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Postoperative cognitive dysfunction (POCD) is a kind of serious neurologic complications and dexmedetomidine has a certain
effect on POCD. However, functional mechanism of dexmedetomidine on POCD still remains unclear, so the research mainly
studied the effect of dexmedetomidine on cognitive function and protein expression in hippocampus and prefrontal cortex
cerebrospinal fluid after extracorporeal circulation operation in aged rats. We Found that, compared with POCD group, the
cognitive function was improved in POCD+Dex group.We speculate that dexmedetomidine could improve the cognitive function
after extracorporeal circulation operation in aged rats and A𝛽, p-Tau, and PSD95 protein might have contributed to this favorable
outcome.

1. Introduction

Postoperative cognitive dysfunction (POCD) is a kind of
neurologic complications, characterized by impaired mem-
ory, learning difficulty, and focus ability for several weeks or
even longer clinically [1]. POCD is associated with early exit
from the work force, decreased quality of life, and premature
mortality [1, 2]. It is reported that approximately 6% of adult
patients developed POCD within 3 months after surgery,
while elderly patients with POCD can reach 13% [2]. In the
United States, elderly patients account for more than 40%
of the total surgery. Hence, with the arrival of an aging
society, POCD will become a main concern after surgery [3].
However, there were only few hypotheses on the mechanism
of POCD, including inflammation, central cholinergic system
dysfunction, and neuronal apoptosis. Therefore, it is very

necessary and meaningful to further explore the mechanism
of POCD to find therapeutic clues for the treatment of POCD.

Dexmedetomidine is a highly selective alpha-2 adrenergic
receptor agonist, with the efficacy of sedation, analgesia,
and sympathetic blocking [4]. It can also reduce the stress
response and activate cholinergic anti-inflammatory path-
way [5]. Moreover, it can also reduce catecholamine levels,
improve cerebral oxygen supply and blood perfusion in
ischemic area, and play a critical role in neural protection
[6, 7]. Recently, some studies also have supported that when
POCD occurred, treatment with dexmedetomidine could
relieve the behavior of POCD through protecting neuronal
function [8, 9]. However, the functional mechanism of this
favorable outcome still remains unclear.

Therefore, in this study, we established the animal model
of POCD in aged rats through extracorporeal circulation
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surgery, to investigate the effect and possible mechanism of
dexmedetomidine on cognitive function.

2. Materials and Methods

2.1. Animals, Grouping, and Model Establishment. All of the
animal experiments were approved by the Animal Care and
Use Committee of Southwest Medical University and were
performed in according to the guidelines established by the
Chinese Association for Laboratory Animal Sciences. 90
Sprague-Dawley aged rats, aged 18∼20 months, weight 400∼
550 g, were purchased from and kept in Animal Centre of
Southwest Medical University. All the animals were trained
on the Morris water-maze test to exclude the abnormal
behavior rats for one week before the experiment. Finally, 6
rats were excluded and 84 rats were selected.

The 84 rats were randomly divided into 3 groups, includ-
ing control group, POCD group, and POCD + Dex group,
with 28 rats in each group. The extracorporeal circulation
operation after intraperitoneal injection of 2ml 0.9% nor-
mal saline was performed on the rats from POCD group.
The extracorporeal circulation operation after intraperitoneal
injection of 50 ug/kg dexmedetomidine dissolved in 2ml and
0.9% normal saline was performed on the rats from POCD
+ Dex group. Any intervention was not accepted in the rats
from control group.

The CPB model was conducted according to the method
reported previously [10, 11]. Animals in POCD group and
POCD + Dex group were anesthetized with chloral hydrate
and isoflurane in 60% oxygen, and the anesthesia was main-
tained with 2.0% to 2.5% isoflurane and intravenous fentanyl
(10 ug/kg). After orotracheal intubation with a 14G cannula,
the animals were mechanically ventilated with a tidal volume
of 10mL/kg and respiratory rate of 60 to 65 beats/min.
Animals were additionally heparinised (250 IU/kg) after
intubation in the right jugular vein and the tail artery. The
tail artery was cannulated for blood pressure monitoring
and blood sampling. The extracorporeal circulation circuit
was composed of venous catheters, a peristaltic pump, a rat
oxygenator, and polyethylene tubing (1.6mm inner diameter)
(Xijing Medical Supplies Co., Ltd.). The circle was initiated
with 4ml prefilling liquid used for precharging polyethylene
tubing (2.2ml ringer lactate solution, 1.4ml hydroxyethyl
starch, 0.2ml 20% mannitol, and 0.2ml 5% sodium bicar-
bonate). At the end of extracorporeal circulation, protamine
(1.5mg/kg intravenously) was administered, cannulae were
removed, and wounds were sutured. A spontaneous breath-
ing is the major diagnostic test to determine whether rats can
be successfully extubated.

2.2. Morris Water-Maze Test. Before and after extracorporeal
circulation operation, the rats from three groups were exam-
ined by the Morris water-maze test. In the whole experimen-
tal period, the water tank, mobile platform, perimetermarker
position, and experimental time were fixed. The stainless
steel pool was divided into four quadrants, and the movable
platform located in the first quadrant. Five days for a training
cycle, each rat was trained 4 times each day to record the
average daily escape latency. In the first day, the rats were

placed on the platform for 30 seconds and all the rats were
adapted to the environment after the completion of the formal
experiment, respectively. If the rat did not reach the platform
for 120 seconds, it would be guided onto the platform and
stayed on the platform for 10 seconds. The training record of
the rats was 120 seconds.

After training experiment, the platform was removed,
the opposite quadrant with the angle of 180 degrees from
the quadrant of the original platform was as the point of
entry, and the frequency of crossing the original platformwas
recorded in 120 seconds.

2.3. Shuttle Box Test. After extracorporeal circulation oper-
ation, passive avoidance memory test of the rats from three
groups was examined by the shuttle box test. There were
two illuminated and dark compartments in the shuttle
box apparatus (27 × 14.5 × 14 cm). The device included a
copper fence with electricity in the bottom of the box as
unconditioned stimulus, a noise generator, and light source
as conditioned stimulus on the top of the box. Each rat was
placed in the illuminated chamber for 10min without the
electric shock to eliminate exploratory reflection. Then, rats
were placed individually in the illuminated compartment
with noise stimulation for 5 s and the entering delay of each
rat in the dark chamber was recorded as initiative avoiding
latency. After ten min, an electrical single shock (50Hz,
0.2mA, 3 s) was delivered through a copper fence without
noise and light stimulation. The delay of fleeing to safety was
recorded as passive avoiding latency. The times of avoiding
with unconditioned and conditioned stimulus both were
recorded. The first six days were the training time, and the
results of avoiding latency at the seventh day were recorded.

2.4. Open Field Test. After extracorporeal circulation surgery,
the rats from three groups were examined by the open field
test. All the rats adapted to the environment for half an hour
before the experiment, then the rat was seized and lifted
gently in the open field test box.

The light source was fixed at the side of the box, the
experiment time was selected as 5min, and the activities of
the rats were recorded. While the forelegs were off of the
ground, which was recorded as 1 time positive activity. In
order to avoid the residual odor of the previous rat, the feces
and urine of rats were cleaned at the end of each experiment
with 75% alcohol.

2.5. Cerebrospinal Fluid Collection and the Expression of A𝛽
Protein, PSD95, and p-Tau Protein. Cerebrospinal fluid was
collectedwith standardmethods [12]. In brief, the dorsal neck
skin of anesthetized rat was disinfected. After exposure the
membrane of atlantooccipitalis posterior, the cerebrospinal
fluid was collected slowly through foramen magnum via
needle connected to a draw syringe.

The concentrations of A𝛽 protein, PSD95, and p-Tau
protein in cerebrospinal fluid were determined by enzyme-
linked immunosorbent assay. The A𝛽 protein, PSD95, and
p-Tau protein antibodies (Wako Pure Chemical Industries,
Ltd., Japan) were added to the cerebrospinal fluid to form
an immune complex, which then reacted with the substrates.
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Figure 1: The comparison of the escape latency of rats in three groups before operation. C: control group; M: POCD group; D: POCD + Dex
group. ∗Compared with 6th day before operation, 𝑃 value < 0.05.

The color of the reaction was positively correlated with the
concentration of A𝛽 protein, PSD95, and p-Tau protein. The
concentration of A𝛽 protein, PSD95, and p-Tau protein was
calculated, according to the sample absorbance generated
from plate reader (Infinite� 200 Pro NanoQuant, Tecan,
Switzerland).

2.6. Brain Tissue Collection and the Immunohistochemistry
Method forDetecting the Expression of A𝛽Protein, PSD95, and
p-Tau Protein. The deeply anesthetized rats were perfused
with 0.9% NaCl and 4% paraformaldehyde, respectively. The
fixed brain tissue was dehydrated and the paraffin section
(5 𝜇m) was prepared. The A𝛽, PSD95, and p-Tau protein
positive neurons in target brain region were visualized by
immunohistochemistry conducted according to instructions
(Wako Pure Chemical Industries, Ltd., Japan). The positive
cells showed brown cytoplasm where the antigens were
located.The number of positive cells was calculated from five
different fields of each slide under the microscope.

2.7. Statistical Analysis. The experimental data were pro-
cessed by SPSS 19 statistical software. Data were described as
mean ± standard deviation. Experiment parameters between
the 2 groups were compared with the independent sample 𝑡-
test. Experiment parameters among 3 groups were compared
by analysis of ANOVA; multiple samples repeated measure-
ment data were analyzed by repeated measures analysis of
ANOVA; comparison among groups was compared by LSD
(Least significant difference) test; count data between groups
were compared by chi square test. 𝑃 < 0.05was considered as
statistical significance.

3. Results

3.1. The Effects of Dexmedetomidine on Cognitive Dysfunction
in Aged Rats From the 31st to 35th Days after Operation.
Before operation, in Morris water-maze test, the escape
latency for 5 continuous days decreased with extended

learning time (𝑃 < 0.05). However, the difference in escape
latency among groups had no statistical significance (𝑃 >
0.05), as shown in Figure 1. Compared with control group,
the escape latency increased in POCD group from the 31st to
35th days after operation (𝑃 < 0.05). In addition, compared
with POCD group, the escape latency decreased in POCD +
Dex group from the 31st to 35th days after operation (𝑃 <
0.05), as shown in Figure 2. Finally, after operation, inMorris
water-maze test, compared with control group, the frequency
of crossing the original platform decreased in POCD group
(𝑃 < 0.05). And, compared with POCD group, the frequency
of crossing the original platform increased in POCD + Dex
group (1.2 ± 0.9 versus 4.8 ± 1.3 versus 3.2 ± 1.4, 𝐹 = 109.11,
𝑃 < 0.05).

After operation, in shuttle box test, compared with
control group, the time of avoiding decreased and latency of
the initiative and passive avoiding increased in POCD group
(𝑃 < 0.05), as shown in Table 1. However, compared with
POCD group, the time of avoiding increased, and latency of
the initiative and passive avoiding decreased in POCD +Dex
group (𝑃 < 0.05), as shown in Table 1.

After operation, in open field test, compared with control
group, the number of standing times decreased, and the time
staying in the central square increased in POCD group (𝑃 <
0.05), as shown in Table 2. However, compared with POCD
group, the number of standing times increased, and the time
staying in the central square decreased in POCD+Dex group
(𝑃 < 0.05), as shown in Table 2.

3.2. The Number of A𝛽, PSD95, and p-Tau Protein Positive
Neurons in Hippocampus and Prefrontal Cortex from Aged
Rats. After operation, in hippocampus and prefrontal cortex,
compared with control group, the number of A𝛽 and p-
Tau protein positive neurons increased, while the number of
PSD95 positive neurons decreased in POCDgroup. However,
compared with POCD group, the number of A𝛽 and p-
Tau protein positive neurons decreased, while the number of
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Figure 2: The comparison of the escape latency of rats in three groups after operation C: control group; M: POCD group; D: POCD + Dex
group; ∗compared with control group, #compared with POCD group. 𝑃 < 0.05 was considered as statistical significance.

Table 1: The comparison of the shuttle box test in three groups.

Group Times of avoiding (times) Latency of the initiative avoiding (s) Latency of the passive avoiding (s)
C 10.4 ± 2.7 4.7 ± 1.4 9.5 ± 1.7
M 4.9 ± 1.9∗ 6.8 ± 2.9∗ 11.9 ± 3.6∗

D 7.8 ± 2.5# 5.2 ± 1.9# 10.0 ± 2.0#

C: control group; M: POCD group; D: POCD + Dex group. ∗Compared with control group; #compared with POCD group. 𝑃 < 0.05 was considered as
statistical significance.

Table 2: The comparison of the open field test in three groups.

Group The number of standing times The time staying in the central square (s)
C 10.3 ± 2.0 5.2 ± 0.8
M 6.4 ± 1.0∗ 7.8 ± 1.5∗

D 9.5 ± 0.8# 6.1 ± 1.7#

C: control group; M: POCD group; D: POCD + dexmedetomidine group. ∗Compared with control group; #compared with POCD group. 𝑃 < 0.05 was
considered as statistical significance.

PSD95 protein positive neurons increased in POCD + Dex
group, as shown in Table 3, Figures 3–5.

3.3. The Expression of A𝛽 Protein, PSD95, and p-Tau Protein
in Cerebrospinal Fluid from Aged Rats. After operation,
compared with control group, the expression of p-Tau pro-
tein increased, while A𝛽 protein and PSD95 decreased in
cerebrospinal fluid of POCD group (𝑃 < 0.05). However,
compared with POCD group, the expression of p-Tau protein
decreased, while A𝛽 protein and PSD95 increased in POCD
+ Dex group (𝑃 < 0.05), as shown in Table 4.

4. Discussion

For POCD patients, they have no mental disorder before
surgery. However, after anesthesia and surgery, the impair-
ments of memory, orientation, and mental concentration
happen in these patients [13]. It is generally believed that
cardiovascular surgery is a high risk for POCD. Some studies

showed that, in hospital, the occurrence of cognitive decline
was 53% for coronary artery bypass grafting (CABG) patients,
6 weeks after surgery was 36%, and 6 months after surgery
was still 24% [14]. And the use of extracorporeal circulation
operation during surgery is the main reason for the high risk
of POCD [15]. In this study, the Sprague-Dawley rats, aged
18∼20 months, underwent the extracorporeal circulation
operation to mimic the clinical conditions of POCD. In
Morris water-maze test, shuttle box test, and open field
test, our results showed that, compared with control group,
the escape latency, the latency of the initiative and passive
avoiding, and the time staying in the central square increased,
while the frequency of crossing the original platform, the
times of initiative avoiding, and the number of standing times
decreased in POCD group. Therefore, the learning, memory,
adaptability, and cognitive abilities were impaired in these
rats who undergone the extracorporeal circulation operation.
And cognitive dysfunction phenotype had been produced
successfully in POCD group. Meanwhile, the results also
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Table 3: The comparison of the expressing of target protein in brain tissue in three groups.

group
Number of A𝛽 positive cells Number of p-Tau positive cells Number of PSD95 positive cells
hippoca prefrontal hippoca prefrontal hippocam prefrontal
mpus cortex mpus cortex pus cortex

C 19 ± 13 38 ± 11 40 ± 11 48 ± 8 23 ± 5 37 ± 4
M 55 ± 13∗ 59 ± 16∗ 62 ± 20∗ 76 ± 11∗ 6 ± 3∗ 16 ± 4∗

D 30 ± 9# 46 ± 12# 41 ± 10# 65 ± 11# 17 ± 7# 26 ± 2#

C: control group,M: POCD group, D: POCD+Dex group, ∗compared with control group, #compared with POCD group,𝑃 < 0.05was considered as statistical
significance.
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Figure 3: The immune-histochemical photos of A𝛽 positive cells in rats brain tissues (×400).
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Figure 4: The immune-histochemical photos of p-Tau positive cells in rats brain tissues (×400).
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Figure 5: The immune-histochemical photos of PSD95 positive cells in rats brain tissues (×400).

Table 4: The comparison of the content of target protein in cerebrospinal fluid in three groups.

Group A𝛽 protein (pg/ml) p-Tau protein (pg/ml) PSD95 protein (pg/ml)
C 1272.8 ± 91.4 124.6 ± 11.2 62.4 ± 9.2
M 1152.0 ± 55.8∗ 167.2 ± 30.3∗ 42.1 ± 4.2∗

D 1211.6 ± 88.1# 132.8 ± 15.9# 57.1 ± 13.8#

C: control group; M: POCD group; D: POCD + Dex group. ∗Compared with control group; #compared with POCD group. 𝑃 < 0.05 was considered as
statistical significance.

showed that, comparedwith POCDgroup, the escape latency,
the latency of the initiative and passive avoiding, and the time
staying in the central square decreased, while the frequency of
crossing the original platform, the times of initiative avoiding,
and the number of standing times increased in POCD + Dex
group. Therefore, our study indicated that dexmedetomidine
could improve the learning,memory, adaptability, and cogni-
tive abilities after extracorporeal circulation operation in aged
rats.

Some previous studies showed that the decrease of neu-
ron number, cognitive related neurotransmitters (such as
acetylcholine and glutamate), and corresponding receptors
(such as NMDA receptor) might cause change of synaptic
plasticity, thereby finally leading to cognitive function decline
[16, 17]. In addition, some reports indicated that these
abnormalities did not occur in one region of brain, but in the
whole brain, including the prefrontal, parietal, cingulate, and
hippocampus [18]. In the whole brain area, the hippocampus
and prefrontal cortex were the most widely studied areas
[19, 20]. Therefore, the hippocampus and prefrontal cortex
were selected to investigate the mechanism of the effect of
dexmedetomidine on POCD.

Some studies have reported that A𝛽 was produced by
hydrolysis of amyloid precursor protein (APP). A𝛽 aggregates

are shown to damage cell membrane integrity, increase
intracellular calcium concentration, and induce apoptosis.
And the excessive deposition of A𝛽 can induce neurotoxicity,
which is positively correlated with the content in the brain
[21]. Cytological studies and animal experiments showed that
A𝛽 protein played a toxic role in neurons, which eventually
led to degenerative changes in the nervous system [22]. A𝛽
protein can induce NMDA receptor-mediated intracellular
Ca2+ elevation, thereby leading to neuronal cell damage and
death [23, 24]. In addition, Tau protein exists in the vertebrate
central and peripheral nervous system axons. Phosphoryla-
tion of Tau protein (p-Tau) is a decisive factor in A𝛽 protein
mediated neuronal cell death. And p-Tau may lead to nerve
cell death anddegenerative change in nervous system [25, 26].
Finally, PSD95, which reflects synaptic activity and synaptic
changes, can be combined with the NMDAR subunit of NR2
to form PSD95/NR2 complex by PDZ domain. The complex
helps to maintain the normal function of NMDA receptor
and regulate glutamate reuptake, neurotransmitters release,
synapse formation, and transfer [27, 28]. In our study, we
found that, compared with control group, the number of A𝛽
and p-Tau protein positive neurons increased, while the num-
ber of PSD95 positive neurons decreased in hippocampus
and prefrontal cortex in POCD group. However, compared



BioMed Research International 7

with POCD group, the number of A𝛽 and p-Tau protein
positive neurons decreased, while the number of PSD95
positive neurons increased in POCD +Dex group.Therefore,
our study indicated that dexmedetomidine could enhance the
expression of PSD95 and reduce the expression of A𝛽 and p-
Tau protein in hippocampus and prefrontal cortex and then
to improve learning, memory, adaptability, and cognitive
abilities after extracorporeal circulation operation in aged
rats.

Finally, we detected the expression of A𝛽, p-Tau, and
PSD95 protein in the CSF in aged rats. Our results showed
that A𝛽 and PSD95 decreased, while p-Tau protein increased
in CSF from POCD group compared with control group.
A𝛽 and p-Tau protein were regarded as Alzheimer’s disease
(AD) biomarkers, and POCD was identified after coronary
artery bypass surgery with declined A𝛽 and increased p-Tau
in cerebrospinal fluid revealing a unifying pathognomonic
factor between POCD and AD [29].

In addition, compared with POCD group, A𝛽 protein
and PSD95 increased, while p-Tau protein decreased in CSF
from POCD + Dex group. The expression of PSD95 and p-
Tau protein was consistent with those in hippocampus and
prefrontal cortex. However, we found that the expression of
A𝛽 protein in CSF was opposed to those in hippocampus and
prefrontal cortex. Other studies have also reported that the
concentration of A𝛽 protein was different between CSF and
cortical brain biopsy. The accumulated A𝛽 protein in brain
was high, while A𝛽 protein in CSF was low in Alzheimer
disease [30], which is in line with the data shown earlier
by postmortem brain [31, 32]. The possible mechanism of
this phenomenon still remains unclear, and we propose that
A𝛽 protein in the cerebrospinal fluid is accumulated in the
corresponding brain region, thereby causing the reduction of
A𝛽 protein in the cerebrospinal fluid.

In this study, we found that dexmedetomidine could
affect the expression of A𝛽, p-Tau, and PSD95 protein in
CSF, hippocampus, and prefrontal cortex, which has been
suggested to improve learning, memory, adaptability, and
cognitive abilities after extracorporeal circulation operation
in aged rats. Dexmedetomidine, as a highly selective 𝛼 -
2-adrenergic agonist, can function on neuronal presynaptic
membrane receptor in locus coeruleus nucleus. It can inhibit
the release of norepinephrine and the excessive excitement
of neuronal synapses caused by operation. And we proposed
that dexmedetomidine can inhibit the inflammatory response
to protect the material transfer function of neurons axon
and reduce the metabolic disorders of A𝛽42 protein and Tau
protein, even A𝛽42 converted from APP (amyloid precursor
protein) by 𝛽-secretase. This may explain the mechanism
of the effect of dexmedetomidine and provide a way for
preventing and/or treating POCD.

In conclusion, POCD in aged rats after extracorporeal
circulation operation may result from upregulation of A𝛽
protein and p-Tau protein and downregulation of PSD95 in
hippocampus and prefrontal cortex. The dexmedetomidine
is proposed to be able to regulate expression of A𝛽, p-Tau,
and PSD95 in hippocampus and prefrontal cortex, which
play a vital role in improving POCD. However, further
investigations on howdexmedetomidine regulates expression

of A𝛽, p-Tau, and PSD95 protein in different brain regions are
suggested to elucidate the detailed regulation mechanism.
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