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Abstract: The construction of an engine requires optimized geometry and superb material properties
in various environments. Tensile and yield strength are not the only parameters essential to consider.
Hardness, impact toughness, and ductile-brittle transition temperature (DBTT) are also crucial. In
this paper, Balder, Chromium-Molybdenum-Vanadium-Nickel steel with low impact toughness
attested is considered. It contains both high Nickel and high Vanadium content, a rare combination
among iron-based alloys. This study aims at proving that conventional heat treatment can improve
its impact toughness while maintaining hardness level, exceeding its to-date performance. Steel’s
exact elemental composition was checked, and material samples’ hardness and impact toughness
were measured. Four heat treatments were proposed, then hardness and impact toughness were
measured again. It was established that impact toughness over three times higher than marketed
(57.3 J against 17 J) can be achieved with simultaneous 2 HRC points (from 46.4 HRC to 48.4 HRC) rise
in hardness. Achieved parameters place examined alloy at the high-ranking position among similar
steels. Occurrence of temper embrittlement was avoided. Notably, the ductile-brittle transition was
not observed in any sample.

Keywords: impact toughness; hardness; CrMoVNi steel; Charpy impact test; heat treatment; quench-
ing; tempering

1. Introduction

Despite being around for over a century, steel alloys still play a major part in construc-
tion and engineering. With more advanced applications grows the demand for specialized,
high-performing materials. Since the industrial revolution, experiments with alloying
elements have been conducted with good results [1,2]. Pre-WWII metallurgy already saw
alloys containing multiple additions, enabling record-breaking engine performance. As
an example, Junkers Jumo 205 had connecting rods made with steel containing 0.35% C,
0.2% Si, 0.34% Mn, 0.03% S, 0.027% P, 3.84% Ni, 1.14% Cr, 0.03% Mo and 0.04% V. Complex
alloying paid off; combustion pressure exceeded 100 bar, rising with over 10 bar/s, without
con-rods failure [3]. The relatively high Nickel content is worth noting, as the addition of
up to 4 wt. % provides the best results in increasing impact toughness [4].

Much work has been made to determine the influence of elements such as Nickel [5,6],
Molybdenum [7,8], Vanadium [9], and Chromium [10] on steel behavior. Various amounts
and combinations of those elements have been studied in detail before. However, iron-
based alloys with simultaneously high Nickel and Vanadium content are rare.

The effect of impurities has also been studied [8,10,11], and methods of purifying
steel alloys have been devised, such as Electro-Slag Remelting (ESR) or Vacuum Arc
Remelting [10].
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Phenomena governing metals’ behavior, such as temper brittleness, became increas-
ingly possible to study. Since the early studies [12,13] with their limitations, temper
embrittlement (TE) and correlated Ductile-Brittle Transition Temperature (DBTT) were
examined in increasing detail from multiple angles [7,11,14–16]. New techniques were
developed along the way, such as magnetic nondestructive evaluation [17].

Low alloy steels with varying Ni, Cr, Mo, and V additions remain a valuable research
topic, despite this metal group’s long history, as they play an essential role across engi-
neering applications. Their good mechanical properties are valued in shipbuilding and
aerospace manufacturing, among other fields [18]. Continued demand prompts continued
development by manufacturers and should be followed by continued research of newly
produced alloys. Such studies bring several benefits, helping to organize existing metal-
lurgical knowledge and shedding light on new materials. Treatments alternative to the
manufacturer’s guide can lead to significant mechanical properties’ improvements, thus
enabling a given alloy to be used in a broader range of applications.

In this paper, Balder, Chromium-Molybdenum-Vanadium-Nickel steel is considered.
The producer describes it as having excellent high-temperature strength, great machinabil-
ity and is suitable for nitriding and nitrocarburizing [19]. Those statements and chemical
composition are the basis on which steels for comparison were picked.

It has a unique chemical composition, as it is rare for steel alloys to have high Vana-
dium and high Nickel content. Literature [20–30] shows comparable hot work steels with
Vanadium content higher than 0.4 wt. % and only have small amounts of Nickel in them
(up to 0.35 wt. %).

Data available on heat treatment states that it is delivered pre-hardened to the range
of 42–45 HRC when tempered at 590 ◦C 2 × 2 h [31]. Graphs in [19] show that temper-
ing parameters described above pull material just past the temper embrittlement phase.
According to said graphs, steel should exhibit a hardness of around 46 HRC and impact
strength of around 16 J. It is noteworthy that the producer’s data shows this alloy’s impact
toughness is almost as low as it could be. Temper embrittlement is mentioned as an ex-
planation; however, it remains unclear to authors why such a decision was made, and the
“basic” as-delivered variant was not improved.

The steel of similar constitution proved to be an excellent material for parts working
in harsh conditions in an engine, capable of reaching about 40 J of impact strength [32],
provided proper heat treatment has been used. Several similar alloys were chosen for
comparison, proving it not to be an isolated case [20–31]. It is shown that for steel of around
46 HRC, impact toughness substantially higher than 16 J can be obtained.

As high Nickel content effectively moves DBTT into negative temperatures [5], its
occurrence at −29 ◦C is unlikely. Charpy impact test in that temperature will be conducted
to confirm this. Steels of the aforementioned compositions are rare, and research is lacking.
This study, however, aims to improve Balder’s mechanical properties through conventional
heat treatment, therefore shedding light on its potential and serving as an introductory
guide for further research directions.

2. Materials and Methods

The as-delivered alloy was subjected to optical emission spectrometry analysis to
ensure the producer’s chemical composition matches.

For this analysis, spark-optical emission spectrometer SPECTROMAXx (SPECTRO
Analytical Instruments GmbH, Kleve, Germany) with argon shield atmosphere, equipped
with iCAL calibration logic, was used. It allows us to conduct both qualitative and quan-
titative analyses of ferrous and non-ferrous alloys. Via testing, contents of 54 elements
used in metallurgy can be obtained. In the pre-spark phase, it can detect free graphite and
automatically point out bad samples.

Results of four samples are presented in Table 1. Element contents mentioned in
obtained producer’s data are listed in column “typical”. Contents of other elements (e.g.,
Sn, Ca) were less than 0.01 wt. % and are summarized in row “Other”.
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Table 1. Chemical composition of an alloy.

Element Sample 1. Sample 2. Sample 3. Sample 4. Average Typical

C (%) 0.33 0.33 0.33 0.33 0.33 0.3

Si (%) 0.43 0.43 0.43 0.43 0.43 0.3

Mn (%) 1.14 1.13 1.13 1.14 1.14 1.2

Cr (%) 2.34 2.34 2.34 2.34 2.34 2.3

Mo (%) 0.78 0.78 0.78 0.78 0.78 0.8

V (%) 0.83 0.81 0.82 0.81 0.82 0.8

Ni (%) 3.88 3.88 3.88 3.88 3.88 4.0

P (%) 0.014 0.014 0.014 0.014 0.014 -

S (%) 0.029 0.021 0.027 0.03 0.027 -

Al (%) 0.019 0.021 0.02 0.02 0.02 -

Co (%) 0.019 0.019 0.02 0.02 0.02 -

Cu (%) 0.14 0.094 0.074 0.066 0.093 -

W (%) 0.026 0.025 0.025 0.025 0.025 -

Te (%) 0.021 0.021 0.021 0.021 0.021 -

Ta (%) 0.074 0.074 0.077 0.065 0.072 -

B (%) 0.0007 0.0006 0.0005 0.0007 0.0006 -

Fe (%) 89.8 89.9 89.9 89.9 89.9 Bal.

Other (%) Bal. -

Element contents are within a 10% margin, compared to available data for all elements
except silicon, which is 43% higher than typical. Si is known to influence machinability neg-
atively and increase brittleness. Such deviation from declared value shows the importance
of verification of chemical composition ahead of planned testing; however, in this particular
case, a significant decrease in an alloy’s mechanical properties is not expected due to its
overall small amount. What does, on the other hand, make a difference in machinability is
Vanadium content. V decreases it significantly more than most alloying elements, which
is why such a high amount of it is somewhat surprising in an alloy described as having
“superior machinability” [19]. Those doubts were confirmed during machining; cutting
inserts showed significantly shorter lifespan working on Balder, compared to similar details
from 40CrMnNiMo8-6-4 steel. It suggests machinability may not be this alloy’s biggest
strength, and its other qualities should be emphasized over it.

All Chromium, Molybdenum, and Vanadium are used to homogenize the structure
of an alloy, reduce grain size, and increase heat resistance. As they all tend to form car-
bides [33], under certain circumstances, especially in high alloy steels, secondary hardening
may occur (increasing hardness during tempering). This possibility will be evaluated later.

The amount of Nickel seems to be carefully considered in terms of impact toughness
since the addition of 2.7 to 4 wt. % of it proved to have the best results in increasing that
parameter [4].

Content of impurities (P and S) is much higher than levels achievable in modern
metallurgy. Negligence regarding the purity of steel can at times bear serious conse-
quences. For example, some alloying elements (especially Phosphorus) may impact temper
embrittlement, as explained later. The above makes purifying an alloy worth considering.

Overall, the presented steel has a promising chemical composition, comparable to
other hot-work steels. It seems to be able to provide satisfying mechanical properties after
considerate heat treatment.
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2.1. Hardness Measurement

Rockwell C hardness test was conducted using the Łucznik PW106 machine (Łucznik,
Radom, Poland). Procedures complied with PN-EN ISO 6507-1:1999 standard [34]. Four
samples at room temperature were tested three times each. Measurement points were at
least 6 mm apart. Results will be presented with corresponding impact test data for more
straightforward analysis.

2.2. Impact Toughness Test

Charpy impact test was conducted to determine whether obtained material shows
the same properties as declared by the producer. Samples were tested using INSTRON
impact test machine with Dynatup 9250 HV drop weight column (INSTRON, Bristol, UK).
It enables adjusting impact energy in the range of 4.6–945 J by manipulating mass and
height of weight drop. Velocity sensors’ accuracy is +/−0.25% in the range up to 12 m/s.
An optical encoder, which is also a part of the setup, can measure displacement with
+/−0.05% accuracy. The expanded uncertainty of the impact energy measurement equals
±6.5 J (p~95%, k = 2). The machine is equipped with the Impulse data acquisition module,
allowing rapid load data collection during test and data post-processing (charts, tables,
comparisons with other test results).

Test setup with data acquisition module is shown in Figure 1a,b.
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V-notch samples were prepared as specified in [35]. Detailed sample geometry is
shown in Figure 2.
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Figure 2. Charpy V-notch test sample geometry (dimensions in mm).

Procedures complied with PN-EN ISO 148-1:2017-02 standard [35], and a test was
performed on standard-size samples specified in the said norm. The energy exerted
on a sample was about 300 J with a drop velocity of ~5.3 m/s. Tests were conducted in
20 ◦C ± 2 ◦C (samples 1 and 2) and−29 ◦C± 2 ◦C (samples 3 and 4). Ambient temperature
was controlled using a LAB-EL thermohydrometer (LB-700 type) (LAB-EL, Reguły, Poland).
Sample temperature was measured using a LAB-EL digital thermometer (LB-522TX type)
with an external TA-TP sensor (LAB-EL, Reguły, Poland).

Graphs showing loads (blue lines, in kN) and impact energy (red lines, in J) in time
(in ms) and corresponding fracture area pictures are presented in Table 2.

Table 2. Test results—Fracture pictures and graphs of exerted energy and load (as delivered material).

Sample No. Graph Fracture Area

1
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A lack of apparent yield strength was observed in samples during tests, contrary
to the manufacturer’s data, where yield tensile strength equals 1230 MPa for 44 HRC
variant and 1320 MPa for 47 HRC variant. Selected data is presented along with hardness
measurements in Table 3.

Table 3. Samples’ dimensions and tests results.

Sample
Number

Sample
Width (mm)

Notch
Bottom

Position (mm)

Maximum
Load (kN)

Impact
Energy KV2

(J)

Mean
Impact
Energy

KV2avg (J)

Mean
Sample

Hardness
(HRC)

Average
Material
Hardness

(HRC)

1 9.97 8.00 18.94 16.3
17.0

46.5

46.4
2 9.96 7.99 20.25 17.7 46.4

3 9.97 8.00 14.86 12.2
12.3

46

4 9.97 8.00 14.91 12.4 46.6

Pictures show that samples made from as-delivered material tend to fracture bristly
(only a little deflected area is visible). The fracture surface resembles that of high hardness
(50 HRC and more) tool steel. Considering that the hardness of steel in question is notice-
ably lower, it confirms temper embrittlement. It is known that during tempering at around
550 ◦C ± 50 ◦C if the cooling rate is too low, the impact toughness of many steel alloys
drops instead of rising steeply with temperature. A qualitative depiction of a relationship
between impact toughness and the cooling rate is presented in Figure 3. The blue line
represents slow cooling, while the orange line represents fast cooling.
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Figure 3. Impact toughness vs. tempering temperature in fast (orange line) and slow (blue line)
cooling scenarios.

It is believed that the drop in impact toughness in those conditions is not solely related
to the decomposition of retained austenite but also to the concentration of Phosphorus
on grain boundaries, which is considered to be the main temper embrittlement-causing
impurity [36–38]. Some alloying elements such as Titanium, Niobium, Molybdenum, and
Vanadium show efficacy in mitigating Phosphorus concentration on grain boundary [8].
It is suspected that a few mechanisms contribute to that, such as Ti and Nb “pinning”
P inside of the matrix or settling on the grain boundary themselves, thus restricting the
amount of space Phosphorus can take up [39]. However, the exact effects are difficult to
quantify, especially since all those elements show the ability to form carbides [33], limiting
their anti-embrittlement effect. Molybdenum additions’ impact on inhibition of scavenging
(segregation to the grain boundary) of Phosphorus is unclear, as studies [40–42] reach
conflicting results. The same can be said about Vanadium, as it does, to some extent,
mitigate the effect of Phosphorus, but the exact mechanisms are yet to be described.

With this number of overlapping effects in play, it is incredibly challenging to de-
termine a “safe” amount of Phosphorus in respect of temper embrittlement [39]. Thus,
restricting the overall number of impurities seems to be a better solution, especially nowa-
days, with modern advances in metallurgy.

In general, temper embrittlement can be prevented in two ways; by changing the
chemical composition of an alloy (primarily eliminating an extensive amount of Phosphorus
and other impurities) or adjusting heat treatment, with particular attention being paid
to cooling rate. This research focuses on improving the properties of an alloy of set
composition; thus, metallurgical work will be omitted, and only hardening methods will
be considered.

Data regarding samples’ dimensions, hardness, and impact toughness are presented
in the Table 3. As mentioned before, the expanded uncertainty of the impact energy
measurement equals ±6.5 J (p~95%, k = 2).

For comparison, data on hardness and impact toughness of similar ferrous alloys is
presented in Table 4. Their chemical composition is shown in the Table 5.
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Table 4. Comparable hot work steels’ parameters.

Steel Alloy Standard Hardness (HRC) Standard Impact Toughness KV (J) Source

H13 46
38–53

~26
Very high

[20]
[21]

33H3MF 26 92 [22]

Orvar Supreme 45 ~16 [23]

WCLV
56 25.6

[24]
48 32

25H2N4WA 27.6 63 [25]

30HN2MFA 35.5–41 20 [25]

Dievar 44–46 43 [26]

QRO 90 Supreme 45 15 [27,31]

Vidar Superior 45 30 [28,31]

Bohler W300 50–52 19–28 [29]

Bohler W400 50–52 26–36 [30]

Table 5. Comparable hot work steels’ chemical composition.

Element C (%) Si (%) Mn (%) Cr (%) Mo (%) V (%) Ni (%) P (%) S (%)

H13 0.32–0.45 0.8–1.2 0.2–0.5 4.75–5.5 1.1–1.75 0.8–1.2 0.3 max

Orvar
Supreme 0.39 1.0 0.4 5.2 1.4 0.9 -

33H3MF 0.29–0.36 0.17–0.37 0.5–0.8 2.4–2.8 0.35–0.45 0.2–0.3 0.3 max 0.035 max 0.035 max

WCLV 0.35–0.45 0.8–1.2 0.2–0.5 4.5–5.5 1.2–1.5 0.8–1.1 0.35 max 0.03 max 0.03 max

25H2N4WA 0.21–0.28 0.17–0.37 0.25–0.55 1.35–1.65 - - 4–4.0 0.03 max 0.025

30HN2MFA 0.26–0.33 0.17–0.37 0.3–0.6 0.6–0.9 0.2–0.3 0.15–0.3 2–2.5 0.03 0.03

Dievar 0.35 0.2 0.5 5 2.3 0.6 -

Bohler
W300 0.38 1.1 0.40 5 1.3 0.4 -

Bohler
W400 0.37 0.2 0.25 5 1.3 0.45 -

QRO 90
Supreme 0.38 0.3 0.8 2.6 2.3 0.9 -

Vidar
Superior 0.36 0.3 0.3 5 1.3 0.5 -

Data in Table 4 concludes that better decisions regarding pre-hardening could have
been made on the production stage of examined alloy. The producer’s brochure [19] states
that this steel can be used without additional heat treatment. However, the authors would
advise against this.

A range of hot work steels similar to Balder is presented in the Table 5. As mentioned
before, simultaneously high Nickel and Vanadium contents are hard to come by. Among
presented comparable steels, only 30HN2MFA has non-negligible contents of both of them.

2.3. Heat Treatments

Four heat treatments (HT) were proposed. After each treatment, hardness and impact
toughness were measured at 20 and −29 ◦C, complying with standards mentioned before.
For more reliable results, two samples were tested in each time-temperature combination,
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giving a total of 16 experiments. Sample number, exact heat treatment it was subjected
to, and temperature of the impact test sample (Sample Temperature, ST) are listed in the
Table 6.

Table 6. Heat treatment of samples and temperature of testing.

Sample Number HT 1. HT 2. HT 3. ST (◦C)

1.1 (1•),
1.2 (•1•)

Quenching at 960 ◦C for 25′ Tempering at 600 ◦C for 2 h Tempering at 580 ◦C for 2 h
+20 ± 2

1.3 (•1••),
1.4 (••1••)

−29 ± 2

2.1 (2•),
2.2 (•2•)

Quenching at 960 ◦C for 25′ Tempering at 200 ◦C for 2 h Tempering at 200 ◦C for 2 h
+20 ± 2

2.3 (•2••),
2.4 (••2••)

−29 ± 2

3.1 (3•),
3.2 (•3•)

Quenching at 1020 ◦C for 25′ Tempering at 640 ◦C for 2 h Tempering at 600 ◦C for 2 h
+20 ± 2

3.3 (•3••),
3.4 (••3••)

−29 ± 2

4.1 (4•),
4.2 (•4•) Tempering at 640 ◦C for 2 h Tempering at 600 ◦C for 2 h -

+20 ± 2

4.3 (•4••),
4.4 (••4••)

−29 ± 2

Both quenching and tempering were conducted in oil. While water and particularly
aqueous solutions of inorganic salts provide a very high cooling rate, it comes at the cost
of a high risk of cracking. Quenching in oil is much safer in that regard. However less
extreme than cooling in water, it can still act as a sort of fuse; if a part quenched in oil will
survive the process undamaged, subsequent stages of heat treatment will likely cause it no
harm as well. This approach can prove especially useful when multi-stage treatment of a
part is necessary. Detecting mistakes early on is a cost-saving measure in such cases.

Due to a limited number of heat treatments proposed and significant differences be-
tween them, it cannot be stated that any of them will provide an optimal hardness-ductility
ratio for this alloy. Processes were chosen based on the authors’ previous experiences with
treating similar steel. As this alloy shows a relatively high content of impurities, it was
reasonable in the authors’ view to first try more straightforward, conventional heat treat-
ments. If significant improvements are made, research into more sophisticated methods,
such as cryogenic treatment, will be well-based.

3. Results

After heat treatment hardness of each sample was measured, measurements were
conducted as described earlier, and results, as previously, will be listed with corresponding
impact test data.

Charpy impact test was performed using the same setup as in preliminary tests on
as-delivered samples. Graphs depicting energy absorbed by the sample (red lines, in J),
the load exerted (blue lines, in kN) in time (in ms), and the fracture area picture for each
experiment are listed in the Table 7. Impact toughness extracted from tests, and hardness
measured before a sample was destroyed, are shown in the Table 8.
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Table 7. Test results: fracture pictures and graphs of exerted energy and load (material after heat treatment).

Sample
Number Graphs Fracture Area

1.1
(1•)
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Table 7. Cont.

Sample
Number Graphs Fracture Area
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Number Graphs Fracture Area
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Table 7. Cont.

Sample
Number Graphs Fracture Area
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Table 8. Experiment results: impact energy, hardness, yield and tensile strength.

Sample
Number

Sample
Temp. (◦C)

Impact Energy
KV2 (J)

Mean Impact
Energy

KV2avg (J)

Mean Hard.
(HRC)

Mean Hard.
(HV) YS (MPa) TS (MPa)

1.1 (1•)
+20

126.7
123.2

36.2 356 933 1101

1.2 (•1•) 119.6 35.7 351 918 1084

1.3 (•1••) −29
112.6

107.8
37.5 369 970 1145

1.4 (••1••) 103.0 36.3 357 936 1104

2.1 (2•)
+20

57.2
57.3

48.4 489 1315 1550

2.2 (•2•) 57.4 47.8 482 1295 1526

2.3 (•2••) −29
53.1

58.5
47.7 480 1289 1519

2.4 (••2••) 63.9 48.5 491 1321 1556

3.1 (3•)
+20

97.7
105.4

36.2 356 933 1101

3.2 (•3•) 113.1 36.1 355 933 1101

3.3 (•3••) −29
106.4

105.7
36.1 355 933 1101

3.4 (••3••) 104.9 36.9 363 953 1124

4.1 (4•)
+20

139.2
135.4

33.5 328 852 1006

4.2 (•4•) 131.6 33.6 330 858 1013

4.3 (•4••) −29
126.6

123.2
34.1 336 875 1033

4.4 (••4••) 119.8 33.7 331 861 1016

Throughout the experiments, rise of ductility in comparison with as-delivered samples
is easily noticeable. A higher amount of energy absorbed corresponds to the amount
of section area shear lips take up, as they consume about half of the energy of ductile
fracture [43].

Data on mean impact energy absorbed and mean hardness each sample pair exhibits
are presented in Table 8. As mentioned earlier, expanded uncertainty of the impact energy
measurement equals ±6.5 J (p~95%, k = 2). Yield strength and tensile strength were not
measured separately but are approximated based on hardness. Pavlina and Van Tyne’s
research shows a linear correlation for HV > 130 [44]. Relationship between Vickers
hardness (Hv, [kgf/mm2]) and yield strength (YS, [MPa]) is characterized by Equation (1),
and its relationship with tensile strength (TS, [Mpa]) by Equation (2). Hardness in HRC
was converted to HV based on information in [22].

YS = −90.7 + 2.876 Hv (1)

TS = −99.8 + 3.374 Hv (2)

Experimental data for each sample are presented in Figure 4 Dark blue lines represent
the typical range of parameters of similar hot work steels. They were drawn based on the
authors’ previous research, which is not the subject of the present paper. The closer to the
bottom left side of the graph, the lower the quality of an alloy. Samples after additional heat
treatments proposed in this experiment present a better ratio of mechanical parameters
than as-delivered samples. Further optimization of heat treatment procedures is likely to
yield even better results.
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Figure 4. Comparison of pre- and post-treatment samples against similar steels’ properties.

4. Discussion

The data obtained through the experiment show significant improvement in the
mechanical properties of the alloy in question. Excellent results were yielded through
treatment 2. (quenching in 960 ◦C for 25 min, tempering in 200 ◦C 2× 2 h). The temperature
of the process was set lower than the range in which temper embrittlement occurs; thus,
it was avoided. According to the graph in [19], Balder presents impact toughness of
around 40 J when tempered at 200 ◦C for 2 × 2 h. An increase in alloy’s ductility through
this treatment is attributed to the time-temperature combination of the quenching period.
Authors believe it proved more efficient than the manufacturer’s process in mitigating
grain size growth, commonly known to decrease impact toughness [45].

Charpy impact test in −29 ◦C has shown no significant decrease in impact toughness
against the room temperature test. It was suspected due to the high Nickel content [5].
Grain refinement may serve as further explanation, as it would be in line with Hall-Petch
law regarding DBTT.

As an example of steel alloys rich simultaneously in Nickel and Vanadium, Balder
proved to be a promising material to explore and should be studied further. Microstructure
examination could provide valuable data regarding the influence of Nickel in the presence
of high Vanadium content in steel alloys. As Phosphorus content is relatively high, and
Balder shows vulnerability to temper embrittlement in certain conditions, it can help
us to better understand this phenomenon. Properties obtained through conventional
heat treatments are promising compared with a range of hot-works steels, and authors
recommend research into more sophisticated methods, such as cryogenic treatment.

From the manufacturer’s point of view, Balder exhibits properties promising enough
to justify more attention to the purification of this alloy.

5. Conclusions

In this paper, Balder, Chromium-Molybdenum-Vanadium-Nickel steel was considered.
After its composition and marketed properties were confirmed, it was subjected to four
different heat treatments to determine if its impact toughness can be improved with little
sacrifice to hardness. Conclusions are as follows:

(1) Occurrence of temper embrittlement was confirmed, and possible explanations were
proposed. Authors suspect it originated in a cooling rate lower than critical, and
additionally, non-negligible content of Phosphorus segregating to the grain boundary
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contributed to that phenomenon. Thus, to avoid it, either purifying an alloy or more
thought-through heat treatment should be considered.

(2) Tests conducted after heat treatment of samples show substantial improvement in
mechanical properties of the examined alloy. Mainly, an increase in hardness from
46.4 HRC to 48.4 HRC with impact toughness simultaneously rising three-fold (from
17 J to 57.3 J) was recorded, and a six-fold increase of impact toughness (from 17 J to
135.4 J) was possible with a hardness drop from 46.4 HRC to 33.5 HRC. It proves that
striking a satisfying balance between those two properties is indeed possible.

(3) Ductile-brittle transition was not detected in temperatures as low as −29 ◦C, making
alloy in question a promising material for use in engine applications.

(4) Secondary hardening was not observed; as-delivered material decreased in hardness
when tempered.
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