti-TH Pel-Freez Cat# P60101–0; RRID: AB_461070

Chemicals, peptides, and recombinant proteins

Tamoxifen Sigma T5648

Experimental models: cell lines

PRX-B6 (C57BL/6N) (mouse ES cells) The Jackson Laboratory 012448; RRID: IMSR_JAX:012448

Experimental models: mouse strains

Sox6-FSF-Cre Poulin et al. 2018 N/A

Sox6-Cre This paper N/A

Sox6-CreERT2 This paper N/A

Th-2A-Flpo Poulin et al. 2018 N/A

Mouse: Tg(EIIa-cre)C5379Lmgd The Jackson Laboratory 003724; RRID: IMSR_JAX:003724

Mouse: Slc17a6tm2(cre)Lowl The Jackson Laboratory 016963; RRID: IMSR_JAX:016963

NSF (Poulin et al., 2020b) N/A

B6;129S6-Gt(ROSA)26Sortm8(CAG-mCherry,-EGFP) 
Dym/J

The Jackson Laboratory 029486; RRID: IMSR_JAX:029486

RC-Fela A gift from S. Dymecki 
(Jensen et al. 2008)

N/A

Mouse: B6.Cg-Gt(ROSA)26Sortm65.2(CAG-tdTomato) 
Hze/J

The Jackson Laboratory 032864; RRID: IMSR_JAX:032864

Mouse: B6;129S6-Gt(ROSA)26Sortm9(CAG-tdTomato) 
Hze/J

The Jackson Laboratory 007905; RRID: IMSR_JAX:007905

Mouse: B6;129-Tg(CAG-dre)1Afst/Mmucd MMRRC 032246-UCD; RRID: MMRRC_032246-UCD

Oligonucleotides

Primers for Cre strains Cre-F: 
GCAGAACCTGAAGATGTTCGC

This paper N/A

Primers for Cre strain Cre-R: 
ACACCAGAGACGGAAATCCATC

This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Primers for NSF F: CACCAAGACCAAGACCCTGT This paper N/A

Primers for NSF R: CCTTCAGCAGCTGGTACTCC This paper N/A

Primers for RC-Fela, RC-Frepe, RC-Ai9, RC-Ai65F -F: 
TGCAATACCTTTCTGGGAGTTC

This paper N/A

Primers for RC-Fela, RC-Frepe, RC-Ai9, RC-Ai65F -R: 
AGCGGGAGAAATGGATATGAAG

This paper N/A

Primers for RC-Fela, RC-Frepe, RC-Ai9, RC-Ai65F -R: 
TACCGTAAGTTATGTAACGCGG

This paper N/A

Primers for Th-2A-Flpo F- 
TAAGACCCTGCTGATGGTTGG

This paper N/A

Primers for Th-2A-Flpo R- 
CATAGGGCATTCCTGTGGTTTG

This paper N/A

Primers for Th-2A-Flpo R- 
GCTTCACTGAGTCTCTGGCATC

This paper N/A

Recombinant DNA

AAV5-hSyn-CreOn/FlpOn-EYFP UNC # AV8357

AAV8EF1α-CreOff/FlpOn-mCherry gift from K. Deisseroth #2466

AAV5-EF1α-DIO-mCherry UNC #AV4311B

AAVdj-hSyn-CreOff/FlpOn-eYFP gift from K. Deisseroth #987

AAV8-EF1α-CreOn/FlpOn-GCaMP6f gift from K. Deisseroth #2383

AAV8-EF1α-CreOff/FlpOn-GCaMP6f gift from K. Deisseroth #2385

Deposited data

RNaseq of GFP and mCherry cells of Sox6-FSF-Cre, 
Th-2A-Flpo, RC- Frepe SNc

This Paper GEO: GSE185480

Software and algorithms

VS-ASW-S6 Olympus https://www.olympus-lifescience.com/en/
microscopes/virtual/vs120/

cellSens Olympus https://www.olympus-lifescience.com/en/software/
cellsens/

Zen 2.3 and 3.3 Zeiss https://www.zeiss.com/microscopy/us/products/
microscope-software/zen.html

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

RStudio RStudio https://www.rstudio.com/

FastQC Babraham 
Bioinformatics

https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

DESeq2 Bioconductor https://bioconductor.org/packages/release/bioc/html/
DESeq2.html
https://doi.org/10.18129/B9.bioc.DESeq2.

cutadapt cutadapt https://cutadapt.readthedocs.io/en/stable/
DOI: 10.14806

pheatmap CRAN https://cran.r-project.org/web/packages/pheatmap/
index.html

GSEA UCSD https://www.gsea-msigdb.org/gsea/index.jsp

ImageJ NIH https://imagej.nih.gov/ij/
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