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Background: Patient portals are consumer health applications that allow patients to view

their health information. Portals facilitate the interactions between patients and their

caregivers by offering secure messaging. Patients communicate different needs through

portal messages. Medical needs contain requests for delivery of care (e.g. reporting new

symptoms). Automating the classification of medical decision complexity in portal mes-

sages has not been investigated.

Materials and methods: We trained two multiclass classifiers, multinomial Naı̈ve Bayes and

random forest on 500 message threads, to quantify and label the complexity of decision-

making into four classes: no decision, straightforward, low, and moderate. We compared

the performance of the models to using only the number of medical terms without training

a machine learning model.

Results: Our analysis demonstrated that machine learning models have better performance

than the model that did not use machine learning. Moreover, machine learning models

could quantify the complexity of decision-making that the messages contained with 0.59,

0.45, and 0.58 for macro, micro, and weighted precision and 0.63,0.41, and 0.63 for macro,

micro, and weighted recall.

Conclusions: This study is one of the first to attempt to classify patient portal messages by

whether they involve medical decision-making and the complexity of that decision-

making. Machine learning classifiers trained on message content resulted in better mes-

sage thread classification than classifiers that employed medical terms in the messages

alone.
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Introduction as no decision, straightforward, low, or moderate. This study
Patient portals are secure online applications that allow

healthcare organizations to provide patients and their care-

givers access to health information including medications,

immunizations, and appointments.1-3 Many patient portals

offer a secure messaging function that enables patients to

interact with providers through messages.3,4 Secure

messaging is one of the most popular features of patient

portals, and messaging volumes are growing exponentially,

and one study showed that surgery was second only to med-

icine in number of messages exchanged5-7 As the use of

messaging increases, techniques to automate the analysis of

messages may be critical to assist with triage, message

answering, or quantifying the care delivered through patient

portals.

Research about portal messages has mainly focused on

qualitative analyses of content, with few studies investigating

automated classification.8,9 North et al. analyzed messages

exchanged between providers and patients from a primary

care clinic at an academic medical center and found that 3.5%

of messages include potential high-risk symptoms. Jackson

et al. have developed and validated a taxonomy of consumer

health communications and have applied it to questions from

patients and caregivers in research and inpatient and patient

portal messages.9-15 The taxonomy comprehensively de-

scribes the semantic types of consumer health communica-

tions including informational, medical, logistical, social, and

other. It has been employed to characterize the content of

consumer health questions (i.e. needs) as well as the answer

to those questions. Informational needs are questions that

require clinical knowledge such as information about the

side-effects of a drug. Medical needs are requests for delivery

of medical care, such as the reporting of new symptoms that

requiremanagement. Logistical needs are questions involving

pragmatic issues such as the phone number of a clinic. Social

needs are interpersonal communications such as emotional

concerns, expressions of gratitude, or complaints. The other

category covers content that does not fit into these four cat-

egories (e.g. questions that transcend categories like “how do I

be a good father” or error messages). Cronin et al. investigated

the use of machine learning to classify the content of portal

messages.15 Sulieman et al. trained convolutional neural net-

works and standard machine learning algorithms (e.g.

random forest) to identify the types of needs in portal

messages.16

Portal messages that include medical needs (e.g. time-

sensitive clinical questions or information reflecting changes

in patient status) are of particular importance.17 One analysis

of the content of 3253 patient portal messages from a large

academic medical center showed that 72% included medical

needs.15 Answering those types of messages might involve

medical decision-making such as changing a drug or ordering

a test. As messaging volumes grow, the identification of

messages that require medical decision-making may be

essential.6,7,18

In this study, we trained machine learning classifiers to

identify patient portal message threads that involved clinical

decision-making and to classify the complexity of the decision
specifically focused on portal messages exchanged between

surgical patients and surgeons as the majority of research on

patient portals has been done in medicine and primary care.

We investigated the effectiveness of machine learning by

comparing the performance of our models to using a medical

term extraction tool, Clamp. If effective, such automated

message analysis might quantify the care delivered online or

support billing for online care.
Materials and methods

We conducted the study at Vanderbilt University Medical

Center, a private nonprofit institution with 137 outpatient lo-

cations and over two million patient visits annually. In 2004,

Vanderbilt University Medical Center launched My Health At

Vanderbilt (MHAV), a patient portal that offers common portal

functions such as access to portions of the electronic health

record, appointment scheduling, and tailored clinical infor-

mation. Secure messaging is one of the commonly used fea-

tures of MHAV. On average, patients send over 30,000

messages each month. Clinical care teams including admin-

istrative assistants, nurses, and physicians typically manage

the messages. Clinicians can answer messages directly or

delegatemessage answering to nurses andmedical assistants.

Study data set

This study employed MHAV message threads (i.e. sets of

messages exchanged between patients and surgical providers)

and annotated themwith communication categories from the

consumer health taxonomy as well as the complexity of

medical decision of the exchange. Two researchers (who were

both surgeons) independently labeled 500 message threads

with taxonomy categories and complexity of medical

decision-making and discussed all disagreements to achieve

consensus; details of the data set creation are published

elsewhere.9 The complexity of medical decision-making is

one of outpatient billing elements according to the guideline

defined by the Center of Medicare and Medicaid Services

Evaluation and Management coding criteria.19,20 The

complexity of medical decision-making is quantified based on

three factors: the amount of data reviewed, diagnoses, and

risk, summarized in Table 1.9 This data set did not contain any

message threads with a high level of medical decision

complexity.

Machine learning algorithms

We trained different classifiers to assign four different labels

for each thread: “no decision” for messages that did not

involve decision-making, straightforward, low, andmoderate.

To assign labels, we extracted three text features from the

message threads:

1 Bag of words: We extracted the words from each message

thread after removing the stop words and non-

alphabetical characters. To represent the messages, we

https://doi.org/10.1016/j.jss.2020.05.039
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Table 1 e Factors of medical decision-making.

Diagnosis or management
options

Amount and complexity
of data

Level of risk of
complications

Complexity of
decision-making*

Minimal Minimal or none Minimal Straightforward

Limited Limited Low Low

Multiple Moderate Moderate Moderate

Extensive Extensive High High

*Complexity of decision-making is based on the three categories listed in the first three columns. At least 2 or 3 of those factors should be met.
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created a numerical vector, where each value corre-

sponded to the number of times a word wasmentioned in

the thread.

2 Term frequency-inverse document frequency (TF-IDF):

TF-IDF is a scoring system that assigns weights for words

based on frequency in a document relative to all docu-

ments in the data set.21 TF-IDF weights focus on term

frequency and undervalued or rare words. We used

Sklearn to transform the bag of words vectors into TF-IDF

vectors.

3 Medical terms: We used Clamp (version 1.5.0) to extract

medical terms from the message threads and used them

as features.22 We represented each message by the med-

ical terms included in that thread.

We applied three different algorithms to predict the

complexity of medical decision-making in the message.

1 Using medical terms only: We established a baseline by

using only the number of medical terms in the message

threads to assign the complexity label. We labeled mes-

sage threads using the number of medical terms as

follows:

i. “No decision” threads included one or no medical terms

ii. “Straightforward” decision threads included two or

three medical terms

iii. “Low” decision threads included four medical terms

iv. “Moderate”: decision threads included more than five

2 Multinomial Naı̈ve Bayes: We trained a multiclass Multi-

nomial Naı̈ve Bayesmodel to predict the decision class for

the thread using three text features: bag of words, TF-IDF,

and medical terms.

3 Random forest: we trained a multiclass random forest

model to predict the decision label of each thread.
Table 2 e The parameter search space used to find optimal mo

Machine learning algorithm Parameter nam

Multinomial Naı̈ve Bayes Smoothing parameter

Fitting prior: Learning class pri

Random forest Number of estimat

Maximum depth

Minimum samples s

Maximum leaf nod
Training and evaluation

We split the data set into three sets: 90% for training and vali-

dation and 10% for testing. We used 10-fold cross training-

validation data set to tune the parameters and select the

parameter set of the optimalmodel. Table 2 lists the parameter

space that we searched to identify the parameters of the

optimal model. We defined the optimal model as the model

that had the highest evaluation metric on the validation set.

Because this problem involved multiclass labeling (i.e. more

than two classes), we selected two evaluation metrics to iden-

tify the optimal model: micro precision and micro recall. The

micro metric calculates the precision/recall for each class and

finds the weighted average precision/recall based on the

number of samples per class which account for class imbal-

ance. In our analysis,we focusedonprecisionand recall (rather

than area under the curve) because we wanted to evaluate the

model for clinical implementation and thus, wanted to quan-

tify true and false positives and negatives precisely.

False negatives represent message threads that were

assigned to different decision labels and in some cases no

decision. Mislabeling the thread as no decision can have a

higher penalty than mislabeling the complexity of message

thread as a different level of complexity. Hence, we analyzed

the percentage of threads that the classifier mislabeled as “no

decision” along with other mislabeling percentages. We

calculated the precision for each individual label, the macro

precision, and themicro precision by calculating the total true

positives, false negatives and false positives, and theweighted

precision by calculating the weighted average of precision by

their prevalence in the evaluated data set. We calculated the

samemetrics for recall. Finally, we created a confusionmatrix

for each model to identify the percentage of mislabeled mes-

sage threads for each class.
del for Naive Bayes and random forest.

e Parameter possible values

alpha 0-1, 0 no smoothing

or probabilities True, false. If false, uniform prior is applied

ors 20,30,40,50,60,70,80,90,100

None (nodes expanded until all leaves

are pure),3,4,5,6,7,8,9,10

plit 2,3,4,5

es 5,6,7,8,9,10,11,12
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Table 3 e The precision values of machine learning models tuned on precision value.

Class No machine learning Multinomial Naı̈ve Bayes Random forest

Medical term number Bag of word TF-IDF Medical terms Bag of word TF-IDF Medical terms

No decision 0 0.67 0.62 0.62 0.53 0.5 0

Straightforward 0.4 0.67 0.65 0.57 0.6 0.54 0.49

Low 0.67 0.2 0.29 0.6 0 0 0

Moderate 0.04 0 0 0 0 0 0

Micro average 0.14 0.57 0.59 0.57 0.55 0.53 0.49

Macro average 0.28 0.38 0.39 0.45 0.28 0.26 0.12

Weighted 0.31 0.58 0.57 0.58 0.47 0.43 0.24

Bold text represents the highest precision for the identifying the corresponding medical decision complexity class.
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Results

In the collection of 500 portal message threads from surgical

patients or caregivers, 339 (67.8%) threads involved medical

decision-making. In those threads, 210 (62%) contained

straightforward decisions; 102 (30%) threads contained low

complexity decision-making; and 27 (8%) threads involved

moderate complexity decision-making. Most commonly

expressed medical need was scheduling of an appointment in

42% of the threads. Among those threads, 163 (32.6%) reported

new or worsening problems, and 139 (27.8%) involved pre-

scriptions, and 212 (42.4%) included need for appointment

scheduling.

Tables 3 and 4 show values of the precision and recall

performance metrics for the optimal machine learning

models. Table 5 lists the parameters of optimal models.

Table 3 summarizes the precision values for the optimal

models that we trained on different text features and tuned

using precision. Table 4 lists the parameters of optimal

models trained in bag of words, TF-IDF, and medical terms.

Using medical terms only without machine learning demon-

strated generally poor performance. Predicting the type of

decision-making using only the number of medical terms had

a precision of 0.67 for low complexity, a precision of 0.04 for

moderate complexity, and recall of 1.0 for the moderate

complexity. Moreover, using the number of medical terms did

not identify any of the threads that did not involve a decision.
Table 4 e The recall values of the machine learning models tu

Class No machine learning Multinomial N

Medical term number Bag of word TF-IDF

No decision 0 0.62 0.62

Straightforward 0.17 0.67 0.71

Low 0.25 0.25 0.25

Moderate 1 0 0

Micro average 0.14 0.57 0.59

Macro average 0.35 0.39 0.4

Weighted 0.14 0.57 0.59

Bold text represents the highest precision for the identifying the corresp
Applying any machine learning model on the medical terms

yielded higher precision for messages that did not require

decision-making ranging from 0.50 to 0.67 and for straight-

forward decision-making from 0.49 to 0.67 versus not using

machine learning ranging that had the values 0 and 0.4 for “no

decision” and straightforward, respectively. We observed

similar results for recall. Machine learning models had higher

recall values than using only the number of medical terms by

0.5 to 0.62 for threads that did not involve any decision-

making and by 0.31 to 0.71 for threads that involved

straightforward decision-making. Moreover, applying ma-

chine learning classification models on medical terms had

higher micro, macro, and weighted values for both precision

and recall. The micro, macro, and weight average precision

values for methods using only the number of medical terms

were 0.14, 0.28, and 0.31 respectively. The micro, macro, and

weighted recall values for the samemodel were 0.14, 0.35, and

0.14.

Applying machine learning models improved the identifi-

cation of threads that involved decision-making. For the

models that we tuned using precision for classifying decision-

making complexity, the optimal multinomial Naı̈ve Bayes

model had higher precision values than the optimal random

forest model. The precision values were 0.12, 0.14, and 0.62

when we trained the twomodels on TF-IDF, bag of words, and

medical terms, respectively, where multinomial Naı̈ve Bayes

yielded the higher values. As shown in Table 3, the precision

for detecting messages that did not require decision-making
ned on recall values.

aı̈ve Bayes Random forest

Medical terms Bag of word TF-IDF Medical terms

0.62 0.5 0.5 0

0.57 0.88 0.79 1

0.6 0.25 0.12 0

0 0 0 0

0.57 0.63 0.57 0.49

0.45 0.41 0.35 0.16

0.58 0.63 0.57 0.32

onding medical decision complexity class.

https://doi.org/10.1016/j.jss.2020.05.039
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Table 5 e The parameters of the optimal model tuned on both precision and recall.

Machine learning algorithm Multi Naı̈ve Bayes Random forest

Tuning based on precision

Bag of words Alpha: 0.9, fit prior: True Maximum depth: 9, maximum leaf nodes: 9, minimum

samples split: 4, estimators number: 100

TF-IDF Alpha: 0.5, fit prior: False Maximum depth: None, maximum leaf nodes: 12, minimum

samples split: 2, estimators number: 30

Medical terms Alpha: 0.7, fit prior: True Maximum depth: 8, maximum leaf nodes: 10, minimum

samples split: 3, estimators number: 20

Tuning based on recall

Bag of words Alpha: 0.7, fit prior: True Maximum depth: 6, maximum leaf nodes: 9, minimum

samples split: 3, estimators number: 90

TF-IDF Alpha: 0.5, fit prior: False Maximum depth: 8, maximum leaf nodes: 12, minimum

samples split: 2, estimators number: 20

Medical terms Alpha: 0.9, fit prior: True Maximum depth: 8, maximum leaf nodes: 12, minimum

samples split: 2, estimators number: 20
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was between 0.62 and 0.67 when we trained the multinomial

Naı̈ve Bayes model. We obtained the highest precision value

for detecting those threads when we used bag of words as

features. Multinomial Naı̈ve Bayes model identified messages

with low complexity decision-making with the precision

values 0.20, 0.29, and 0.60, when we trained the model on Bag

of words, TF-IDF, and medical terms, respectively. Both

multinomial Naı̈ve Bayes and random forest models did not

identify the one thread that contained moderate decision-

making. For multinomial Naı̈ve Bayes model, using medical

terms had 0.45 and 0.58 for the macro average and weighted

average precision, respectively, which were higher than per-

formance metrics for the samemodel trained on bag of words

and TF-IDF. Training multinomial Naı̈ve Bayes on TF-IDF had

average micro precision of 0.58, which is the highest overall

and the highest values for multinomial Naı̈ve Bayes model

trained on the other two features.

Tuning the models on the recall values had slightly

different results. Multinomial Naı̈ve Bayes had the highest

recall overall for identifying threads that did not require

decision-making with a recall of 0.62, which was higher by

0.12 than the recall yielded by random forest. Training the

multinomial Naı̈ve Bayes model to identify threads that

required low decision-making had the highest recall value,

which was 0.60. Random forest trained on bag of words and

TF-IDF to identify threads with straightforward decision

complexity had higher recall values compared with multino-

mial Naı̈ve Bayes models trained on the same text features.

Moreover, the random forest model trained on bag of words

had the highest micro, macro, and weighted recall values.

The ability to identify the complexity of decision-making in

a thread also depended on the text features used to train the

models. Training the model on bag of words yielded the

highest values of 0.67 for precision, and 0.62 and 0.88 for recall

for identifying “No decision” and straightforward classes.

Using the medical term to identify threads that contained low

tomoderate decision-making had the highest precision values

(0.67 and 0.04), the highest recall values (0.6 and 1). For the

aggregated macro and micro metrics, training the models on

TF-IDF had the highest micro precision, while training the
models onmedical terms had the highestmacro andweighted

precisions. Training the models on bag of words had the

highest macro, micro, and weighted recall.

Figures 1 and 2 show the confusionmatrices for themodels

tuned on precision and recall, respectively. The confusion

matrices specify the rates of true classifications and mis-

classifications with respect to the other classes. Each row

represents the true positives and false negatives for the cor-

responding classes. For example, the second row details the

classification of threads that involved straightforward

decision-making. The first, third, and fourth columns repre-

sent the straightforward threads that the model classified as

no decision, low complexity, and moderate complexity. All

cells on the diagonal represent the messages that were clas-

sified correctly also known as true positive rate or recall.

Darker colors correspond to higher values. The confusion

matrices for the models tuned on precision are depicted in

Figure 2A-F. When we tuned the model using the precision,

training Multinomial naı̈ve Bayes on bag of words or TF-IDF

had the 0.62 which was the highest recall. The recall for

message threads with straightforward decision-making was

the highest when we trained random forest and ranged be-

tween 0.79 and 1.0, where training random forest model on

medical terms achieved a complete identification of straight-

forward complexity decision-making. The Multinomial naı̈ve

Bayes classifier trained on medical terms identified 0.38 of

threads classified as requiring low complexity decision-

making correctly, which was the highest recall among all

models.

The models misclassified the message threads that con-

tained moderate complexity decision-making. For all the

models trained on three different text features, the threads

that did not contain any decision-making were most

commonly mislabeled as straightforward with rates between

0.19 and 0.62 and random forest trained on medical terms

mislabeled all of them as straightforward (percentage of la-

beling “no decision” as straightforward ¼ 1, see confusion

matrix in Fig. 1F, the second cell in the first row). The

straightforwardmessage threads were typically mislabeled as

no decision with a rate of misclassification ranging between

https://doi.org/10.1016/j.jss.2020.05.039
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Fig. 1 e The confusion matrices for models tuned on precision. (A) confusion matrix of Naive Bayes trained on bag of words.

(B) confusion matrix of Naive Bayes trained on TF-IDF. (C) confusion matrix of Naive Bayes trained on medical terms. (D)

confusion matrix of random forest trained on bag of words. (E) confusion matrix of random forest trained on TF-IDF. (F)

confusion matrix of random forest trained on medical terms. The x-axis is the model’s predicted decision complexity class,

the y-axis is the true decision complexity class. The darker color corresponds to a higher precision value. The brighter color

corresponds to a lower precision value. (Color version of figure is available online.)

s u l i e m an e t a l � d e c i s i o n c om p l e x i t y i n p a t i e n t m e s s a g e s 229
0.12 and 0.17 in all models except random forest trained on

medical terms. The threads in the low complexity class were

mainly mislabeled as straightforward with 0.5 to 0.75 except

random forest trained on medical terms that mislabeled all

low complexity threads as straightforward (confusion matrix

Fig. 1F, third cell in the third row). Figure 2A-C depicts the

confusion matrices for Multinomial Naı̈ve Bayes trained on

bag of words, TF-IDF, and medical terms. Figure 2D-F depict
the confusion matrices for random forest trained on bag of

words, TF-IDF, and medical terms, respectively.

The correct classifications and misclassifications were

slightly different for the models tuned based on recall

(Table 4). The highest recall values among allmodelswere 0.62

for the “no decision” class, 1 for straightforward, and 0.38 for

low complexity when we trained multinomial Naı̈ve Bayes on

bag of words or TF-IDF, random forest on medical terms, and

https://doi.org/10.1016/j.jss.2020.05.039
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Fig. 2 e Confusion matrices for models tuned using recall. (A) confusion matrix of Naive Bayes trained on bag of words. (B)

confusion matrix of Naive Bayes trained on TF-IDF. (C) confusion matrix of Naive Bayes trained on medical terms. (D)

confusion matrix of random forest trained on bag of words. (E) confusion matrix of random forest trained on TF-IDF. (F)

confusion matrix of random forest trained on medical terms. The x-axis is the model’s predicted decision complexity class,

the y-axis is the true decision complexity class. The darker color corresponds to a higher recall value. The brighter color

corresponds to a lower recall value. (Color version of figure is available online.)
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multinomial Naı̈ve Bayes on medical terms, respectively. The

no decisions message threads were mainly misclassified as

straightforward with 0.19 as the lowest misclassification rate

formultinomial naı̈ve Bayes trained on bag ofwords and 1.0 as

the highestmisclassification rate for random forest trained on

medical terms. The message threads that contained
straightforward decisions had higher misclassification rates

when we trained random forest, andmultinomial naı̈ve Bayes

on bag of words with rates ranged between 0.08 and 0.21.

While training themachine learningmodel on TF-IDF resulted

in misclassifying straightforward message threads as “no

decision” with rates 0.17 and 0.21 for multinomial naı̈ve Bayes

https://doi.org/10.1016/j.jss.2020.05.039
https://doi.org/10.1016/j.jss.2020.05.039
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and random forest. The threads in the low complexity class

were misclassified as straightforward with 0.50 misclassifi-

cation rate for most of the models.
Discussion

This study is one of the first attempts to automatically classify

patient portal message threads exchanged between surgeons

and patients based on the complexity of medical making de-

cision within the message exchanges. To our knowledge, it is

the first study to implement machine learning models to

identify message threads that involved medical decision-

making from a healthcare provider and to classify the

complexity of the decisions. It is well established that medical

coding criteria are applied inconsistently in practice,23,24 and

the annotation of the data set for this study required careful

analysis and discussion to achieve consensus to create a high-

quality gold standard. Our analysis shows that using tools that

only extract themedical terms such as KnowledgeMap, cTake,

or Clamp were not efficient in quantifying medical decision-

making.22,25,26 Machine learning models improved the classi-

fication of patient portal message threads based on the

complexity of medical decision-making. Automating the

classification of individual patient messages may aid with

triaging those messages that need the attention of a health-

care provider who can respond and deliver the appropriate

care. Analyzing the content of message threads has the po-

tential to support automated billing for online encounters.

However, to realize these applications, the performance of

these classifiers will need to be improved. This manuscript

provides some initial evidence on which approaches may be

most effective.

To evaluate the effectiveness of implementing the pro-

posed classifier in clinical settings, we focused on precision

and recall metrics. Obtaining a precise model to identify

message threads that do not involve medical needs or

decision-making could aid in triage to administrative assis-

tants or allied health professionals. Our analysis demon-

strated that machine learning models could accurately

identify the message threads that do not involve medical

decision-making or contain straightforward decisions that

have minimal complexity. Such messages might be triaged to

administrative assistants, nurses, or allied health pro-

fessionals, allowing physicians to focus more time on mes-

sages requiring more complex medical decisions.

Developing a machine learning model with high recall

could support the identification of threads with higher

complexity medical decision-making, which could potentially

be valuable for healthcare administrators in quantifying the

care being delivered by providers online and potentially sup-

porting automated coding of online outpatient encounters,

should reimbursement be supported. Message threads that

have straightforward to moderate decision-making can

include new symptoms or clinical problems, which are

managed. For instance, amessage threadwith low complexity

involved the patient reporting the lack of sleep because of

ache in muscle and joints despite taking Trazadone. Another

message thread with straightforward complexity included a

request from a patient for a referral to a dietitian after
experiencing digestive problems. Our analysis demonstrated

that machine learning classifiers could identify the message

threads that do not contain decision-making, which could

potentially facilitate appropriate triage. Moreover, our ma-

chine learning models were able to identify threads that

involved straightforward and low complexity decision-

making with recall higher than 0.60 and weighted recall for

all classes higher than 0.55.

Although payers do not yet reimburse for delivering care

through patient portals, there are various benefits to identi-

fying message threads that involve care delivery. One impor-

tant use might be quantifying the care delivered online by

various types of clinical providers to plan for appropriate

staffing. Documenting the volumes of care delivered online

might also support the case for reimbursement of such care.

Managing the low complexity issues using patient portal

messaging can benefit patients, providers, and healthcare

organizations. Providing online care can save patients time

and money by reducing the number of unnecessary visits to

clinics or hospitals, which can be a burden if the patient lives

far from a medical center or if the appointments are canceled

or healthcare systems transition to telehealth because of a

pandemic such as COVID-19. For surgeons, online post-

operative care is particularly advantageous for procedures

that typically have an uncomplicated course. Further, man-

aging low complexity care online can make available clinic

appointments for higher complexity medical needs, and this

availability benefits themedical center, allowing them tomost

effectively utilize their resources.

Our study has limitations. First, we used portal message

threads from a single academic medical center data using a

locally developed patient portal for analysis, and our results

may not translate to other settings. Our center has transi-

tioned to a popular commercial patient portal, so future ana-

lyses may provide a more generalizable result. Second, our

data set is small and only contains message threads initiated

by patients and sent to surgical providers. Although the

message threads were sent to a wide variety of surgical spe-

cialties, the language used in portal messages about surgical

disease might be significantly different from the content of

portal messages involving other specialties. The manual

annotation process is laborious, making the creation of large

labeled data sets challenging. We are implementing a semi-

supervised machine learning model that can leverage this

data set to quantify the care delivered in other threads that

have not been annotated or labeled. In our future work, when

we have a larger annotated data set, we can expand our fea-

tures such as combining TF-IDF and bag of words or using

word embedding and deep learning classification (e.g. a con-

volutional neural network). Feature expansion with the

existing data would risk overfitting. Third, we did not extract

the lay terms that patients or caregivers might use in portal

messages. In the message threads we analyzed, lay language

was often restated inmedical terms in the provider responses.

Identifying lay or slang language in consumer health mes-

sages is a hot topic in medical informatics and natural lan-

guage processing and is an area of future research for our

team. Finally, we tried only threemethods because of the data

set size. Training and evaluating other machine learning

model such as convolutional neural network another possible

https://doi.org/10.1016/j.jss.2020.05.039
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approach to improve classification performance when we

have a larger data set.
Conclusion

Patient portals are popular consumer health applications that

allow patients and their caregivers to interact using secure

messaging. The adoption of secure messaging is increasing,

and studies have shown that medical care of varying

complexity is delivered through patient portal message

threads exchanged with surgical providers. This study is one

of the first to attempt to classify patient portal messages by

whether they involve medical decision-making and the

complexity of that decision-making. Machine learningmodels

that analyzed content resulted in better message thread

classification than classifiers that employed medical terms in

themessages alone. Further research is needed to improve the

performance of these classifiers to potentially support triage

of portal messages or quantification of online care to inform

staffing needs or to support reimbursement for online care.
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