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Abstract 

Background: Lymph node metastasis is usually detected based on the images obtained from clinical examinations. 
Detecting lymph node metastasis from clinical examinations is a direct way of diagnosing metastasis, but the diagno-
sis is done after lymph node metastasis occurs.

Results: We developed a new method for predicting lymph node metastasis based on differential correlations of 
miRNA-mediated RNA interactions in cancer. The types of RNAs considered in this study include mRNAs, lncRNAs, 
miRNAs, and pseudogenes. We constructed cancer patient-specific networks of miRNA mediated RNA interactions 
and identified key miRNA–RNA pairs from the network. A prediction model using differential correlations of the 
miRNA–RNA pairs of a patient as features showed a much higher performance than other methods which use gene 
expression data. The key miRNA–RNA pairs were also powerful in predicting prognosis of an individual patient in 
several types of cancer.

Conclusions: Differential correlations of miRNA–RNA pairs identified from patient-specific networks of miRNA medi-
ated RNA interactions are powerful in predicting lymph node metastasis in cancer patients. The key miRNA–RNA pairs 
were also powerful in predicting prognosis of an individual patient of solid cancer.
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Background
The spread of cancer cells from the original (primary) 
tumor to another part of the body is called metasta-
sis. During metastasis, cancer cells travel to other areas 
through either the bloodstream or the lymph system. As 
one of the steps of tumor metastasis, lymph node metas-
tasis is commonly observed in cancer patients. Lymph 
node metastasis itself does not directly endanger the 

life of patients, but malignant tumors can metastasize 
to other parts of the body through lymph node metasta-
sis [1]. Many studies have reported that the prognosis of 
patients with lymph node metastasis is worse than that of 
patients without lymph node metastasis [2]. Lymph node 
metastasis is also an important factor in determining 
effective treatment options for cancer patients.

Lymph node metastasis is usually detected based 
on the images obtained from clinical examinations. 
Recently deep learning methods such as convolutional 
neural networks (CNN) have been used to help clini-
cians detect lymph node metastasis in ultrasound images 
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[3–5]. Detecting lymph node metastasis from ultrasound 
images is a direct and accurate way of diagnosing metas-
tasis, but the diagnosis is often done after metastasis 
occurs.

Several studies have reported abnormal gene expres-
sion in the process of lymph node metastasis [6]. For 
example, the study of Okugawa et  al. [7] suggested that 
the expression of KiSS1 is closely related to lymph node 
metastasis in colorectal cancer. Zhang et al. [8] predicted 
lymph node metastasis using differentially expressed 
mRNAs and noncoding RNAs. Dihge et  al. predicted 
lymph node metastasis using gene expressions combined 
with clinicopathological characteristics [9].

Expression data of mRNAs and noncoding RNAs are 
valuable resources for studying and predicting lymph 
node metastasis. But, cancer is a complex and hetero-
geneous disease, so abnormal expression of individual 
genes cannot fully explain the development and metasta-
sis of cancer. The development and metastasis of cancer 
is better explained by the dysregulation of gene interac-
tions rather than by individual genes alone. For exam-
ple, AKT1 is abnormally expressed in many types of 
cancer and the up-regulation of AKT1 has been known 
to be related to lymph node metastasis. But, recent stud-
ies found that miR-138 binding to AKT1 regulates the 
expression of AKT1 in tongue squamous cell carcinoma 
[10]. miR-519d inhibits lymph node metastasis by regu-
lating MMP3 in oral squamous cell carcinoma and breast 
cancer [11, 12].

Salmena et  al. [13] proposed a new gene regula-
tion known as competitive endogenous RNA (ceRNA) 
hypothesis. The ceRNA hypothesis suggests that RNAs 
with similar miRNA response elements compete to bind 
to the same miRNA, thereby regulate each other indi-
rectly. Motivated by the increasing evidence support-
ing the hypothesis, several computational methods have 
been developed to construct a network of ceRNAs [14, 
15]. Most of the methods focused on mRNAs or lncR-
NAs only as ceRNAs and did not consider pseudogenes 
when constructing ceRNA networks.

In this study, we propose a new method for predicting 
lymph node metastasis based on differential correlations 
of miRNA-mediated RNA interactions in cancer. The 
types of RNAs considered in this study include mRNAs, 
lncRNAs, miRNAs, and pseudogenes. We constructed 
cancer patient-specific networks of miRNA mediated 
RNA interactions, and identified key miRNA–RNA 
interactions from the networks. We built a model using 
the correlations of the miRNA–RNA pairs as features for 
predicting lymph node metastasis. The model showed a 
much higher performance than other methods which 
use gene expressions alone. The key miRNA–RNA pairs 
were also powerful in predicting prognosis of individual 

patients in several types of cancer. The rest of this paper 
presents the method and the experimental results in sev-
eral types of cancer.

Results
Prediction of lymph node metastasis
Using the �PCCs of miRNA–RNA pairs obtained in 
our study, we predicted lymph node metastasis using 
the stacking model and base models (SVM and logistic 
regression) in seven types of cancer. As expected, the 
stacking model showed the better performance than the 
other models both in cross-validation and in independ-
ent testing (Additional file 1).

We compared the performance of stacking models 
using two different types of features: �PCC of miRNA–
RNA pairs and RNA expression. �PCC of miRNA–RNA 
pairs was computed by equation  4 in the Methods sec-
tion. For RNA expression feature, we used the RNAs with 
a p-value < 0.01 both in differential analysis between 
normal samples and tumor samples and in additional dif-
ferential analysis between lymph node metastasis sam-
ples and non-metastatic samples. The performance of 
the stacking models was evaluated by fivefold cross-val-
idation and independent testing using several measures: 
sensitivity, specificity, accuracy, positive predictive value 
(PPV), negative predictive value (NPV) and area under 
curve (AUC).

Tables 1 and 2 show the performance of two stacking 
models in the fivefold cross validation and in the inde-
pendent testing, respectively. The stacking models with 
�PCCs as features showed a better performance than 
those with RNA expressions both in the fivefold cross 
validation and in independent testing, except for thyroid 
cancer (THCA) in independent testing. These results 
indicate that �PCC of miRNA–RNA pairs is a more pow-
erful feature than the gene expression level in predict-
ing lymph node metastasis, which in turn supports that 
lymph node metastasis is associated with dysregulation 
of gene interactions rather than individual genes, as men-
tioned in the Background section.

We also compared the performance of our method 
with that of Zhang’s method [8] using the same data 
sets and the same SVM model. Among the seven types 
of cancer used in our study, comparison was made for 
four types of cancer because the four cancer types are 
common to both studies. The train_score and test_score 
in Table 3 were obtained using the scikit-learn package, 
which was used by Zhang’s study. In all cancer types used 
in comparison, our model which used �PCCs as features 
was better than the four SVM models of Zhang’s method, 
which used the expression levels of mRNAs, miRNAs and 
lncRNAs separately. These results also demonstrate that 
�PCCs of miRNA–RNA pairs are much more powerful 
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features than expression data of RNAs when predicting 
lymph node metastasis.

Overall survival of cancer patients
We analyzed the overall survival of cancer patients 
by performing a log-rank test with respect to �PCCs 

of miRNA–RNA pairs obtained in this study. Table  4 
shows top three miRNA–RNA pairs with the smallest 
p-value from the log-rank test in each type of cancer. 
The remaining miRNA–RNA pairs with p-value less 
than 0.01 are available in Additional file 2.

Table 1 Performance of the prediction model with different types of features in the fivefold cross validation

In comparison of two types of features (RNA expression vs. deltaPCC), the better performances are shown in bold

In all cancer types, prediction with �PCCs showed a better performance than that with RNA expression levels

PC, principal component; SN, sensitivity; SP, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; EXP, 
RNA expression level

Cancer Feature #Features #PCs SN SP ACC PPV NPV AUC 

BRCA EXP 5119 430 0.674 0.709 0.692 0.694 0.689 0.691

�PCC 1563 480 0.773 0.806 0.790 0.796 0.784 0.789
COAD EXP 835 100 0.360 0.935 0.758 0.711 0.767 0.647

�PCC 1969 80 0.760 0.965 0.902 0.905 0.901 0.862
HNSC EXP 292 10 0.750 0.684 0.720 0.739 0.696 0.717

�PCC 800 100 0.956 0.877 0.920 0.903 0.943 0.917
LUAD EXP 6193 110 0.477 0.882 0.741 0.683 0.759 0.679

�PCC 12,981 200 0.593 0.944 0.822 0.850 0.813 0.769
LUSC EXP 1371 190 0.644 0.867 0.786 0.736 0.809 0.756

�PCC 2436 200 0.875 0.934 0.912 0.884 0.929 0.904
STAD EXP 476 120 0.905 0.472 0.763 0.778 0.708 0.688

�PCC 17,445 60 0.973 0.903 0.950 0.953 0.942 0.938
THCA EXP 4205 30 0.663 0.663 0.663 0.634 0.691 0.663

�PCC 3397 150 0.674 0.723 0.700 0.682 0.716 0.698

Table 2 Performance of the prediction model with different types of features in an independent testing

In comparison of two types of features (RNA expression vs. deltaPCC), the better performances are shown in bold

In all cancer types except thyroid cancer (THCA), prediction with �PCCs showed a better performance than that with RNA expression levels

PC, principal component; SN, sensitivity; SP, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; EXP, 
RNA expression level

Cancer Feature #Features #PCs SN SP ACC PPV NPV AUC 

BRCA EXP 5119 430 0.664 0.710 0.688 0.690 0.685 0.687

�PCC 1563 480 0.776 0.826 0.802 0.813 0.792 0.801
COAD EXP 835 100 0.563 0.932 0.819 0.783 0.829 0.747

�PCC 1969 80 0.906 0.986 0.962 0.967 0.960 0.946
HNSC EXP 292 10 0.867 0.792 0.833 0.839 0.826 0.829

�PCC 800 100 0.967 0.792 0.889 0.853 0.950 0.879
LUAD EXP 6193 110 0.622 0.943 0.832 0.852 0.825 0.782

�PCC 12,981 200 0.784 0.971 0.907 0.936 0.895 0.878
LUSC EXP 1371 190 0.533 0.808 0.707 0.615 0.750 0.671

�PCC 2436 200 0.889 0.962 0.935 0.930 0.938 0.925
STAD EXP 476 120 0.937 0.452 0.777 0.776 0.778 0.694

�PCC 17,445 60 0.905 0.968 0.926 0.983 0.833 0.936
THCA EXP 4205 30 0.737 0.796 0.768 0.757 0.778 0.766

�PCC 3397 150 0.658 0.864 0.768 0.807 0.745 0.761
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As shown in Table 4, the p-values from the log-rank 
test with �PCC are much smaller than those with indi-
vidual RNAs involved in the miRNA–RNA pairs. Three 
pseudogenes (RPL26P29, PNLIPRP2, and CSAG4) are 
included in the top three miRNA–RNA pairs with the 
smallest p-value (Table 4), and several miRNA-pseudo-
gene pairs were found as potential prognostic pairs for 
all 7 types of cancer (Additional file 2).

Figure  1 compares the overall survival rates of two 
groups of patients with respect to �PCC of miRNA–
RNA pairs in 7 types of cancer. In all 7 types of cancer, 
�PCCs of miRNA–RNA pairs were powerful in predict-
ing the survival rates of patients. For comparative pur-
poses, Fig. 2 shows the overall survival rates of patients 
of BRCA, COAD and LUAD with respect to RNA expres-
sions instead of �PCC of miRNA–RNA pairs. The RNAs 
involved in the miRNA–RNA pairs of Fig.  1 (miR-26b_
AC079414.1 pair for BRCA, miR-604_AL162426.1 pair 
for COAD, and miR-581_LINC00628 for LUAD) were 
selected for the comparison. None of the individual 
RNAs involved in the pairs showed predictive power 
of the survival rates of cancer patients, whereas the 
miRNA–RNA pairs were very powerful in predicting the 
survival rates of patients as demonstrated in Fig. 1.

ceRNA networks
For every tumor sample in Table  5, we constructed a 
ceRNA network and derived �PCC of miRNA–RNA 
pairs from the network. We then constructed ceRNA 
networks with the miRNA–RNA pairs. Figure 3 shows a 
ceRNA network composed of all miRNA–RNA pairs for 
breast invasive carcinoma (BRCA). The network includes 
1563 miRNA–RNA interactions among 119 miRNAs, 
423 lncRNAs, 380 mRNAs and 252 pseudogenes. The 
small network centered at miR-149 is a blowup of the 
subnetwork enclosed by a red box.

miR-149 is a miRNA that interacts with ceRNAs most 
frequently in the ceRNA network. miR-149 is known 
to promote metastasis in breast cancer when it is down 
regulated [16]. The ceRNA network also contains several 
genes associated with breast cancer. For instance, muta-
tions in ERBB4 have been known to be associated with 
breast cancer [17]. Overexpression of YWHAE increases 
the proliferation, migration and invasion ability of breast 
cancer cells [18]. KAT6A promotes SMAD3 binding to 
oncogenic chromatin modifier TRIM24 and disrupts its 
interaction with the tumor suppressor TRIM33, which 
lead to the tumor cell metastasis in breast cancer [19].

As an example of patient-specific networks, Fig.  4 
shows the ceRNA networks specific to two LUAD 
patients with different �PCCs of the miR-581_
LINC00628 pair. Figure  4A is a ceRNA network for a 
LUAD patient (sample ID: TCGA-44-7670) with a high 
�PCC group of the pair, whereas Fig.  4B is a ceRNA 
network for a LUAD patient (TCGA-NJ-A55O) with 
a low �PCC group of the same pair. The network in 
Fig. 4A is composed of 210 miRNA–RNA pairs among 
29 miRNAs, 77 lncRNAs, 47 mRNAs and 38 pseudo-
genes, and the network in Fig.  4B is composed of 111 
miRNA–RNA pairs among 5 miRNAs, 53 lncRNAs, 30 
mRNAs and 19 pseudogenes.

Apparently, the network in Fig.  4A includes more 
RNAs and interactions among them than that in 
Fig. 4B. As shown earlier in Fig. 1, patients with a high 
�PCC of the miR-581_LINC00628 pair have a much 
lower survival rate than those with a low �PCC of the 
pair. Similar observations were made in the other types 
of cancer.

Discussion
The result of our work showed that �PCCs of miRNA–
RNA pairs derived from patient-specific ceRNA net-
works are more powerful than the expression levels of 
individual RNAs in predicting lymph node metastasis. 
This is related with dysregulated ceRNA interactions in 
cancer [20]. For instance, miR-125b may induce breast 
cancer metastasis by binding to STARD13 [21]. HOXD-
AS1 prevents miR-130a-3p mediated degradation of 

Table 3 Comparison of the performance of our SVM model with 
that of Zhang’s SVM model [8]

In comparison of two types of features (RNA expression vs. deltaPCC), the better 
performances are shown in bold

Among the seven types of cancer used in our study, comparison was made in 
four types of cancer because they are the only common cancer types in both 
studies. The train_score and test_score were obtained using the scikit-learn 
package, which was used by Zhang’s study. In all four caner types, our model 
showed the better performance in both training and testing. our model_�PCC: 
SVM model using �PCCs as features. Zhang_X: SVM model using the expression 
levels of RNA type X as features

Cancer Method_feature Train_score Test_score

BRCA Our model_�PCC 0.972 0.787
Zhang_mRNA 0.798 0.680

Zhang_miRNA 0.764 0.737

Zhang_lncRNA 0.793 0.696

COAD Our model_�PCC 0.984 0.905
Zhang_mRNA 0.849 0.871

Zhang_miRNA 0.902 0.886

Zhang_lncRNA 0.869 0.871

LUAD Our model_�PCC 0.996 0.850
Zhang_mRNA 0.808 0.849

Zhang_miRNA 0.885 0.795

Zhang_lncRNA 0.798 0.849

LUSC Our model_�PCC 0.999 0.904
Zhang_mRNA 0.871 0.900

Zhang_miRNA 0.939 0.847

Zhang_lncRNA 0.861 0.900
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SOX4 through competitive binding to miR-130a-3p, 
thereby promoting hepatocellular carcinoma trans-
fer [22]. MT1JP regulates gastric cancer progression by 
binding to miR-92a-3p competitively with FBXW7 [23].

Unlike other studies on ceRNA interactions, our study 
considered pseudogenes as well as mRNAs and lncRNAs 
as ceRNAs. Pseudogenes were previously considered as 
genomic junk and neglected in the studies on ceRNA 
interactions as well. However, several experimental evi-
dences suggested that pseudogenes can act as ceRNAs 
in the development of disease [24–26]. For instance, 
Karreth et  al. [27] demonstrated that the pseudogene 
BRAFP1 functions as a ceRNA and induces lymphoma 
in  vivo. Overexpression of the oncogenic pseudogene 
BRAFP1 promotes the formation of human B-cell lym-
phomas through serving as a ceRNA of the parental gene 
BRAF [28]. In prostate cancer, the pseudogene PTENP1 
functions as a ceRNA to regulate PTEN expression by 

sponging miR-499-5p [29]. Straniero et  al. [30] demon-
strated that the pseudogene GBAP1 can function as a 
ceRNA for the glucocerebrosidase gene GBA by spong-
ing miR-22-3p, thus revealing a new regulatory network 
in the pathogenesis of Parkinson’s Disease.

There are limitations in our current work. A patient-
specific ceRNA network consists of miRNA–RNA pairs 
with significant changes from other patients by includ-
ing miRNA–RNA pairs whose |�PCC| is larger than the 
median |�PCC| of all tumor samples of the same type. 
Since we used |�PCC| instead of �PCC, a patient-spe-
cific network does not show the direction of change (i.e., 
increase or decrease) in PCC. In the future, we plan to 
come up with a better way of presenting such informa-
tion in a patient-specific network. Another direction of 
future work is to improve the performance of the predic-
tion model further, in particular for thyroid carcinoma.

Fig. 1 Overall survival rates of patients with respect to � PCCs of miRNA–RNA pairs in 7 cancer types. �PCCs of miRNA–RNA pairs are predictive 
of the survival rates of patients in all 7 types of cancer
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Fig. 2 Overall survival rates of patients with respect to expressions of individual RNAs in Fig.  1. In contrast to the miRNA–RNA pairs, none of the 
individual RNAs showed predictive power of the survival rates of cancer patients
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Conclusion
The spread of tumors has always been a difficulty in 
tumor treatment, especially large-scale spread, which 
greatly reduces the survival rate of patients. Lymph node 
metastasis is the first step in the spread of many tumors. 
Therefore, predicting lymph node metastasis can make 
medical interventions in advance and reduce the risk of 
large-scale spread.

In this study, we constructed ceRNA networks for 7 
types of solid cancer. Unlike other ceRNA networks, our 
ceRNA networks include pseudogenes as well as mRNA 
and lncRNAs. From the miRNA–RNA pairs in the 

ceRNA networks, we built a prediction model of lymph 
node metastasis in tumor samples.

Experimental results of the prediction model showed 
that �PCCs of miRNA–RNA pairs from ceRNA networks 
are powerful for predicting lymph node metastasis in 
tumor samples. Comparison of our method with the fea-
tures of other methods using the same data sets showed 
that �PCCs of miRNA–RNA pairs are much more pow-
erful than gene expression levels in predicting lymph 
node metastasis of cancer patients. Some miRNA–RNA 
pairs were also powerful in predicting prognosis of indi-
vidual patients. Our work is preliminary and requires fur-
ther investigation for clinical use. However, this approach 
will help characterize individual cancer patients and pre-
dict the occurrence of lymph node metastasis in advance.

Methods
The overall workflow of our method is shown in Fig.  5. 
It shows data collection, data filtering, data processing, 
generation of miRNA–RNA gene pairs, and construc-
tion of a prediction model and patient-specific ceRNA 
network.

Data collection
We collected gene expression profiles of lncRNAs, mRNAs, 
pseudogenes, and miRNAs and clinical profiles from The 

Table 4 Comparison of p-values from the log-rank test with miRNA–RNA pair, and individual RNA and miRNA involved in the pair

Cancer miRNA–RNA pair Type of RNA in the pair P-value of miRNA–
RNA pair

P-value of miRNA P-value of RNA

BRCA miR-26b_AC079414.1 lncRNA 2.270E−05 9.203E−01 5.896E−01

miR-3192_PPDPFL mRNA 6.320E−05 1.351E−03 1.346E−02

miR-3192_AC013549.3 lncRNA .260E−04 5.028E−01 1.346E−02

COAD miR-604_AL162426.1 lncRNA 1.869E−04 4.365E−01 6.730E−01

miR-3679_RPL26P29 Pseudogene 3.122E−04 1.315E−02 8.171E−01

miR-6835_AC037459.2 lncRNA 7.746E−04 9.815E−01 2.938E−02

HNSC miR-4539_KRTAP10-2 mRNA 1.849E−04 3.033E−01 1.629E−03

miR-6730_LINC01435 lncRNA 9.783E−04 1.038E−02 3.211E−03

miR-5195_AL390067.1 lncRNA 1.070E−03 8.716E−02 3.435E−02

LUAD miR-581_LINC00628 lncRNA 4.719E−07 1.925E−02 8.736E−01

miR-7848_AC087588.2 lncRNA 2.220E−06 1.750E−05 7.506E−01

miR-3680-1_AL138789.1 lncRNA 1.300E−05 2.386E−02 5.371E−01

LUSC miR-548z_PNLIPRP2 Pseudogene 1.175E−04 3.178E−01 6.640E−04

miR-3972_CSAG4 Pseudogene 1.485E−04 5.168E−01 4.740E−01

miR-146b_PHETA2 mRNA 1.488E−04 4.779E−02 2.760E−01

STAD miR-604_OLFML3 mRNA 1.000E−05 4.787E−02 4.921E−01

miR-554_OR10A5 mRNA 4.040E−05 4.727E−03 5.852E−02

miR-149_OR10A5 mRNA 1.689E−04 4.727E−03 8.850E−01

THCA miR-5685_GADD45A mRNA 3.489E−03 7.915E−01 2.587E−01

miR-6784_AC093281.2 lncRNA 3.762E−03 5.934E−01 5.559E−02

miR-8071-2_CFB mRNA 3.991E−03 1.392E−02 9.494E−01

Table 5 The number of normal samples, tumor samples, tumor 
samples with lymph node metastasis, and tumor samples 
without lymph node metastasis in seven types of cancer

Cancer #Normal 
samples

#Tumor samples #Lymph node 
metastasis

#Non-
metastasis

BRCA 113 1102 447 457

COAD 41 478 107 242

HNSC 44 500 98 81

LUAD 59 533 123 231

LUSC 49 502 149 259

STAD 32 375 210 103

THCA 58 502 127 145
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Fig. 3 ceRNA network for breast invasive carcinoma (BRCA). The network is composed of 1563 miRNA–RNA interactions among 119 miRNAs, 423 
lncRNAs, 380 mRNAs and 252 pseudogenes. The small network centered at miR-149 is a blowup of the subnetwork enclosed by a red box
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Cancer Genome Atlas (TCGA) data portal [31] for primary 
tumor samples of all solid cancer types. Normal samples 
of each type of cancer were also obtained from the TCGA 
data portal. All the gene expression profiles used in this 
study were obtained by RNA-sequencing (RNA-seq).

In TCGA, there were 18 types of solid cancer which 
have at least 200 samples. Among the 18 types, 6 types 
were excluded due to insufficient data on lymph node 
metastasis in their tumor samples. In the remaining 
12 types of solid cancer, we selected the types which 
have at least 30 normal samples and 50 tumor samples 
with lymph node metastasis. Only 7 types of solid can-
cer satisfied such criteria: breast invasive carcinoma 
(BRCA), colon adenocarcinoma (COAD), head and 
neck squamous cell carcinoma (HNSC), lung adeno-
carcinoma (LUAD), lung squamous cell carcinoma 
(LUSC), stomach adenocarcinoma (STAD) and thyroid 
carcinoma (THCA).

The clinical profiles of the TCGA data includes the 
Tumor, Node, Metastasis (TNM) stage of samples. 
Samples with an M stage of 1 were excluded because 

distant organ metastasis often coexists with lymph 
node metastasis and makes the evaluation of predic-
tion difficult. Based on the TNM staging system, we 
clustered the tumor samples into those with lymph 
node metastasis and and those without lymph node 
metastasis.

• Samples with lymph node metastasis: tumor samples 
with T stage of 1–4, N stage of 1–3, and M stage of 0

• Samples without lymph node metastasis: tumor sam-
ples with T stage of 1–4, N stage of 0, and M stage of 
0

Table  5 shows the number of normal samples, tumor 
samples, tumor samples with lymph node metastasis, and 
tumor samples without lymph node metastasis in 7 types 
of cancer. The TCGA barcodes of all normal samples 
and tumor samples of Table 5 are provided as Additional 
file 3. The TCGA barcode is the primary identifier of bio-
specimen data in the TCGA project.

Fig. 4 Subnetworks of patient-specific ceRNA networks for two LUAD patients. A LUAD patient (TCGA-44-7670) with a high �PCC of the miR-581_
LINC00628 pair. B LUAD patient (TCGA-NJ-A55O) with a low �PCC of the miR-581_LINC00628 pair. The RNAs involved in the three miRNA–RNA pairs 
of Table 4 are marked by red boxes. For clarity, subnetworks of the three miRNA–RNA pairs are displayed
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Fig. 5 The overview of the overall workflow. There are three types of samples: normal samples (gray), tumor samples without lymph node 
metastasis (sky blue) and tumor samples with lymph node metastasis (pink). In our prediction model, tumor samples with lymph node metastasis 
(pink) and tumor samples without lymph node metastasis (sky blue) are treated as positive and negative instances, respectively
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Gene filtering
The gene names of the TCGA data are represented by 
Ensembl ID. Thus, we obtained the annotation files from 
the Ensembl project [32] and determined the names and 
biotypes of the genes (mRNAs, lncRNAs, pseudogenes 
and miRNAs). Table  6 shows the number of genes and 
their types.

We filtered out genes with an average count below 1. 
In RNA-seq data, counts are non-negative integer val-
ues. The count of unexpressed genes is 0, so the count 
of expressed genes is at least 1. Since the genes with the 
average count < 1 are unexpressed genes in most sam-
ples, we removed them. We then normalized the RNA-
seq data of the genes using the trimmed mean of M 
values (TMM) method [33].

Deriving miRNA–RNA pairs and feature selection
As mentioned earlier, any of lncRNAs, mRNAs, and 
pseudogenes with common miRNA response elements 
compete to bind to the same miRNA, so can act as com-
petitive endogenous RNAs (ceRNAs). To obtain initial 
miRNA–RNA pairs we computed the maximal informa-
tion coefficient (MIC) [34] of each miRNA with ceRNA 
candidates, which include mRNAs, lncRNAs, and pseu-
dogenes. The overall workflow of our method for deriv-
ing miRNA–RNA pairs, selecting features and building a 
model can be summarized as follows: 

1. Given RNA-seq gene expression data of miRNAs and 
ceRNAs (mRNAs, lncRNAs and pseudogenes), com-
pute MIC of miRNA–RNA pairs in tumor samples 
and normal samples.

2. Select those miRNA–RNA pairs with MIC ≥ 0.5 in 
tumor samples or normal samples, and remove the 
remaining miRNA–RNA pairs.

3. Compute the Pearson correlation coefficient (PCC) 
of each miRNA–RNA pair in normal samples.

4. Recompute PCC in normal samples perturbed by a 
single tumor sample.

5. Compute the difference in PCC ( �PCC) between the 
normal samples and perturbed samples.

6. Select miRNA–RNA pairs with a p-value  < 0.01 
in the Wilcox test based on �PCC, and remove the 
remaining pairs.

7. Reduce the dimension of feature vectors by the prin-
cipal component analysis (PCA) of �PCCs.

Our approach to predicting lymph node metastasis is 
based on the differential correlations of miRNA–RNA 
interactions of a sample from normal samples. To obtain 
the differential correlations of miRNA–RNA interactions 
of a sample, we first selected miRNA–RNA interactions 
with the maximal information coefficient (MIC). Pear-
son correlation coefficient (PCC) is the most commonly 
used for gene association. However, we used MIC instead 
of PCC to select potential miRNA–RNA pairs for a few 
reasons: (1) PCC can measure linear association only, but 
MIC measures linear or non-linear association between 
two variables. (2) MIC is less susceptible to outliers than 
PCC.

RNAs of the miRNA–RNA pairs are scattered into the 
two-dimensional space, which is divided into nX × nY  
bins in the X and Y axes, Here X denotes the expression 
level of miRNA and Y denotes the expression level of 
any one of mRNA, lncRNA, or pseudogene in the pairs. 
Based on the number of scattered points in each bin, we 
calculate the mutual information I(X, Y) by Eq.  (1). This 
process is repeated until the largest mutual information 
is obtained as the MIC (Eq. 2).

where X: miRNA; Y: mRNA, lncRNA, or pseudogene

The parameter B of MIC controls how much of the char-
acteristic matrix we search over. Setting B too high can 
lead to non-zero scores even for random data, while set-
ting B too low results in searching only for simple pat-
terns [34]. we used the default setting for B, the 0.6th 
power of the number of samples, because the default set-
ting is known to work well in practice [34].

Unlike the parameter B, there is no default setting for 
MIC. When selecting miRNA–RNA pairs for analysis, 
the threshold for MIC was set to 0.5, which is the median 
of its range [0, 1]. Setting the threshold of MIC smaller 
than 0.5 results in more miRNA–RNA pairs, which will 
contain a large number of spurious pairs. In contrast, 
with a larger threshold, we may miss potential prognostic 
gene pairs.

(1)I(X ,Y ) =
∑

X ,Y

p(X ,Y ) log2
p(X ,Y )

p(X)p(Y )

(2)MIC(X ,Y ) = max
nX∗nY<B

I(X ,Y )

log2 min(nX , nY )

Table 6 The number of RNAs of four biotypes in each cancer 
type studied in this study

Cancer #miRNAs #mRNAs #lncRNAs #pseudogenes

BRCA 165 18,084 8553 5528

COAD 157 17,573 7284 5304

HNSC 95 18,018 7427 4643

LUAD 197 18,054 8755 5954

LUSC 161 18,227 8706 5680

STAD 379 18,617 10,354 9039

THCA 153 17,568 7342 4753
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MICs of miRNA–RNA pairs were computed sepa-
rately in tumor samples and normal samples because the 
association strength of miRNAs and ceRNAs are differ-
ent between tumor and normal samples. Those miRNA–
RNA pairs MIC < 0.5 in normal samples and tumor 
samples were removed because their association is not 
strong enough to be included in a ceRNA network.

We constructed a ceRNA network by subtracting a 
reference network for a group of normal samples from 
a perturbed network with a single tumor sample. Thus, 
each edge in the patient-specific network represents a 
differential PCC ( �PCC) of miRNA–RNA pair between 
a single tumor sample and a group of normal samples. 
MIC was not used at this stage because �MIC does not 
make sense by its definition and �PCC is more suitable 
for quantifying the perturbation by a single sample.

where n: number of samples; X: miRNA; Y: mRNA, 
lncRNA, or pseudogene

Every edge of a ceRNA network represents �PCC of a 
miRNA–RNA pair, which is obtained by the following 
procedure: 

1. Compute PCC of every miRNA–RNA pair in n nor-
mal samples.

2. Recompute PCC in n+ 1 samples which include n 
normal samples and a single tumor sample.

3. Compute differential PCCs ( �PCCs) between nor-
mal samples and the tumor sample.

We divided the �PCCs of miRNA–RNA pairs into 2 
groups, lymph node metastasis and non-metastasis, and 
performed the Wilcox test [35] in the two groups. We 
selected miRNA–RNA pairs with a p-value less than 0.01 
in the Wilcox test. We reduced the number of miRNA–
RNA pairs further by PCA. Table 7 shows the number of 
miRNA–RNA pairs left after each filtering process.

Construction of a prediction model
A model for predicting lymph node metastasis in tumor 
samples was built using an ensemble learning method. 
There are several ensemble learning methods such as 
bagging, boosting and stacking [36, 37]. Stacking is 
known to have higher prediction accuracy, yet lower risk 
of overfitting than bagging and boosting [38–40].

We selected support vector machine (SVM) and logistic 
regression (LR) as base models and combined them using 

(3)

PCC(X ,Y ) =

∑n
i=1 (Xi − X̄)(Yi − Ȳ )

√

∑n
i=1 (Xi − X̄)2

∑N
i=1 (Yi − Ȳ )2

(4)�PCC(X ,Y ) = PCCn+1(X ,Y )− PCCn(X ,Y )

stacking ensemble learning in the scikit-learn library [41]. 
We first trained the SVM model and LR model (base learn-
ers) with the original training set. We then used their pre-
diction results as features to train a secondary learner. We 
used LR as the secondary classifier, which is the default 
classifier in the library. Stacking integrates the prediction 
results of the base learners in the best way through the sec-
ondary learner.

The tumor samples obtained from TCGA were divided 
into training and test sets with the ratio of 7:3. The param-
eters of the prediction model were determined by the grid 
search in the training set. When training and validating the 
prediction model, tumor samples with lymph node metas-
tasis were considered as positive instances, and tumor sam-
ples without lymph node metastasis were considered as 
negative instances.

Construction of a ceRNA network
For each type of cancer, we constructed a ceRNA network 
with the miRNA–RNA pairs obtained by the Wilcox test. 
A node of the ceRNA network represents one of miRNA, 
mRNA, lncRNA or pseudogene, and an edge represents 
the interaction of miRNA with other RNAs.

The patient-specific ceRNA network is a sub-network of 
the ceRNA network. For each miRNA–RNA pair, we com-
puted the median of the absolute value of �PCC (i.e., |�
PCC|) of the pair in all tumor samples of the same cancer 
type. A patient-specific ceRNA network was constructed 
by selecting the miRNA–RNA pairs whose |�PCC| is larger 
than the median |�PCC|. Thus, the edges in a patient-spe-
cific ceRNA network represent the miRNA–RNA interac-
tions which show a significant change from other patients 
of the same cancer type.

Table 7 The number of features left after each filtering process. 
miRNA–RNA pairs with MIC < 0.5 both in normal samples and 
tumor samples were removed by MIC filtering

The miRNA–RNA pairs with a p-value ≥ 0.01 were removed by the Wilcox test. 
The number of features was further reduced after dimension reduction by PCA 
of �PCCs. In both MIC filtering and the Wilcox test, each feature represents a 
miRNA–RNA pair, In PCA, the number of features indicates the dimension of a 
feature vector

Cancer #Features after #Features after #Features after
MIC filtering Wilcox test PCA

BRCA 90,837 1563 480

COAD 178,973 1969 80

HNSC 67,020 800 100

LUAD 341,146 12,981 200

LUSC 165,765 2436 200

STAD 976,763 17,445 60

THCA 38,077 3397 150
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