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Abstract

Although many long non-coding RNAs (lncRNAs) exhibit lineage-specific expression, the

vast majority remain functionally uncharacterized in the context of development. Here, we

report the first described human embryonic stem cell (hESC) lines to repress (CRISPRi) or

activate (CRISPRa) transcription during differentiation into all three germ layers, facilitating

the modulation of lncRNA expression during early development. We performed an unbi-

ased, genome-wide CRISPRi screen targeting thousands of lncRNA loci expressed during

endoderm differentiation. While dozens of lncRNA loci were required for proper differentia-

tion, most differentially expressed lncRNAs were not, supporting the necessity for functional

screening instead of relying solely on gene expression analyses. In parallel, we developed a

clustering approach to infer mechanisms of action of lncRNA hits based on a variety of

genomic features. We subsequently identified and validated FOXD3-AS1 as a functional

lncRNA essential for pluripotency and differentiation. Taken together, the cell lines and

methodology described herein can be adapted to discover and characterize novel regulators

of differentiation into any lineage.

Introduction

The advent of deep sequencing technology has revealed the extensive and widespread nature

of transcription across the human genome, with ~80% being transcribed at some point during
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development [1]. Given that less than 2% of the human genome encodes for protein-coding

genes, there exists a vast and expanding network of non-coding RNAs, including long non-

coding RNAs (lncRNAs), which are broadly defined as transcripts greater than 200 nucleotides

in length with no apparent protein-coding function. Unlike other non-coding RNA families

such as microRNAs and Piwi-interacting RNAs, lncRNAs display a wide variety of functions,

acting as scaffolds, decoys, and guides in both the nucleus and cytoplasm [2].

Recently, a handful of lncRNAs have emerged as major regulators of key biological pro-

cesses, including proliferation [3], pluripotency [4], and differentiation [5,6]. Expression pro-

filing of lncRNAs during different stages of development has revealed highly tissue-specific

and context-dependent expression, supporting their roles as potential developmental regula-

tors [7]. Despite these preliminary observations, only a small fraction of lncRNAs have been

characterized, both in terms of biological function as well as mechanism of action. Given that

there are over 17,000 predicted lncRNA loci in the human genome [8], large-scale screens are

necessary for elucidating functional lncRNAs. However, a robust, unbiased approach for

genome-wide identification of developmentally relevant lncRNAs in human embryonic stem

cells (hESCs) has yet to be described.

While the emergence of CRISPR gene editing has revolutionized scalable and cost-effective

genetic screens, hESCs and lncRNAs both present a unique set of challenges for perturbing

gene expression on a high-throughput scale. Notably, CRISPR editing in hESCs has proven

more difficult than in immortalized cell lines, for several reasons. First, Cas9-induced double-

stranded breaks have been shown to cause acute toxicity in hESCs in a P53-dependent manner

[9]. In addition, hESCs have low transfection efficiencies [10] and demonstrate pervasive

transgene silencing during development [11], making it difficult to stably express Cas9

throughout the course of differentiation.

Given their non-coding nature, lncRNAs are difficult to functionally disrupt using small

deletions generated by traditional CRISPR-Cas9 methods [12]. Furthermore, while RNAi

screens have identified biologically relevant lncRNAs during development [13], they exhibit

more off-target effects [14], and are unable to effectively target lncRNAs localized to the

nucleus [15]. CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) address the

challenges of RNAi and represent effective tools for probing the function of lncRNAs [16].

These methods use catalytically-dead Cas9 (dCas9) proteins fused to effector domains to either

repress (CRISPRi) or activate (CRISPRa) expression by targeting the transcription start site

(TSS) of genes. While previous groups have constructed dCas9 stem cell lines that maintain

expression during either endoderm [17], mesoderm [18], or ectoderm [19] differentiation, a

dCas9-expressing hESC line that maintains stable targeting of both coding and non-coding

genes during differentiation into all three primary germ layers has not yet been reported.

Here, we successfully developed CRISPRi and CRISPRa hESC lines that demonstrate robust

repression and activation, respectively, of lncRNAs as well as protein-coding genes. These are

the first reported CRISPR-dCas9 hESC lines to effectively modulate gene expression during

differentiation into all three primary germ layers. We used our CRISPRi line to perform a

genome-wide screen during definitive endoderm differentiation, identifying and validating

several lncRNA loci that control pluripotency and regulate essential endoderm pathways. Fur-

thermore, using our hits from the screen, we developed an unsupervised learning approach to

predict the potential mechanisms of action of lncRNA loci based on select genomic features.

Taken together, our study establishes an approach that can be scaled across multiple lineages,

allowing for a high-throughput method for identifying functional, developmentally relevant

lncRNAs.
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Materials and methods

H1 hESC cell culture

We acquired H1 (WA01) hESCs from the University of Wisconsin (WiCell). We cultured H1

cells in mTeSR1 media (STEMCELL Technologies) on Matrigel-coated plates and changed

media daily. We passaged the cells every 5–7 days, using Gentle Cell Dissociation Reagent

(GCDR) or ReLeSR (STEMCELL Technologies).

Generation of dCas9-KRAB/VP64 stable hESCs

To generate dCas9-KRAB-GFP and dCas9-VP64-GFP cell lines, we infected H1 hESCs with

lentivirus containing dCas9-KRAB or dCas9-VP64 fused to GFP (via a T2A peptide cleavage

linker). We obtained the dCas9-VP64-GFP construct from Addgene (#61422) and generated

the dCas9-KRAB-GFP construct by cloning the KRAB cassette into the BamHI and NheI sites

of the dCas9-VP64-GFP plasmid. Following infection, we sorted cells for GFP and plated

sparsely (20,000 cells/well in 6-well plates) with 10 μM ROCK inhibitor (Y-27632) to obtain

single-cell-derived isogenic colonies. Clones were tracked daily, picked manually using a P200

pipette tip, expanded, and tested for dCas9 expression via Western blot using a Cas9 antibody

(CST; mouse mAb #14697). To generate the dox-inducible dCas9-KRAB-mCherry cell line,

we nucleofected H1 hESCs with the pAAVS1-NDi-CRISPRi (Gen1) vector [20] along with

AAVS1 TALEN pair plasmids [20]. Following nucleofection, cells were selected for using

25 μg/mL Geneticin (Life Technologies), then seeded out and expanded using the same meth-

ods described above. dCas9-KRAB expression was induced by adding 2 μg/mL doxycycline to

the mTeSR1 media.

Endoderm, mesoderm, and ectoderm lineage induction

We used the STEMdiff Definitive Endoderm kit, STEMdiff Early Mesoderm kit, and SMADi

Neural Induction kit to induce endoderm, mesoderm, and ectoderm differentiation, respec-

tively. All kits are from STEMCELL Technologies, and differentiation was induced following

the manufacturer’s protocol.

RT-qPCR

We isolated RNA using the Direct-zol Miniprep RNA kit (Zymo) with the DNase treatment

step. RNA was quantified and reverse transcribed using oligo(dT)20 primers and the Super-

Script IV kit (ThermoFisher). RT-qPCR was performed on the LightCycler 480 II instrument

(Roche). Reactions were performed in triplicate, and gene expression was normalized to

RPL19. Error bars represent standard deviation of the mean. P values were calculated using an

unpaired t-test.

Flow cytometry and staining

hESCs and differentiated cells were harvested for staining or flow cytometry using GCDR.

Cells were washed twice with 500 μL cold FBS stain buffer (BD #554656), fixed in 250 μL Cyto-

fix fixation buffer (BD #554655) for 15 min at 4˚C, and washed twice with 500 μL cold FBS

stain buffer. Cells were then stained (if necessary) with extracellular antibody markers for 30

min in the dark at 4˚C, washed twice with 500 μL cold FBS stain buffer. For subsequent intra-

cellular staining, cells were washed twice with 500 μL cold 1X permeabilization buffer (BioLe-

gend #421002), resuspended in 100 μL cold 1X permeabilization buffer, and incubated with

intracellular antibody markers for 30 min in the dark at 4˚C. Prior to flow cytometry analysis,

stained cells were washed twice with 500 μL cold 1X permeabilization buffer and resuspended
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in 500 μL cold FBS stain buffer. A list of antibodies used in this study can be found in the

STAR Methods. Cells were analyzed using the FACSymphony (BD), and sorted using the

FACSAria (BD).

lncRNA categorization

We downloaded the lncRNA annotation file from GENCODE v25 [8]. We then removed any

lncRNAs found to have a conserved open reading frame longer than 100 amino acids via phy-

loCSF [21], thus assuring that we were analyzing bona fide non-coding RNAs. Finally, we clas-

sified lncRNAs into the following categories: (1) intergenic, defined as lncRNAs whose gene

starts and ends were both> 1000 bp away from an annotated protein-coding gene, (2) pro-

moter-overlapping, defined as lncRNAs whose gene starts were within 1000 bp of a protein-

coding gene start, (3) transcript-overlapping, defined as lncRNAs whose transcripts over-

lapped a protein-coding transcript (given they were not promoter-overlapping), and (4) gene

nearby, defined as lncRNAs that did not physically overlap any protein-coding genes, but had

a protein-coding gene start or gene end within 1000 bp of its gene start or gene end.

RNA-seq analysis

We isolated RNA from each lineage (two replicates each) using the Direct-zol Miniprep RNA

kit (Zymo) with DNase treatment. We synthesized cDNA and performed Illumina paired end

75bp sequencing. We used the cutadapt program to trim adaptors and low-quality bases off of

RNA-seq reads [22]. We then used kallisto [23] to pseudo-align and quantify reads to the

GENCODE v25 transcriptome (in hg19 assembly coordinates). As DIGIT was not included in

GENCODE v25, we manually added the transcript sequence that was described in Daneshvar

et al. [5]. After reads were mapped, we performed differential expression analysis of transcripts

using sleuth [24]. We separately tested for differential expression between hESCs and definitive

endoderm and hESCs and early mesoderm using likelihood ratio tests. For gene-level quantifi-

cations, we summed all transcript counts for a given gene.

Gene ontology enrichment analysis

Gene ontology (GO) enrichment analysis was obtained from the Gene Ontology Consortium

[25,26], using the PANTHER Classification System (pantherdb.org). Significantly enriched

pathways were determined using Fisher’s Exact test with the Bonferroni correction for multi-

ple testing.

Tissue-specificity calculation

We calculated tissue-specificity across the three lineages (hESCs, endoderm, and mesoderm)

using the taumetric [27], which has been shown to be robust to biases arising from low expres-

sion. Tau is calculated as follows:

t ¼

Pn
i¼1
ð1 � x̂iÞ
n � 1

; x̂i ¼
xi

max
1�i�n
ðxiÞ

where xi is the expression of a transcript in lineage i and n is the number of total lineages (here,

3). Thus, tau calculates the average difference between the expression of a transcript in a given

lineage and its maximal expression across all lineages, meaning “ubiquitous” transcripts will

have tau values close to zero while “lineage-specific” transcripts will have tau values close to

one.
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TSS assignment

To assign TSSs to transcripts, we relied on the FANTOM5 CAGE-associated transcriptome

(FANTOM-CAT) annotations [28], which sought to accurately define the 5’ ends of human

lncRNAs. If the transcript was explicitly assigned a TSS in FANTOM-CAT, as was the case for

46% of transcripts, we used the FANTOM-CAT assigned TSS. Otherwise, if the transcript was

within 400 bp of an annotated CAGE TSS on the same strand, which was the case for an addi-

tional 26% of transcripts, we assigned the transcript the closest same-stranded CAGE TSS. For

all other transcripts (28%), we used the GENCODE-annotated 5’ end of the transcript as the

TSS.

CRISPRi library design

We included all 12,611 lncRNA transcripts expressed at� 0.1 tpm in either hESCs, endoderm,

or mesoderm. We also included a set of 24 literature-curated positive control transcripts that

had been previously shown to be required for endoderm differentiation and 261 other highly

differentially-expressed protein-coding genes (S2 Table). We used the GPP sgRNA Designer

tool to design sgRNAs targeting the TSSs of the included transcripts (after re-assigning TSSs

by the rules above) [29,30]. We assigned the top 10 sgRNAs to each TSS according to the rank-

ing rules used by the GPP tool, which, briefly, prioritizes sgRNAs by distance to the TSS, a lack

of off-targets, and predicted site chromatin accessibility [30]. To create negative control

sgRNAs, we randomly sampled 500 of our designed sgRNAs and scrambled each one 10 times,

making sure to eliminate any that we were able to BLAT to the human genome (parameters

used: -stepSize = 5 -minScore = 0 -minIdentity = 0) for a total of 5000 scrambled sgRNAs.

Finally, as some transcripts had the same TSS, or very close TSSs, we consolidated any dupli-

cate sgRNAs in the library. All told, our CRISPRi library contained 111,801 unique sgRNAs.

Of the 106,801 targeting sgRNAs, 93.2% were not predicted to have any off-targets near pro-

tein-coding TSSs, and 74.7% were not predicted to have any off-targets near non-coding gene

TSSs, which is similar to previously described lncRNA-targeting CRISPRi libraries [31].

CRISPRi library cloning

The sgRNA library was synthesized by Twist Biosciences. We then amplified the library using

emulsion PCR and cloned it into the pCRISPRia-v2 vector as previously described [32]. We

then packaged the library into lentivirus in HEK293T cells, also as previously described [32].

CRISPRi endoderm differentiation screen

To perform the screen, we infected dCas9-KRAB-GFP cells with the lentivirally-packaged

sgRNA library at an MOI < 0.3 and selected in 1 μg/mL puromycin. We then used the STEM-

diff Definitive Endoderm kit (STEMCELL Technologies) to induce differentiation, according

to the manufacturer’s instructions. We isolated a sample of “Day Zero” cells to assess initial

representation of sgRNAs. Five days post-differentiation induction, we harvested and stained

cells for FOXA2 and SOX17, two markers of definitive endoderm. Specifically, we stained

batches of 5 million cells with 20 μL FOXA2-APC (Miltenyi Biotec #130-107-774) and 4 μL

SOX17-PE (Miltenyi Biotec #130-111-032). We used FACS to sort populations into undiffer-

entiated (FOXA2/SOX17 double negative) and differentiated (FOXA2/SOX17 double positive)

populations. We additionally sorted each population by BFP expression, as BFP was indicative

of effective CRISPRi repression. For all populations, we isolated DNA from all cells using

QIAamp columns (Qiagen), following the manufacturer’s instructions and adding a de-cross-

linking step (resuspended cells in 180 μL Buffer ATL and 20 μL proteinase K, incubated at
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56˚C for 1 h, then 90˚C for 1 h, then proceeded with standard QIAamp protocol). Following

DNA isolation, we PCR amplified the sgRNA region as previously described [32]. We prepared

sequencing libraries as previously described [31], and performed high-throughput Illumina

single end 50bp DNA sequencing to assess sgRNA counts. We performed two separate biologi-

cal replicates of the entire screen.

CRISPRi screen sgRNA filtering

We performed 3 consecutive filtering steps to remove noisy sgRNAs. First, we filtered sgRNAs

to those that had� 5 cpm in both Day Zero replicates (S5C Fig in S1 Appendix), resulting in a

set of 76,091 sgRNAs. Then, we further filtered that set of sgRNAs to those that had� 1 cpm

in both undifferentiated replicates (Fig 3C), resulting in a set of 57,384 sgRNAs. Finally, we

further filtered that set of sgRNAs, removing any sgRNAs targeting TSSs that did not have� 3

sgRNAs that met the first two filters, resulting in a final set of 55,804 sgRNAs (Fig 3D).

CRISPRi screen analysis

We calculated log2 foldchanges between undifferentiated counts and differentiated counts for

all 111,801 sgRNAs using DESeq2 [33], including replicate as a term in the model to correct

for batch effects. We then used CRISPhieRmix [34] on the DESeq2-calculated log2 foldchanges

to find significant hits in our CRISPRi screen, after filtering the data as described in the previ-

ous section. We ran CRISPhieRmix with default parameters, using the filtered set of 2,690

scrambled sgRNAs as negative control inputs. As CRISPhieRmix only outputs an FDR per tar-

geted TSS and no effect size, we estimated the effect size of each TSS to be the average of its top

3 most enriched (highest log2 foldchange) sgRNAs, as has been done previously [31].

ENCODE expression and splicing efficiency quantification

We used ENCODE RNA-seq data to determine maximum transcript expression and splicing

efficiency across a panel of 12 ENCODE cell lines (A549, GM12878, H1, HT1080, HUES64,

IMR-90, K562, MCF-7, NCI-H460, SK-MEL-5, SK-N-DZ, and SK-N-SH). For both analyses,

we downloaded the raw fastqs (after filtering out any samples that did not pass ENCODE’s

internal audits) and aggregated reads corresponding to technical replicates. For the expression

analysis, we mapped the reads to the GENCODE v25 transcriptome (in hg19 assembly coordi-

nates) using kallisto [23]. For the splicing efficiency analysis, we used kallisto to map reads to

the same transcriptome, this time including all unspliced gene sequences as additional “tran-

scripts”. We calculated splicing efficiency for each gene as previously described; briefly, genes

whose reads map entirely to the unspliced “transcript” will have a splicing efficiency of 0,

whereas genes whose reads map only to spliced transcripts will have a splicing efficiency of 1

[35].

Genomic feature aggregation

We aggregated a variety of genomic features for both lncRNAs and mRNAs. We aggregated

the following features using GENCODE v25 annotations: (1) maximum RNA transcript length

(i.e., length of the spliced transcript) across all transcripts for a gene, (2) maximum number of

exons across all transcripts for a gene, (3) mean transcript GC content across all transcripts for

a gene, and (4) DNA locus length (i.e., genomic distance from the transcript TSS to the 3’ end

of the transcript, which includes introns). We aggregated the following features using FAN-

TOM5 data: (1) number of FANTOM5-annotated TSSs (active in any tissue) [36] within 100

bp of the GENCODE-annotated transcript TSS (on the same strand), (2) number of
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FANTOM5-annotated enhancers (active in any tissue) [37] within 1 Mb of the transcript, and

(3) distance from the TSS to the closest FANTOM5-annotated enhancer (active in any tissue).

We aggregated the following features using the PhastCons 46-way sequence alignment [38]:

(1) mean conservation score of the 200bp region surrounding the transcript TSS (maximum

across all transcripts for a gene), and (2) mean conservation score across all exonic sequences

in the transcript (maximum across all transcripts for a gene). We also determined the distance

from the TSS to the closest endoderm-specific enhancer as defined by Loh et al., 2014 (their S5

Table) as well as the distance from the TSS to the closest definitive endoderm H3K27ac,

H3K27me3, H3K4me2, and H3K4me3 peaks (peak calls downloaded from the Cistrome data-

base) [39].

GWAS

We downloaded the list of GWAS Catalog (all associations, v.1.0.2) from https://www.ebi.ac.

uk/gwas/docs/file-downloads [40]. We then found the hg19 coordinates for each SNP using

the 1000Genomes annotation [41]. We limited our analyses to SNPs associated with cancers of

tissues that arise from the endoderm lineage (a list of traits used can be found in S3 Table). We

then found the closest endoderm-cancer associated SNP to every gene.

Feature-based clustering analysis

We normalized our data such that each feature had a mean of 1 and a standard deviation of 1

and performed k-means clustering on this highly dimensional standardized data (using 2 clus-

ters and standard parameters in sklearn’s KMeans function). We visualized results using a t-

SNE plot (with 2 components and standard parameters in sklearn’s TSNE function).

Results

Generation of CRISPRi and CRISPRa hESC lines that stably express dCas9

throughout differentiation into all three germ layers

We sought to develop the tools necessary to perform genome-wide perturbation screens

throughout differentiation. To this end, we established CRISPR interference (CRISPRi) and

CRISPR activation (CRISPRa) systems in human embryonic stem cells (hESCs) that could

effectively repress or activate, respectively, gene targets in all three primary germ layers: ecto-

derm, endoderm, and mesoderm. Specifically, we infected H1 (WA01) hESCs with lentiviral

GFP constructs containing EF1-α promoter-driven dCas9 fused to either a Krüppel-associated

box (KRAB) repressor domain (Fig 1A) or a VP16 tetramer (VP64) activation domain (S1A

Fig in S1 Appendix). We chose the EF1-α promoter due to its diminished propensity for

silencing in embryonic stem cells [42], and screened hundreds of isogenic clones for constitu-

tive expression of dCas9-KRAB or dCas9-VP64 during early differentiation. We identified

clones that stably expressed dCas9 in an undifferentiated state after several passages, as well as

throughout the course of definitive endoderm and early mesoderm differentiation (Fig 1B and

S1B Fig in S1 Appendix), as well as neural progenitor cell (ectoderm) differentiation (Fig 1C

and S1C Fig in S1 Appendix). Fluorescence-activated cell sorting (FACS) analysis of our

clones showed >99% GFP expression in each germ layer (Fig 1D and S1D Fig in S1 Appen-

dix), suggesting uniform and stable dCas9 expression. In addition to our constitutively-

expressed clones, we used a TALEN-assisted gene-trap approach to insert a dox-inducible

dCas9-KRAB-mCherry cassette into the AAVS1 safe harbor locus in H1 cells (S2A Fig in S1

Appendix). Similarly, this isogenic hESC line displayed expression of dCas9-KRAB in each pri-

mary germ layer (S2B-S2D Fig in S1 Appendix).
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After confirming stable expression of dCas9-KRAB and dCas9-VP64 in our isogenic lines,

we evaluated the knockdown and activation efficiency of our CRISPRi and CRISPRa systems,

respectively. We cloned single guide RNAs (sgRNAs) into the pCRISPRia-v2 expression vector

[43], targeting the transcription start site (TSS) of both protein-coding genes and long non-

coding RNA (lncRNAs). After lentiviral sgRNA transduction, puromycin selection, and induc-

tion of differentiation of our isogenic lines, we observed robust knockdown (Fig 1E–1G and

S2E Fig in S1 Appendix) or activation (Fig S1E in S1 Appendix) of targeted mRNAs and

lncRNAs, as measured by FACS staining and RT-qPCR, respectively. We consistently

Fig 1. Establishing a CRISPRi cell line that maintains repression during differentiation. (A) Lentiviral GFP construct containing dCas9-KRAB driven

by the EF1-α promoter. (B) Western blot of dCas9-KRAB over the course of definitive endoderm and early mesoderm differentiation. (C) Western blot of

dCas9-KRAB over the course of neural progenitor cell (ectoderm) differentiation. (D) FACS analysis of GFP expression for undifferentiated and

differentiated dCas9-KRAB-GFP line compared to H1 cells. (E) FACS staining of targeted mRNA genes in undifferentiated and differentiated

dCas9-KRAB-GFP cells. (F) RT-qPCR expression of targeted lncRNAs in undifferentiated dCas9-KRAB-GFP hESCs. ��� = p< 0.001 by an unpaired t-test.

(G) RT-qPCR expression of targeted lncRNAs during endoderm, mesoderm, and ectoderm differentiation in dCas9-KRAB-GFP cells. �� = p< 0.01, ��� =

p< 0.001 by an unpaired t-test.

https://doi.org/10.1371/journal.pone.0252848.g001

PLOS ONE Endoderm differentiation CRISPR interference screen targeting long non-coding RNA loci

PLOS ONE | https://doi.org/10.1371/journal.pone.0252848 November 3, 2021 8 / 24

https://doi.org/10.1371/journal.pone.0252848.g001
https://doi.org/10.1371/journal.pone.0252848


measured knockdown levels greater than 99%, and activation levels that exceeded 4-fold

upregulation.

Taken together, these isogenic lines represent the first reported hESC cell lines to stably

express dCas9-KRAB or dCas9-VP64 and effectively repress or activate target genes through-

out the course of differentiation into the three primary germ layers. Thus, we have successfully

engineered cell lines which can be employed to perform genome-wide gene perturbation

throughout differentiation.

Genome-wide profiling of lncRNAs during early differentiation into

endoderm and mesoderm

We next sought to define a subset of candidate lncRNAs that may be acting in definitive endo-

derm differentiation based on gene expression patterns. To this end, we performed RNA-

sequencing on two biological replicates from undifferentiated hESCs, day 5 definitive endo-

derm, and day 5 early mesoderm (which is derived from the same mesendodermal lineage as

definitive endoderm), and quantified lncRNA and mRNA expression at the transcript and

gene levels across all samples (Fig 2A and S3A Fig in S1 Appendix; see Materials and

methods).

We confirmed that expected markers were highly expressed in their respective lineages,

such as POU5F1 (OCT4) and NANOG in hESCs, EOMES and GATA6 in definitive endoderm,

and T in early mesoderm (Fig 2B). Gene ontology analysis of differentially expressed genes in

endoderm or mesoderm compared to undifferentiated hESCs revealed enrichment of the

expected biological pathways (Fig 2C; see methods).

We found that 8,190 lncRNA genes corresponding to 12,611 lncRNA transcripts were

expressed at� 0.1 tpm in at least one of the three lineages (undifferentiated hESCs, endoderm,

or mesoderm) (Fig 2D and S3B Fig in S1 Appendix; S1 Table). While 3,702 (29%) of these

lncRNA transcripts were intergenic (further than 1000bp away from a protein-coding tran-

script), the majority of these lncRNA transcripts were either very close to or overlapping pro-

tein-coding genes (Fig 2D). Additionally, 4,158 lncRNA transcripts were differentially

expressed between either hESCs and definitive endoderm or hESCs and mesoderm (Fig 2E).

The majority of these lncRNA transcripts (2,939 (71%)) were uniquely differentially expressed

in only one of the lineages. On average, lncRNAs were more specifically expressed than

mRNAs when examining expression profiles across the three lineages (Fig 2F; see methods).

Moreover, lncRNAs were also more specifically expressed than known human transcription

factors (as defined by [44]) across these three lineages (Fig 2F).

Collectively, these data represent a robust overview of both the coding and non-coding

transcriptome in hESCs, definitive endoderm, and early mesoderm, and define a subset of

lncRNAs that are putatively functioning in hESC differentiation.

CRISPRi screen to identify lncRNA loci essential for proper differentiation

We next used our RNA-seq data to design a comprehensive CRISPRi screen of lncRNAs

expressed during endoderm differentiation. Specifically, we included all 12,611 lncRNA tran-

scripts expressed at� 0.1 tpm in either undifferentiated hESCs, definitive endoderm, or early

mesoderm. We additionally included a set of 24 literature-curated positive control transcripts

(e.g. FOXA2, SOX17, GATA6, EOMES) that are known to be required for endoderm differenti-

ation, as well as 261 additional highly differentially expressed protein-coding transcripts. The

full list of transcripts targeted by our library can be found in S2 Table.

CRISPRi induces knockdown by targeting a transcriptional repressor domain (KRAB) to

the TSSs of genes. Because TSSs are often misannotated for lowly-expressed transcripts [28],
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we refined the annotated TSSs of genes in our screen using a set of high-confidence TSSs

defined by the FANTOM5 consortium [45] (Fig S3C and S3D in S1 Appendix; see methods).

We consolidated these TSSs (some of which corresponded to multiple transcripts) into a list of

10,852 unique TSSs. We then designed 10 single guide RNAs (sgRNAs) targeting each of these

TSSs using the optimized GPP sgRNA Designer tool, which minimizes off-target effects while

maximizing knockdown efficiency [29,30]. Finally, we sampled 500 of these targeting sgRNAs

and randomly scrambled them 10 times to create a set of 5,000 non-targeting negative control

sgRNAs. In total, after removing duplicates, our CRISPRi sgRNA library included 111,801

unique sgRNAs (Fig 3A).

We transduced the lentiviral pooled CRISPRi library into undifferentiated dCa-

s9-KRAB-GFP hESCs and selected with puromycin. After 4–5 days of selection and expansion

(S4A Fig in S1 Appendix), we isolated cells from this “Day Zero” population to assess the over-

all sgRNA distribution (Fig 3B). We then induced definitive endoderm differentiation using

Fig 2. lncRNAs are differentially and specifically expressed across hESCs, definitive endoderm, and early mesoderm. (A) Heatmap showing the

expression, standardized per sample (column z-score) for the 10,000 most highly expressed protein-coding genes (left) and all 8,190 lncRNA genes with a

minimum gene tpm of 0.1 in at least 1 sample (right). Genes (rows) and samples (columns) are hierarchically clustered using the correlation as the distance

metric. (B) Average expression in each lineage of lineage marker genes POU5F1 (OCT4), NANOG, EOMES, GATA6, and T. Gray bars correspond to 90%

confidence intervals, calculated across 2 biological replicates. (C) Top 10 gene ontology terms significantly enriched in either endoderm (top) or mesoderm

(bottom) compared to undifferentiated hESCs. Size of dots is inversely proportional to the Bonferroni-corrected p-value; all plotted terms have p-

values< 0.05. (D) Count of transcripts expressed at a minimum of 0.1 tpm in either hESCs, endoderm, or mesoderm, broken up into either protein-coding

genes (blue) or lncRNAs (red). The lncRNAs are further classified based on their genomic proximity to other transcripts, as outlined in the schematic to the

left. (E) Volcano plots showing the log2 expression fold-change between endoderm and hESCs (left) and mesoderm and hESCs (right) for all lncRNA

transcripts. Horizontal lines define a q-value cut-off of 0.05. (F) Tissue-specificity of genes calculated across hESCs, endoderm, and mesoderm, for all

lncRNA genes (top) and all mRNA genes (bottom) as well as a set of curated human transcription factors (middle) from Lambert et al. [44]. Gene-level

tpms were used.

https://doi.org/10.1371/journal.pone.0252848.g002
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the STEMdiff Definitive Endoderm Kit (see methods). After five days, we stained cells for

FOXA2 and SOX17 expression—two markers of definitive endoderm—and used FACS to sort

high-confidence populations of FOXA2+/SOX17+ and FOXA2-/SOX17- cells (Fig 3B and

S4B-S4D Fig in S1 Appendix). Finally, we characterized the sgRNA representation in each of

these populations using targeted sequencing.

To ensure reproducibility of our results and limit false positives, we performed two inde-

pendent biological replicates of the screen. In each replicate, endoderm differentiation was

extremely efficient and undifferentiated cells were sorted conservatively (S4D and S4E Fig in

S1 Appendix). As expected, replicates were generally correlated, with most noise presenting as

sampling noise among low count sgRNAs in the undifferentiated replicates (S5A Fig in S1

Appendix).

We next performed two important filtering steps to address the inherent noise of the

screen. First, we required sgRNAs to have� 5 counts per million (cpm) in both Day Zero rep-

licates to limit any noise due to poor initial sgRNA representation (S5B Fig in S1 Appendix).

Second, since we gated FOXA2-/SOX17- undifferentiated cells conservatively, a subset of

sgRNAs were present in only one of the two undifferentiated population replicates (Fig 3C).

Thus, we required sgRNAs to have� 1 cpm in both undifferentiated replicates. Finally, we

required that targeted TSSs have� 3 sgRNAs that meet these criteria. Together, these filtering

Fig 3. CRISPRi screen identifies lncRNA loci that reproducibly affect endoderm differentiation. (A) Number of TSSs targeted and corresponding

unique sgRNAs in the CRISPRi library. (B) Schematic overview of the CRISPRi screen. The sgRNA library was packaged into lentivirus and transduced

into dCas9-KRAB-GFP hESCs, which were then induced to undergo endoderm differentiation. Day Zero cells were collected to measure initial

representation of the sgRNA library. After five days, the cells were sorted for endoderm markers SOX17 and FOXA2, and populations of differentiated and

undifferentiated cells were collected, as shown in the representative FACS plot. PE = phycoerythrin. APC = allophycocyanin. (C) Kernel density estimate

plot showing the counts per million in the undifferentiated populations for both replicate 1 and replicate 2. Horizontal and vertical lines define a cpm of 1

in each replicate; color bar indicates densities of sgRNAs. (D) Number of TSSs targeted and corresponding unique sgRNAs after filtering steps that are used

in downstream analyses. (E) Distribution of sgRNA enrichments (DESeq2 log2 fold-change of undifferentiated counts compared to differentiated counts,

including a batch term) for scrambled negative control sgRNAs (gray) and positive control targeting sgRNAs (green). P-value shown is from a one-sided

Mann Whitney test. (F) Plot showing the transcript enrichment score (average DESeq2 log2 fold-change of top 3 most enriched sgRNAs) and

CRISPhieRmix global FDR values for each lncRNA transcript (gray), positive control transcript (green), and differentially expressed mRNA transcript

(white) tested. Hit lncRNA transcripts that do not have another gene TSS within 1000 bp of their own TSS are further highlighted (dark gray). Horizontal

line defines an FDR cut-off of 0.1.

https://doi.org/10.1371/journal.pone.0252848.g003
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steps resulted in a set of 55,804 reproducibly represented sgRNAs targeting 9,771 TSSs (90% of

all TSSs included in the library) (Fig 3D and S5C and S5D Fig in S1 Appendix).

We then used DESeq2 to calculate the enrichment (i.e. log2 fold change of counts) of these

55,804 filtered sgRNAs in the undifferentiated FOXA2-/SOX17- populations compared to the

differentiated FOXA2+/SOX17+ populations. Given the sgRNA count variance that was intro-

duced by performing two conservative biological replicates of the screen (S5E Fig in S1

Appendix), we included a term for batch (replicate) in the DESeq2 model when calculating

log2 fold changes. As expected, sgRNAs targeting positive controls had significantly higher

log2 fold changes than scrambled sgRNAs (Fig 3E).

To further validate the quality of our screen, we compared our results to a previous

lncRNA-targeting growth screen performed in iPSC cells (CRiNCL) [31]. We reasoned that

sgRNAs targeting lncRNAs that affect iPSC growth, as found by CRiNCL, should affect growth

in hESCs as well, and therefore drop out of our differentiated samples. Indeed, among the

1117 sgRNAs that overlapped between our screen and CRiNCL, we found that sgRNA drop

out correlated between the two screens (S5F Fig in S1 Appendix).

To determine which TSSs were highly likely to contribute to proper endoderm differentia-

tion, we used CRISPhieRmix, a tool which was specifically developed to address issues unique

to CRISPRi/a screens, such as variable sgRNA efficiency [34]. The Bayesian hierarchical mix-

ture modelling strategy employed by CRISPhieRmix allows for more statistical power in large-

scale pooled CRISPRi screens while controlling false discovery rates [46]. We confirmed that

our data met the assumptions employed by CRISPhieRmix—namely, that the majority of tar-

geting sgRNAs resemble negative control sgRNAs (S5G Fig in S1 Appendix) and that sgRNAs

targeting positive control genes follow a mixture distribution composed of only a subset of

sgRNAs that work (S5H Fig in S1 Appendix). We then applied CRISPhieRmix to the set of

55,804 filtered sgRNAs (S3 Table; see Materials and methods).

In total, 73 TSSs out of the 9,771 TSSs tested were significantly enriched in the undifferenti-

ated population at an FDR < 0.1 (Fig 3F). As expected, many of the most significant hits were

positive control mRNAs, including SOX17, FOXA2, EOMES, and GATA6. However, it is

important to note that several positive control genes were not recovered in the screen. Thus,

while our conservative FACS gating resulted in a list of 73 TSSs that are reproducibly and sig-

nificantly associated with proper endoderm differentiation, we lack the power to infer the

number of putatively functional lncRNAs due to a high false negative rate. Of the 73 significant

TSSs, 60 corresponded to lncRNA loci, and 26 of these lncRNA TSSs were not within 1000 bp

of another gene TSS (Fig 3F).

Collectively, these data show that our genome-wide CRISPRi screen was able to reproduc-

ibly recapitulate expected biological signal, and suggest that, at minimum, dozens of lncRNA

loci may be required for proper endoderm differentiation. We provide the results of our screen

for all targeted lncRNAs and mRNAs as a resource to the community (S2 and S3 Tables).

Validation of individual screen hits

Following our CRISPRi screen, we validated several control (mRNA) hits, lncRNA loci hits,

and lncRNA loci non-hits (S4 Table). To do this, we selected 22 sgRNAs present in the screen-

ing library and tested them each individually. All sgRNAs were cloned and subsequently trans-

duced into our dCas9-KRAB-GFP hESC line using the pCRISPRia-v2 expression vector [32].

Following puromycin selection, we induced infected cells into definitive endoderm for five

days, then stained for FOXA2/SOX17 to assess differentiation efficiency. In addition, we per-

formed RT-qPCR to determine knockdown efficiency of each individual sgRNA.
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For each individually tested sgRNA, we calculated a validation enrichment score based on

the ratio of undifferentiated cells to differentiated cells five days post endoderm differentiation.

We observed a significant (p = 0.002) correlation between screen sgRNA enrichment score

and the validation enrichment score (Fig 4A).

We observed significant knockdown for the majority of our targets (Fig 4B and 4C; S4

Table), confirming the efficiency and robustness of our dCas9-KRAB-GFP cell line. As

expected, sgRNAs targeting mRNA hits (e.g. SOX17, EOMES) resulted in severe loss-of-differ-

entiation phenotypes (Fig 4E; S4 Table), as demonstrated by reduction of SOX17 and/or

FOXA2 expression at the protein level (via FACS). While knockdown of our lncRNA loci hits

resulted in more subtle phenotypes, we observed consistent reduction of endoderm markers

compared to scrambled sgRNA controls (Fig 4F; S4 Table). Interestingly, targeted knockdown

of certain lncRNA loci resulted in reduced expression of one specific marker (e.g. reduced

SOX17 expression in RP11-222K16.2 knockdown), suggesting a potential mechanism of regu-

lation. Taken together, we were able to individually validate mRNA and lncRNA loci hits

resulting from our genome-wide CRISPRi screen. While we validated a subset of hits and non-

hits, further work is needed to validate the full set of lncRNA loci targets described in this

study.

Common features of lncRNA hits

After validating the results of the screen, we next sought to determine what features, if any,

were common to the hit lncRNA loci that were required for differentiation (Fig 5A and S6 Fig

in S1 Appendix; see methods). Given the potentially high false negative rate of our screen, we

focused on comparing our hit lncRNA loci to a set of “stringent non-hit” lncRNA loci: targeted

lncRNA TSSs with� 9 filtered sgRNAs represented and a CRISPhieRmix FDR of> 0.9. All

told, our list of stringent non-hit lncRNA loci contained 158 unique genes (S5 Table). We

found that our hit lncRNA loci were significantly closer to known endoderm cancer-associated

SNPs than stringent non-hit lncRNA loci (Fig 5B; S5 and S6 Tables). In particular, three of our

hit lncRNA loci—RP11-867G2.8, RP11-541P9.3, and VLDLR-AS1—contain endoderm cancer-

associated SNPs in their gene bodies. While VLDLR-AS1 is known to play important roles in

liver and esophageal cancer [47,48], RP11-541P9.3 and RP11-867G2.8 remain uncharacterized.

We found that our hit lncRNA loci had significantly more nearby FANTOM5-defined TSSs

(on the same strand) than stringent non-hit lncRNA loci (Fig 5C). Our hit lncRNAs had signif-

icantly higher expression in our endoderm RNA-seq data than stringent non-hit lncRNAs (Fig

5D). Hit lncRNAs also had higher maximum expression values across a panel of 12 ENCODE

cell lines (Fig 5F) and were more efficiently spliced than stringent non-hit lncRNAs across this

same panel of ENCODE cell lines (Fig 5E; see methods).

Interestingly, while expression levels and differential expression levels were higher in hit

lncRNAs compared to stringent non-hit lncRNAs, we did not observe a significant enrichment

of hits among differentially expressed transcripts (two-sided Fisher’s exact test odds

ratio = 1.27, p-value = 0.36). Indeed, the proportion of hit lncRNAs to stringent non-hit

lncRNAs is similar within differentially expressed and non-differentially expressed transcripts

(19% in both cases) (Fig 5G). Thus, lncRNA expression profiles are not necessarily predictive

of biological function of lncRNA loci. Taken together, these data suggest that while some fea-

tures are associated with hits, loss-of-function screens remain pivotal in assessing the function-

ality of lncRNA loci.
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Fig 4. CRISPRi screen reveals several lncRNA loci required for endoderm differentiation. (A) Correlation of the validation sgRNA score and the screen

sgRNA score for all 22 sgRNAs validated, colored by whether the sgRNAs target control mRNA hits (green), lncRNA hits (black), or lncRNA non-hits

(white). Validation scores were calculated according to the formula outlined. Example validation data for 8 sgRNAs targeting 2 control mRNA and 2

lncRNA hits are shown in (B)-(F); the full dataset is in S4 Table. r = Spearman’s rho, p = Spearman p-value, n = # sgRNAs. (B) RT-qPCR expression of

mRNA SOX17 (sgRNAs #1 and #2) or EOMES (sgRNAs #3 and #4) during endoderm differentiation using either a scrambled negative control sgRNA

(light gray bars) or a targeting sgRNA (green bars). Labeled sgRNA numbers correspond to those outlined in (A). ��� = p-value< 0.001 by an unpaired t-

test. (C) RT-qPCR expression of lncRNA RP11-120D5.1 (sgRNAs #5 and #6) or RP11-222K16.2 (sgRNAs #7 and #8) during endoderm differentiation using

either a scrambled negative control sgRNA (light gray bars) or a targeting sgRNA (dark gray bars). Labeled sgRNA numbers correspond to those outlined

in (A). � = p-value< 0.05, �� = p-value< 0.01, ��� = p-value< 0.001 by an unpaired t-test. (D) FACS staining of scrambled negative control sgRNAs

during endoderm differentiation, with percentages of differentiated cells (top right box) and undifferentiated cells (bottom left box) labeled. Three separate

endoderm differentiation time courses were performed to validate the 8 outlined sgRNAs. Scrambled sgRNA #1 was run as a negative control for targeting

sgRNAs #1, #7, and #8; scrambled sgRNA #2 was run as a negative control for targeting sgRNAs #2, #3, and #4; scrambled sgRNA #3 was run as a negative

control for targeting sgRNAs #5 and #6. (E) FACS staining of mRNA-targeting sgRNAs #1–4 during endoderm differentiation, with percentages of

differentiated cells (top right box) and undifferentiated cells (bottom left box) labeled. (F) FACS staining of lncRNA-targeting sgRNAs #5–8 during

endoderm differentiation, with percentages of differentiated cells (top right box) and undifferentiated cells (bottom left box) labeled.

https://doi.org/10.1371/journal.pone.0252848.g004
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Inferring the mechanisms of action of hit lncRNA loci

As CRISPRi induces the formation of heterochromatin around a guide RNA’s target site, any

DNA regulatory activity that the target locus may possess is shut down along with RNA tran-

scription [49]. Thus, using CRISPRi, it is impossible to distinguish lncRNAs acting through

Fig 5. lncRNA hits are associated with certain genomic features. (A) List of genomic features analyzed and their associated two-sided Mann Whitney p-
values comparing hit lncRNAs vs. stringent non-hit lncRNAs. Features with Benjamini-Hochberg adjusted FDRs of< 0.10 are shown in bold. (B-F)

Boxplots showing the distributions of various genomic features outlined in (A) for hit lncRNAs and stringent non-hit lncRNAs. Median value of each

distribution is also shown. P-values are from two-sided Mann Whitney tests. (G) Volcano plot showing the RNA-seq results for stringent non-hits (in gray,

all biotypes) and hits (colored by biotype as shown above the plot). Horizontal line depicts an FDR cut-off of 0.05 for significant differential expression

between endoderm and hESCs.

https://doi.org/10.1371/journal.pone.0252848.g005

Fig 6. Using k-means clustering of 11 genomic features to find candidate functional RNA molecules. (A) List of the 11 genomic features used in

clustering analysis across 33,817 genes. (B) t-SNE visualization of the data matrix outlined in (A), colored by k-means cluster assignment. Plot shows a sub-

sample of the data: 1000 randomly-sampled lncRNAs and 1000 randomly-sampled mRNAs. (C) Same t-SNE as in (A), now colored by biotype, where gray

dots are lncRNAs and green dots are mRNAs. The 3 “gold standard” lncRNAs (XIST,NEAT1, andMALAT1) are highlighted and outlined in black. (D)

Subset of the same t-SNE in (A) and (B), now showing only lncRNAs included in the screen, colored by their cluster assignment. Significant hits in either

cluster are outlined in black. Hits assigned to cluster 1 are annotated.

https://doi.org/10.1371/journal.pone.0252848.g006
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DNA-based mechanisms (e.g. as enhancers) from lncRNAs acting through RNA-based mech-

anisms (e.g. as scaffolds or decoys). We sought to predict which of our lncRNA loci hits, if any,

were most likely to have RNA-based mechanisms of action.

While the number of characterized lncRNAs is growing, there remain very few whose

mechanisms of action are well-characterized. We therefore could not rely on supervised learn-

ing approaches to perform mechanistic predictions, as we currently lack a trusted set of train-

ing data. We previously showed that known functional lncRNAs with likely RNA-based

mechanisms resemble mRNAs across a variety of genomic features including expression pat-

terns, splicing efficiency, and conservation [35]. Thus, we used unsupervised methods to clus-

ter genes based on a set of 11 general genomic features (Fig 6A; see Materials and methods).

We used k-means to cluster this highly dimensional dataset into 2 clusters and visualized

the results using the t-distributed stochastic neighbor embedding (t-SNE) dimensionality

reduction approach (Fig 6B). As expected, cluster 1 contained primarily lncRNAs while cluster

2 contained primarily mRNAs (Fig 6C). While the data exists on a continuum of all considered

features, cluster separation was driven primarily by splicing efficiency, maximum expression,

and exon conservation (S7 Fig in S1 Appendix). Three “gold standard” lncRNAs known to

exhibit RNA-based mechanisms (XIST, NEAT1, andMALAT1) all clustered with mRNAs (Fig

6C), which is consistent with our previous work [35]. We found that while 6 lncRNA hits clus-

tered with mRNAs (VLDLR-AS1, PCBP-AS1, LAMTOR5-AS1,HOXC-AS1, LINC00623, and

FOXD3-AS1), the majority of our lncRNA hits did not (Fig 6D). Moreover, for each of these 6

lncRNAs, there is experimental evidence for an RNA-based phenotype, either through lncRNA

knockdown approaches (VLDLR-AS1 and LAMTOR5-AS1) [47,48,50] or, in 4 cases (HOX-
C-AS1, FOXD3-AS1, PCBP-AS1 and LINC00623), also including lncRNA ectopic overexpres-

sion approaches [51–54].

Taken together, these data suggest that most lncRNA hits resulting from our CRISPR

screen are likely acting as DNA regulatory elements, but a subset may be playing a role in

endoderm differentiation through RNA-based mechanisms. To facilitate future validation

work, the results of our feature-based clustering analysis are available in S7 Table.

Characterization of FOXD3-AS1 as a regulator of pluripotency and

endoderm pathways

Finally, we investigated the potential function of one our lncRNA hits that we predicted to

have an RNA-based mechanism of action, FOXD3-AS1 (CRISPhieRmix FDR = 0.026). Of the

6 lncRNA gene hits predicted to have RNA-based mechanisms of action, FOXD3-AS1 showed

the highest level of differential expression between endoderm and hESCs in our RNA-seq data

(Fig 7A). However, FOXD3-AS1 follows an unexpected expression pattern: it is one of the

most highly enriched lncRNAs in undifferentiated hESCs and demonstrates significant down-

regulation during endoderm and mesoderm differentiation (Fig 7B; S1 Table). Given this

unexpected expression pattern, we were interested in elucidating the role of FOXD3-AS1 in

potentially regulating pluripotency and differentiation.

Because the FOXD3-AS1 promoter overlaps the promoter of FOXD3 (a transcription factor

required for self-renewal of stem cells), we used multiple shRNAs to specifically target the

lncRNA (Fig 7C). While maintaining hESCs in stem cell media, visible differentiation

occurred (Fig 7D), with RT-qPCR and FACS analysis confirming complete loss of pluripo-

tency markers at 18 days post infection (S8A Fig in S1 Appendix). We also observed strong

upregulation of several key endoderm factors (Fig 7E), including GATA6, FOXA2, EOMES,
and CXCR4 in response to FOXD3-AS1 knockdown. Following upregulation of endoderm fac-

tors, we observed an eventual loss of pluripotency markers (S8A Fig in S1 Appendix). A time
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Fig 7. FOXD3-AS1 expression and knockdown in hESCs. (A) Log2 fold change between expression in hESCs and

endoderm for all hit lncRNA transcripts in the screen whose loci were predicted to have RNA-based mechanisms of

action (Fig 6). � = significant differential expression, sleuth q-value< 0.05. The LAMTOR5-AS1 hit TSS targeted in our

screen could not resolve between 6 different LAMTOR5-AS1 transcripts (GENCODE transcript numbers in

parantheses), and as such they are all plotted here. (B) RT-qPCR expression time course during definitive endoderm
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course knockdown of FOXD3-AS1 (S8B Fig in S1 Appendix) showed early induction of

EOMES, along with reduction of FOXD3 expression within 48 h. To test whether FOXD3-AS1
was required for differentiation into other lineages, we induced early mesoderm or ectoderm

differentiation in hESCs following knockdown of FOXD3-AS1. We observed significant reduc-

tion in properly differentiated cells in each lineage using two different shRNAs (Fig 7F–7H

and S8C-S8E Fig in S1 Appendix), suggesting that loss of FOXD3-AS1 results in dysregulation

of pluripotency pathways required for early embryogenesis.

Following knockdown experiments, we cloned and overexpressed FOXD3-AS1 in undiffer-

entiated hESCs and observed reduced expression of several endoderm factors (S8F Fig in S1

Appendix), consistent with the role of FOXD3-AS1 as repressing endoderm pathways. Taken

together, these experiments support FOXD3-AS1 as a novel pluripotency factor required for

pluripotency via repression of the endoderm lineage. Moreover, our RNA knockdown results

support the prediction that FOXD3-AS1 exerts its function through RNA-based mechanisms.

Our results are in agreement with a recent publication [55] which found that the FOXD3-AS1
lncRNA is localized to the cytoplasm and affects pluripotency of hESCs through modulating

Wnt signaling, an essential pathway required for definitive endoderm differentiation [56].

Thus, the CRISPRi screening approach outlined herein, coupled with additional bioinformatic

analyses, revealed developmentally relevant lncRNA loci, a subset of which likely act as func-

tional RNAs.

Discussion

Here, we report the first described set of hESC cell lines that can maintain dCas9 expression

(and successfully modulate target gene expression) throughout differentiation into all three

germ layers (Fig 1, and S1 and S2 Figs in S1 Appendix). These cell lines can be used for CRIS-

PRi screens, as we have shown in this work, as well as CRISPRa screens. Although we focus on

early endoderm differentiation in this study, we also show that these cell lines maintain dCas9

expression throughout mesoderm and ectoderm differentiation. Thus, the methodology

described can be adapted to discover novel regulators (both coding and non-coding) of differ-

entiation into any lineage. The cells we have engineered are available to the community upon

request. Additionally, we provide all data produced in this work—including the RNA-seq data,

the results of the CRISPRi screen, and the clustering analysis—as resources to the community.

Our CRISPRi screen reproducibly identified known endoderm factors as top hits, including

FOXA2 and SOX17, as well as EOMES, GATA6, and GSC. Moreover, we identified 73 lncRNA

loci, including the previously reported endoderm regulator DIGIT [5]. We used a conservative

approach to identify hits: we performed two independent biological replicates of the screen

and performed conservative FACS gating of differentiated and undifferentiated populations.

We speculate that we have missed a number of functional lncRNAs, due to both the conserva-

tive nature of our screen, as well as the fact that lncRNAs are known to often exert quite subtle

effects on gene expression [57]. Nevertheless, our approach yielded a list of dozens of lncRNA

loci that are likely required for proper endoderm differentiation (S3 Table), most of which are

entirely uncharacterized. Further validation and functional studies are needed to characterize

differentiation of H1 hESCs. (C) RT-qPCR expression of FOXD3-AS1 21 days post infection of H1 hESCs with

FOXD3-AS1 shRNAs. ��� = p< 0.001 by an unpaired t-test. (D) Phase-contrast images of H1 hESCs infected with

FOXD3-AS1 shRNAs. Images were taken 21 days post infection. (E) RT-qPCR expression of pluripotency/

differentiation genes 21 days post infection of H1 hESCs with FOXD3-AS1 shRNAs. � = p< 0.05, �� = p< 0.01, ��� =

p< 0.001 by an unpaired t-test. (F-H) FACS staining of day 5 definitive endoderm cells (F), day 5 early mesoderm

cells (G), or day 12 neural progenitor cells (H) infected with scrambled shRNA or FOXD3-AS1 shRNA #1. Cells were

fixed and stained with antibodies against FOXA2 and SOX17 (F), VIM and CD49e (G), or NES and PAX6 (H).

https://doi.org/10.1371/journal.pone.0252848.g007
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the specific mechanisms by which these lncRNA loci regulate endoderm differentiation,

whether via direct regulation of endoderm factors (e.g. DIGIT) or via regulation of pluripo-

tency (e.g. FOXD3-AS1).
Of these lncRNA hits, only 16 of them are intergenic (greater than 1000 bp away from any

other gene). Thus, the majority of lncRNA hits we identified are either physically overlapping

a protein-coding gene or within 1000 bp of a protein-coding gene promoter; this proximity

makes it likely that some sgRNAs in our screen were also affecting expression of the protein-

coding genes proximal to these lncRNAs. However, there is precedence for this class of

lncRNAs to play bona fide roles in early development. Indeed, divergent lncRNAs (which are

included in our “promoter overlap” biotype) have been found to play particularly important

roles in pluripotency and differentiation [58]. In addition, a literature analysis of lncRNA hits

near protein-coding gene TSSs revealed that only 10 out of 34 overlapped with known regula-

tors of hESC differentiation (S9 Fig in S1 Appendix), providing a high confidence list of poten-

tial protein-coding genes primed for further investigation.

Using CRISPRi to knockdown lncRNA loci precludes us from inferring RNA-based mecha-

nisms of action for hits, as the heterochromatin recruited by dCas9-KRAB will shut down

DNA regulatory elements as well as transcription. In order to infer lncRNAs with likely RNA-

based mechanisms of action, we aggregated a variety of genomic datasets and performed unsu-

pervised clustering. Based on previous work [35], we expected lncRNAs with RNA-based

mechanisms to cluster with mRNAs. Using this method, we predicted that only 6 of our screen

hits were likely to exhibit RNA-based mechanisms of action (Fig 6D). We note that it is diffi-

cult to robustly evaluate our approach without more gold standard examples of lncRNAs that

act as bona fide functional RNAs, and we also note that lncRNAs can have multiple mecha-

nisms of action. As additional data becomes available, more sophisticated models will likely be

necessary, and experimental validation of predictions will always be essential. However, our

clustering approach provides a foundational set of candidate functional lncRNAs to prioritize

for future validation (S7 Table).

We validated a top hit from our screen, FOXD3-AS1, and found that it is required for main-

taining hESC pluripotency. FOXD3-AS1 is significantly differentially expressed between

hESCs and endoderm, but surprisingly, it is upregulated ~300-fold in hESCs compared to

endoderm. Our data show that FOXD3-AS1 is required for pluripotency by acting as a repres-

sor of endoderm factors. We speculate that repression of FOXD3-AS1 at the incorrect develop-

mental time point results in aberrant expression of endoderm factors, which disrupts the

pluripotent state of hESCs. Subsequent downregulation of stemness factors (OCT4, NANOG,

SOX2) leads to loss of pluripotency (S8A Fig in S1 Appendix), which ultimately results in

improper differentiation into endoderm, as well as other lineages. Despite having promoter

overlap with the known pluripotency regulator FOXD3, shRNAs targeting the FOXD3-AS1
transcript mimicked the sgRNA phenotypes observed in the screen, pointing towards an

RNA-based mechanism of action, as our k-means clustering predicted (Fig 6D).

Finally, our work underscores the importance of performing functional screens to charac-

terize lncRNAs. While we found that some features were associated with lncRNA hits (Fig 5),

most features examined were not significantly different between hits and non-hits. Impor-

tantly, we also observed that expression levels are not necessarily predictive of biological func-

tion, as the proportion of hit lncRNA loci was roughly equal between loci harboring

differentially expressed lncRNAs and non-differentially expressed lncRNAs (Fig 5H). Thus,

loss-of-function screens are paramount to characterizing the vast non-coding transcriptome

and its role in development and differentiation. Taken together, our CRISPRi and CRISPRa

cell lines described herein can serve as a resource for functional screens in any of the three
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primary germ layers, identifying and elucidating the role of both coding and non-coding genes

in development.
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