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Abstract

Background: CD4+CD25+ regulatory T cells (Tregs) suppress adaptive T cell-mediated immune responses to self- and
foreign-antigens. Tregs may also suppress early innate immune responses to vaccine antigens and might decrease vaccine
efficacy. NK and NKT cells are the first responders after plasmid DNA vaccination and are found at the site of inoculation.
Earlier reports demonstrated that NKT cells could improve plasmid DNA efficacy, a phenomenon not found for NK cells. In
fact, it has been shown that under certain disease conditions, NK cells are suppressed by Tregs via their release of IL-10 and/
or TGFb. Therefore, we tested the hypothesis that NK cell function is suppressed by Tregs in the setting of plasmid DNA
vaccination.

Methodology/Principal Findings: In this study we show that Tregs directly inhibit NK cell function during plasmid DNA
vaccination by suppressing the potentially 10-fold, NK cell-mediated, augmentation of plasmid DNA antigen-specific CD8+ T
cells. We found that this phenomenon is dependent on the secretion of cytokine TGFb by Tregs, and independent of IL-10.

Conclusions: Our data indicate a crucial function for Tregs in blocking plasmid DNA vaccine-elicited immune responses,
revealing potentially novel strategies for improving the efficiency of plasmid DNA vaccines including chemical- or antibody-
induced localized blockage of Treg-mediated suppression of NK cells at the site of plasmid DNA vaccine inoculation.
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Introduction

CD4+CD25+ regulatory T cells (Tregs) represent 5–10% of all

CD4+ T lymphocytes [1,2]. They are a unique population of T

cells that maintain immune tolerance and are critical to host

suppression of autoimmunity [1,3,4]. Tregs inhibit the prolifera-

tion and effector functions of conventional CD4+ and CD8+ T

lymphocytes [2,5,6], natural killer T (NKT) cells [7], B cells [8],

dendritic cells (DC) [9], natural killer (NK) cells [10,11] and cells

of the monocyte/macrophage lineage [12].

Tregs play a major role in diseases. During Helicobacter hepaticus

infection, Tregs elicit tolerance and suppress bacteria-induced

colitis [13]. Tregs also control Leishmania major persistence and

immunity [14]. Recipient-type specific Tregs favor immune

reconstitution and control graft-versus-host disease without inhib-

iting graft-versus-leukemia immune responses [15]. Additionally, it

is thought that Tregs may suppress immune responses against

tumors in cancer patients, as increased levels of peripheral and

tumor-infiltrating Tregs are predictive of poor survival [16,17].

Despite their importance, the precise mechanism of Tregs’

regulatory activity is still controversial and depends on the in vitro

or in vivo systems investigated. In vivo, the inhibitory effects of Tregs

are mediated by TGFb and IL-10 [13,18]; however, in vitro, direct

cell-to-cell contact between Tregs and the suppressed cells is

necessary. In vitro, in contrast to in vivo, inhibition is independent of

TGFb or IL-10 [1,4,14,15,18].

Tregs might affect the potency of vaccines with respect to both

vaccine-induced self-antigen or foreign-antigen immune responses.

Depletion of Tregs using anti-IL-2 receptor alpha chain antibody

(anti-CD25 antibody) [19] potentiated vaccine induced immunity

to tumors [19,20,21,22]. Therapeutic immunization with a DC-

based vaccine against HIV-1 induced a modest increase of Treg

frequency and a significant increase in HIV-1-specific, Treg

suppressive function. Thus, the Tregs suppressed the vaccine-

induced anti-HIV-1-specific polyfunctional response [23]. In

another system, depletion of Tregs increased the potency of

plasmid DNA human-papillomavirus (HPV) vaccinations to

control HPV-associated lesions [24].

NKT cells and Tregs regulate each other [25]. The same is true

for NK/Treg interactions, which are also bidirectional [26,27].

Since NK and NKT cells are the early responders to plasmid DNA

vaccination at the site of inoculation [28] we aimed to determine if

the response of these innate cell types is suppressed by Tregs

during plasmid DNA vaccination. We therefore sequentially

depleted these cells and measured the effect on plasmid DNA-

elicited antigen-specific CD8+ T cell immune responses. We
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demonstrate that blocking the TGFb-mediated suppression of NK

cell activity by Tregs increases the CD8+ T cell immune response.

These findings suggest a potential strategy to increase the potency

of plasmid DNA vaccinations.

Materials and Methods

Ethics Statement
All animals were housed and maintained in accordance with the

Guide for the Care and Use of Laboratory Animals [29], and all

studies and procedures were reviewed and approved by the

Institutional Animal Care and Use Committee (IACUC) of

BIDMC (Chair Dr. Lisa Cavacini). BIDMC follows NIH

guidelines for animal handling and has Animal Welfare Assurance

A3153-01 on file with the Office for Protection of Research Risks.

This institution maintains full accreditation from Association for

Assessment and Accreditation of Laboratory Animal Care.

Mice
Six- to eight-week-old female C57BL/6, NKT KO mice (on

BALB/c background), BALB/c, and beige mice (C57BL/6-Lystbg)

[30,31,32] were purchased from The Jackson Laboratory. J18 KO

mice (iNKT KO), which lack the V14-J18 NKT cells (lacking all

invariant NKT (iNKT) cells), and NKT KO mice were both on a

C57BL/6 background, and a gift from Dr. Mark E. Exley (Beth

Israel Deaconess Medical Center (BIDMC), Harvard Medical

School, Boston, MA). Both types of NKT KO mice are CD1d KO

mice and lack all CD1d-restricted NKT cells [33].

Vectors and Immunization
The plasmid DNA-Luciferase (DNA-Luc) construct with the

AL11-epitope was prepared as previously described [34]. This

vector contains the GL4.10 luciferase gene (Promega, Madison,

WI) and the immunodominant H-2Db-restricted SIV-Gag AL11

epitope flanked by triple-alanine spacers. The complete CXCR4-

tropic HIV-1 HXB2 Env IIIB (GenBank accession no. K03455)

was cloned into the VRC vector (DNA-gp160) as previously

described [35]. Plasmid DNA was prepared using an Endotoxin-

free Qiagen Giga-prep kit (Qiagen, Valencia, CA). For immuni-

zations, 50 mg of plasmid DNA in 100 ml of sterile saline was

divided between quadriceps muscles by intramuscular (i.m.)

inoculation. For sub-optimal DNA vaccinations, 20 mg of plasmid

DNA was injected as described above. Endotoxin concentrations

were determined with the E-Toxate kit (Sigma-Aldrich, St. Louis,

MO), and were below 0.1 unit/mg in all plasmid DNA

preparations used in these studies.

Immunological assays
H-2Db/AL11 and H-2Dd/p18 tetramers, which contain the SIV

gag (AL11 peptide: AAVKNWMTQTL) or HIV gp160 (p18

peptide: RGPGRAFVTI) respectively, were prepared and used to

identify the epitope-specific CD8+ T cells as previously described

[35,36]. Peripheral blood was collected and lysed with BD Pharm

LyseTM buffer (Becton-Dickinson, BD Biosciences, Mountain View,

CA). Samples were analyzed by two-color flow cytometry on a

FACSCalibur system (BD Biosciences). Gated CD8+ T lymphocytes

were examined for staining with Db/AL11 or Dd/p18 tetramer.

CD8+ T lymphocytes from control mice immunized with untagged

plasmid DNA-Luc exhibited ,0.1% tetramer staining.

Cell depletion and cytokine inactivation
For Treg cell inactivation experiments, C57BL/6 mice were

injected by the intraperitoneal (i.p.) route with 0.5 mg of anti-CD25

antibody (clone 7D4) per infusion or, for the controls, with a

corresponding isotype-matched non-specific rat IgM serum. Both

antibody preparations were from BioXCell (West Lebanon, NH),

and were injected 3 days prior to plasmid DNA inoculation and on

the day of immunization. The degree of Treg depletion was

measured by CD4+CD25+ staining for flow cytometric assays on

days 1, 7, 14, 21 and 28; these assays utilized dye-coupled

monoclonal anti-CD4-phycoerythrin (PE) (clone L3T4; BD Biosci-

ence) and anti-CD25-allophyocyanin (APC) (clone PC61 5.3;

Invitrogen, Carlsbad, Ca) antibodies [37]. Additionally, the

efficiency of Treg depletion was measured by monoclonal antibody

staining of isolated splenocytes with anti-CD25 APC-conjugated

(clone PC61), anti-CD4-peridinin chlorophyll protein (PerCP)

(clone L3T4; BD Bioscience) and anti-FoxP3 PE-conjugated (clone

FJK-16S) antibodies (both BD Biosciences). Intra-cellular staining

for Foxp3 was performed according to the manufacturer’s protocol

(BD Biosciences). Stained CD4+CD25highFoxP3high cells were

analyzed using the FACSCalibur system (BD Biosciences). Data

were analyzed with FlowJo software (TreeStar, San Carlos, CA).

NK cell depletion was performed with the anti-asialo GM1

antibody (ASGM1) (Wako Chemicals, Richmond, VA) using 50-ml

infusions as previously described [38] 3 days prior to and on the

day of vaccination. Non-immune rabbit IgG (Sigma-Aldrich) was

used as control. The anti-ASGM1 antibody depletion achieved

greater than 50% depletion of NK cells over a 49 day period as

confirmed by monoclonal anti-CD3 and anti-NK1.1 antibody (BD

Bioscience) staining and flow cytometric analysis.

For TGFb neutralization, C57BL/6 mice were injected by the

i.p. route with 0.5 mg of anti-TGFb (clone 1D11.16.8; BioXCell)

or with a rat IgG1 isotype control (Sigma-Aldrich), 3 days before

plasmid DNA inoculation and on the day of immunization. For

IL-10 neutralization an anti-IL10 antibody (JESS-2A5, BioXCell)

was used according to the same administration protocol. An

isotype matched non-specific antibody was administered to control

animals.

Array for IL-10 gene expression
To analyze gene expression for Interleukin-10 (IL-10), the Oligo

GEArray Mouse Microarray (SA Biosciences, Frederick, MD,

cat# OMM-012,) was used on snap-frozen vaccinated or

unvaccinated quadriceps muscles 14 days after DNA vaccination

according to the manufacturer’s protocol.

Data analysis
Differences between groups were analyzed using the Mann-

Whitney test. A p value of ,0.05 was considered significant.

Statistical calculations were performed using the GraphPad Prism

program (version 4.03). Error bars represent the standard errors of

the means (SEM).

Results

Tregs dampen plasmid DNA antigen-specific CD8+ T cell
immune responses

CD4+CD25+ Tregs not only restrict self-antigen-specific

immune responses, but also dampen immunity against foreign-

antigens. Therefore, depletion or inactivation of Tregs might help

increase antigen-specific T cell immune responses elicited by a

plasmid DNA vaccine. One possible method of depleting or

inactivating Tregs involves treatment with a monoclonal anti-

CD25 antibody, the effects of which include loss of CD4+CD25+

cells in vivo as monitored by flow cytometry [37]. Previous studies

have shown that this treatment results in the reliable enhancement

of antigen-specific CD8+ T cell immune responses elicited by a

plasmid DNA vaccine [24].

Tregs Block Vaccine Potency

PLoS ONE | www.plosone.org 2 August 2010 | Volume 5 | Issue 8 | e12281



To determine whether CD25+ cell depletion can potentiate an

SIV-specific CD8+ T cell immune response, we immunized mice

with a plasmid DNA-Luc construct encoding the H-2Db-restricted

cytotoxic T lymphocyte (CTL) epitope of SIV gag (AL11) and

measured the subsequent immune response by tetramer staining

using flow cytometry. Following anti-CD25 antibody treatment,

we found AL11-specific immune responses increased an average of

2- to 4-fold (Fig. 1A/B). In our experiments monoclonal anti-

CD25 antibody infusions led to a 3 week-long 95% reduction in

detectable CD4+CD25+ cells in the peripheral blood. Treg

depletion can also be measured through the reduction of the

Treg transcription factor FoxP3 and CD25 expression. Isotype

antibody treated, undepleted mice splenocytes showed at day 7,

58.264.8% CD4+CD25high FoxP3high cells, which were more

than 90% reduced after anti-CD25 antibody infusion (3.860.6%,

p = 0.008) (Fig. 1C).

Tregs have no major influence on NKT cell mediated
immune responses

We previously found that the antigen-specific CD8+ T cell

immune response to plasmid DNA vaccine is dependent on early

innate immune responses [39]. Early innate responders at the site

of inoculation include NKT and NK cells [28]. Cytokine release

by NKT cells was found to be important to initiate a potent

antibody and T cell immune response to plasmid DNA vaccines

[28,40,41]. Tregs may suppress NKT immune action at the site of

injection. To investigate this possibility, we infused anti-CD25

antibodies 3 days before vaccination and on the day of plasmid

DNA vaccination. We hypothesized that, if Treg suppression of

vaccine-elicited CD8+ T-cell responses was due primarily to

inhibition of NKT cell function, anti-CD25 antibody treatment

would not enhance CD8+ T cell immune responses in NKT KO

mice. We investigated the effect of Tregs on NKT cells by using

three different strains of mice and two different antigens. Our first

approach at measuring the effect of Tregs on NKT cells used a

system in which Treg-depleted NKT KO mice are compared to

Treg-depleted wildtype mice (Fig. 2A). If Tregs suppress the NKT

cell-mediated augmentation of the CD8+ T cell response, we

would expect to observe a significant difference in the magnitude

of the CD8+ T cell response between the NKT KO and wildtype

mice. We found no significant difference between Treg-depleted

wildtype mice or NKT KO mice (d21: p = 0.14, d24: p = 0.11, d28:

p = 0.14; 5 mice per group) using C57BL/6 mice and the AL11

Figure 1. Damping of the antigen-specific CD8+ T cell immune response is mediated by a CD25+ T cell. (A) Representative gating of AL11
tetramer stains of CD25+ depleted or undepleted mice (isotype control) after plasmid DNA vaccination. (B) SIV-Gag AL11 epitope-specific CD8+ T cell
responses in vaccinated anti-CD25- and isotype-matched antibody-treated mice. (C) Percentage of CD4+CD25high FoxP3high cells at day 7 with inset
showing representative gating of splenocytes of mice depleted or undepeted of CD25+ cells. Epitope-specific CD8+ T cell responses were measured
by Db/AL11 tetramer staining of CD8+ T cells in 5 C57BL/b6 mice per group at the indicated times following plasmid DNA vaccine construct
inoculation. CD25+ cells were inactivated by administration of anti-CD25 antibody 3 days prior to and on the day of vaccination. Line graphs
represent mean values, and error bars represent SEM. Statistically significant differences at specific times were determined by Mann-Whitney test.
Significant differences are indicated by asterisks (p,0.05).
doi:10.1371/journal.pone.0012281.g001

Tregs Block Vaccine Potency

PLoS ONE | www.plosone.org 3 August 2010 | Volume 5 | Issue 8 | e12281



antigen; this finding eliminated the possibility that NKT cells

might be the primary targets of Tregs (Fig. 2A). Another approach

to measuring the effect of Tregs is by depleting them in NKT KO

mice. If Tregs suppress NKT cells, the Treg-depleted mice,

compared to undepleted NKT KO mice, should show no

enhancement in the CD8+ T cell immune response. We found

that BALB/c mice vaccinated with the gp160 env antigen and

treated with anti-CD25 antibody infusions had a significant

increase in the CD8+ T cell immune response compared to the

control group. This confirmed our above findings that the

suppression of the plasmid DNA-induced CD8+ T cell response

by Tregs is not due to suppression of NKT cells (Fig. 2B). We then

used a third model of iNKT KO mice to test the effects of Tregs

on NKT cells. These mice lack iNKT, a subset of NKT cells

involved in most immune effects attributed to NKT cells. We

found that depletion of Tregs had no effect on CD8+ T cell

immune responses, a result that ruled out iNKT cells as key

players in Treg-mediated plasmid DNA CD8+ T cell immune

suppression (Fig. 2C). While our experiment show that Treg have

an impact on CD8+ T-cell responses in NKT KO mice, it does not

rule out a partial inhibition NKT cells by Treg during plasmid

DNA vaccination.

Tregs suppress NK cells, resulting in a damping of
plasmid DNA-specific CD8+ T cell immune responses

NK cells are potential targets of Treg suppression. This

phenomenon was demonstrated in cancer models in which Tregs

were found to block NK cell function. When Tregs were depleted

by anti-CD25 antibody treatment, the anti-cancer activity of NK

cells was restored [10,42]. To test the influence of Tregs on NK

cells following plasmid DNA vaccination, we depleted Tregs from

NK cell function-deficient beige mice and wildtype mice. Following

Treg depletion, we found that NK cell function-deficient mice

were not able to increase AL11-specific CD8+ T cell immune

responses in contrast to the wildtype mice (Fig. 3A). This finding

demonstrated that NK cells might be suppressed by Tregs during

plasmid DNA vaccination and could explain the potentiating

effect of Treg depletion found for plasmid DNA vaccination, a

effect not found when control antibodies were used (Fig. 3B).

To determine if this effect is NK cell-dependent, and not an

effect of the idiosyncrasy of the NK-function deficient mice, we

depleted NK cells with anti-ASGM1 antibodies. We found that

NK cells were depleted at least 50% over a 49 day period when

anti-ASGM1 antibody treated, NK cell-depleted wildtype mice

were compared to isotype antibody-treated control mice (Fig. 4A).

Figure 2. Damping of the antigen-specific CD8+ T cell immune response after anti-CD25 antibody treatment in NKT and iNKT KO
mice. Effect of Treg inactivation on the plasmid DNA antigen-specific CD8+ T cell immune response in (A) wildtype and NKT KO mice (C57BL/6 mice,
both Treg inactivated); in (B) NKT KO mice (BA LB/c mice) treated with an anti-CD25 or an isotype-matched antibody; in (C) wildtype and iNKT KO
mice (C57BL/6 mice, both Treg inactivated). For anti-CD25 antibody treatment, mice were injected via the i.p. route with an anti-CD25 antibody 3
days prior to and on the day of vaccination. Epitope-specific CD8+ T cell responses were measured in 5 mice per group by Db/AL11 (A, C) or Dd/p18
(B) tetramer staining of CD8+ T cells at the indicated times following plasmid DNA vaccine inoculation. Line graphs represent mean values, and error
bars represent SEM. Statistically significant differences at specific times were determined by Mann-Whitney test. Significant differences are indicated
by asterisks (p,0.05).
doi:10.1371/journal.pone.0012281.g002

Figure 3. Damping of antigen-specific CD8+ T cell immune response after anti-CD25 antibody treatment in NK-function KO mice. (A)
Plasmid DNA antigen-specific T cell immune responses in vaccinated wildtype and beige mice (C57BL/6 mice), all treated with an anti-CD25 antibody.
(B) Plasmid DNA antigen-specific CD8+ T cell immune responses in wildtype and beige mice, both groups treated by isotype-matched control
antibodies (isotype IgM). For anti-CD25 antibody treatment, mice were injected via the i.p. route with an anti-CD25 antibody 3 days prior to and on
the same day of vaccination. Epitope-specific CD8+ T cell responses were measured by Db/AL11 staining of CD8+ T cells in 5 mice per group at the
indicated times following plasmid DNA vaccine construct inoculation. Line graphs represent mean values, and error bars represent SEM. Statistically
significant differences at specific times were determined by Mann-Whitney test. Significant differences are indicated by asterisks (p,0.05).
doi:10.1371/journal.pone.0012281.g003

Tregs Block Vaccine Potency
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We immunized wildtype and anti-ASGM1 antibody-treated

mice with suboptimal amounts of plasmid DNA to more closely

simulate the real-time situation during human vaccination and

to increase Treg effects compared to controls. We used four

groups of mice to characterize the suppression of NK cells by

Tregs: NK-undepleted, CD25-depleted (NK+CD252); NK- and

CD25-depleted (NK2CD252); NK-depleted, CD25-undepleted

(NK2CD25+) and NK-and CD25-undepleted (NK+CD25+). We

found that CD8+ T cell immune responses were delayed. We

also found that plasmid DNA vaccine-elicited CD8+ T cell

immune responses increased up to 7-fold when Tregs were

depleted but the NK cell compartment was kept intact

(NK+CD252), while simultaneous depletion of Tregs abolished

this effect (Fig. 4B). This further confirmed our above findings in

the NK-function deficient mice that NK cell function is

suppressed by Tregs.

Tregs suppression is IL-10-independent
Immune suppression in vivo is mediated by Tregs’ release of

cytokine IL-10 and/or TGFb [13,18]. To investigate if there is a

change in IL-10 production in vaccinated mice muscle cells

which might be responsible for the change in plasmid DNA

vaccine elicited CD8+ T cell immune response, we measured the

gene-expression of IL-10. We found that IL-10 expression was

increased up to 3-fold in muscles of vaccinated animals

compared to unvaccinated animals. IL-10 may be released by

Tregs and could potentially be responsible for the blunting of

the CD8+ T cell plasmid DNA immune response (Fig. 5A).

Therefore, we investigated the impact of IL-10 depletion on

vaccine-elicited CD8+ T cell immune response in the presence

or absence of Treg. If the release of IL-10 by Tregs during

plasmid DNA vaccination has an effect on the vaccine-elicited

CD8+ T cell immune response, we would expect a stronger

immune response in wildtype mice, but not CD25-depleted

mice treated with the anti-IL10 antibodies. We found that

administration of IL-10-neutralizing antibodies during the early

phase of immunization with or without Treg depletion had no

effect on the CD8+ T cell immune response (Fig. 5B/C); we,

therefore, concluded that this cytokine is not responsible for the

Treg-mediated suppression of vaccine-elicited CD8+ T-cell

responses.

Tregs suppression is TGFb-dependent
To determine if the suppressive effect of Tregs is mediated by

TGFb, we neutralized this cytokine with infusions of TGFb
neutralizing antibodies. We found that neutralization of TGFb
increased the vaccine-elicited CD8+ T cell immune response

compared to animals treated with an isotype-matched non-specific

control antibody (Fig. 6A). To determine whether TGFb exerts its

effects on vaccine-elicited CD8+ T cell responses through NK cells,

we treated NK function-deficient beige mice with anti-TGFb
antibodies. TGFb neutralizing antibodies had no effect on vaccine

antigen-specific CD8+ T cell immune responses in the NK

function-deficient mice (Fig. 6B). This demonstrated that TGFb
suppressed vaccine-elicited CD8+ T cell responses by inhibiting

NK cell function. To demonstrate that Tregs are the source of the

suppressive TGFb, we depleted mice of CD25+ cells and

neutralized TGFb using both antibodies at the same time. In

another control experiment we compared the SIV-Gag-specific

CD8+ T cell response in mice treated with both antibodies to

control mice treated with the anti-CD25 antibody and the TGFb
isotype control antibody. We found that both groups had similar

plasmid DNA antigen-specific CD8+ T cell immune responses (d7:

p = 0.26, d10: p = 0.1, d14: p = 0.73; 5 mice per group) suggesting

that the TGFb effect is indeed produced by the Tregs.

Discussion

Emerging data suggest that Tregs are a unique population of T

cells that maintain immune tolerance and provide negative

feedback for effector T cell immune responses [19,20,21,22].

Augmentation of the antigen-specific CD8+ T cell immune

response was reported for a plasmid DNA vaccine following

depletion of Tregs [24]. This observation provided the rationale

for investigating the cellular targets and effector mechanisms

involved in Treg-mediated suppression of plasmid DNA vaccine

efficacy.

Forty-eight hours following plasmid DNA vaccination, NK and

NKT cells migrate to the vaccine injection site [28], and an early

innate immune response is initiated, leading to an increase in

efficacy of plasmid DNA vaccination [39]. However, only NKT

cells seem to be involved in potentiating these CD8+ T cell

immune responses [40,41]. NK cells although being early at the

site of inoculation seem to have no effect on CD8+ T cell plasmid

Figure 4. Antigen-specific CD8+ T cell immune response is increased in Treg-depleted mice where NK cell compartment is intact. (A)
Flow cytometric analysis of NK cells (CD32, NK1.1+) after plasmid DNA vaccine inoculation and anti-ASGM1 antibody NK cell depletion. (B) SIV-Gag
AL11 epitope-specific CD8+ T cell responses in four groups of 5 C57BL/6 mice each to characterize the NK/Treg suppression: NK undepleted and CD25
depleted (NK+CD252), NK and CD25 depleted (NK2CD252), NK depleted and CD25 undepleted (NK2CD25+) and NK undepleted and CD25
undepleted (NK+CD25+). Anti-CD25 antibody and anti-ASGM1 antibody treatment was done 3 days prior and on the day of plasmid DNA vaccination.
Line graphs represent mean values, and error bars represent SEM. Statistically significant differences at specific times were determined by Mann-
Whitney test. Significant differences are indicated by asterisks (p,0.05).
doi:10.1371/journal.pone.0012281.g004

Tregs Block Vaccine Potency
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DNA immune responses [41,43]. We, therefore, hypothesized that

Tregs may suppress NK cell-mediated immune activation.

NKT cells and Tregs regulate each other through the release of

cytokines [25]. Our current data indicate that suppression of NKT

cells by Tregs is not the major cause for the decrease of plasmid

DNA vaccine efficacy. We found that when Tregs are depleted in

NKT KO mice, the plasmid DNA-elicited CD8+ T-cell immune

response is increased, suggesting other cell types are being

suppressed by Tregs. Nevertheless, there was a trend towards

diminished CD8+ T cell immune responses in NKT KO mice as

compared to wildtype mice after Treg depletion. Additionally,

after Treg depletion, NKT KO mice showed a more rapidly

decline of CD8+ T cell immune response than was observed for

wildtype mice. This diminished CD8+ T cell immune response

Figure 6. The antigen-specific CD8+ T cell immune response is dependent on TGFb neutralization. (A) Plasmid DNA antigen-specific CD8+

T cell immune responses after TGFb-neutralization by specific antibody (anti-TGFb) in wildtype C57BL/6 mice; control group treated with an isotype
matched antibody (isotype IgG) is also shown. (B) Plasmid DNA antigen-specific CD8+ T cell immune responses after TGFb-neutralization by specific
antibody (anti-TGFb) in beige mice; control group treated with an isotype-matched control antibody (isotype IgG) is also shown. TGFb was neutralized
via i.p. administration of anti-TGFb neutralizing antibody 3 days prior to and on the same day of vaccination. Epitope-specific CD8+ T cell responses
were measured in 5 mice per group by Db/AL11 tetramer staining of CD8+ T cells at the indicated times following plasmid DNA vaccine inoculation.
Line graphs represent mean values, and error bars represent SEM. Statistically significant differences at specific times were determined by Mann-
Whitney test. Significant differences are indicated by asterisks (p,0.05).
doi:10.1371/journal.pone.0012281.g006

Figure 5. The antigen-specific CD8+ T cell immune response is independent of IL-10 neutralization. (A) IL-10 expression in relation to
expression of the house-keeping gene GADPH in plasmid DNA vaccinated and unvaccinated mice (C57BL/6 mice). (B) T cell immune responses in
vaccinated IL-10-neutralized or isotype matched antibody-treated (isotype IgG) wildtype C57BL/6 mice treated with an anti-CD25 antibody. (C) T cell
immune responses in vaccinated IL-10-neutralized or isotype matched antibody-treated (isotype IgG) wildtype C57BL/6 mice not treated with an anti-
CD25 antibody. Epitope-specific CD8+ T cell responses were measured in 5 mice per group by Db/AL11 tetramer staining of CD8+ T cells at the
indicated times following plasmid DNA vaccine inoculation. Line graphs represent mean values, and error bars represent SEM. Statistically significant
differences at specific times were determined by Mann-Whitney test. Significant differences are indicated by asterisks (p,0.05).
doi:10.1371/journal.pone.0012281.g005

Tregs Block Vaccine Potency
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might be the result of the lack of TH1 immune support by MCP-1,

a major chemokine early released by NKT cells after plasmid

DNA inoculation and found to be important for the magnitude of

the vaccine-elicited immune response [41].

Earlier studies suggest a role for Tregs in suppressing NK cell

effector function in vitro [6]. Tregs have also been shown to

suppress NK cells in vivo by directly inhibiting NKG2D-mediated

NK cell cytotoxicity [10]. TGFb, released by Tregs, is known to

confer this suppressive effect on NK cell-mediated cytotoxicity.

This was demonstrated when infusion of anti-TGFb monoclonal

antibodies restored the NK cell-mediated cytotoxicity towards

RMA-Rae-1 tumor cells. However, neutralization of IL-10, also

released by the Tregs, did not appear to modify NK cell function

[10]. The pathological relevance of the Treg–NK cell interaction

has been evaluated in several tumor models and in patients with

cancer. Consequently, inhibition of Tregs through pharmacolog-

ical interventions is considered during NK-cell-based immuno-

therapy of cancer [44]. Our data expand on these in vivo findings

and demonstrate that NK cell functions are suppressed by Tregs

through the release of TH3 cytokine TGFb during plasmid DNA

vaccination. This inhibition of NK cell function leads to a blunting

of the CD8+ T cell immune response.

Recent studies have identified important roles for Tregs and

NK cells in the pathogenesis of biliary atresia in mice. Early after

perinatal rhesus rotavirus infection, the liver is devoid of Tregs.

Not only does this result in an absence of the Tregs’ suppressive

effect on DC-dependent activation of naive NK cells, but it also

prevents Tregs from suppressing hepatic NK cell expansion. [45].

Thus, the post-natal absence of Tregs may be a key factor that

allows hepatic DCs and NK cells act unopposed in initiating

neonatal bile duct injury. Therefore, our findings might also be the

result of DC activation after Treg depletion, resulting in a stronger

NK cell immune response, which in turn might increase the

plasmid DNA vaccine elicited CD8+ T cell immune response.

CpG motifs augment DNA vaccine potency by induction of

MCP-1 secretion [28]. Toll-like receptor (TLR) ligands are

notable for their ability to induce antigen presenting cells (APC)

maturation, which in turn facilitates optimal T cell mediated

immune responses. TLR ligands, such as the CpG motifs, can also

modulate immune responses by blocking the suppressive effects of

Tregs through direct MyD88-dependent costimulation of effector

CD4+ T cells, leading to enhanced IL-2 production [46]. These

augmented CD4+ T cell immune responses might then increase

plasmid DNA vaccine potency; a phenomenon described earlier

[43].

In summary, our data indicate a crucial function for Tregs in

blocking plasmid DNA-elicited immune responses. Additionally,

we demonstrate that these responses can be potentiated by Treg

depletion or TGFb neutralization, greatly enhancing the efficacy

of the plasmid DNA vaccine modality. Potent plasmid DNA

vaccine vectors are necessary in vaccine regiments because they

elicit no immune responses against their backbone, as can be the

case with viral vectors. Unwanted immune responses, therefore,

are minimized. As a result of our findings, strategies may be

developed that improve the immune response to plasmid DNA

vaccination. Such strategies might include a step in which Tregs

are depleted at the site of inoculation by chemicals or depleting

antibodies.
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