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Tumor analyses commonly employ a correction with a matched normal (MN), a sample from healthy tissue of the same

individual, in order to distinguish germline mutations from somatic mutations. Since the majority of variants found in

an individual are thought to be common within the population, we constructed a set of 931 samples from healthy, unrelated

individuals, originating from two different sequencing platforms, to serve as a virtual normal (VN) in the absence of such an

associated normal sample. Our approach removed (1) >96% of the germline variants also removed by the MN sample and

(2) a large number (2%–8%) of additional variants not corrected for by the associated normal. The combination of the VN

with the MN improved the correction for polymorphisms significantly, with up to ∼30% compared with MN and ∼15%
compared with VN only. We determined the number of unrelated genomes needed in order to correct at least as efficiently

as the MN is about 200 for structural variations (SVs) and about 400 for single-nucleotide variants (SNVs) and indels. In

addition, we propose that the removal of common variants with purely position-based methods is inaccurate and incurs

additional false-positive somatic variants, and more sophisticated algorithms, which are capable of leveraging information

about the area surrounding variants, are needed for optimal accuracy. Our VN correction method can be used to analyze

any list of variants, regardless of sequencing platform of origin. This VN methodology is available for use on our public

Galaxy server.

[Supplemental material is available for this article.]

Analysis of 1092 human genomes performed by the 1000
Genomes Project reveals that an individual has approximately 4
million variations (on average, 3.7 million SNPs, 350,000 inser-
tions and deletions [indels], and 750 large deletions) compared
with the reference genome and that the vast majority of an indi-
vidual’s germline variations are polymorphic within the human
population, with >95% of all single-nucleotide variants (SNVs)
and small indels in a given individual occurring at a frequency of
≥0.5% (The 1000 Genomes Project Consortium 2010, 2012).
Therefore, whenever a matched normal (MN) sample was unavail-
able (most commonly due to lack of funds or sample availability),
researchers have typically relied on the public mutation databases
and/or a set of in-house genomes for the filtering of germline var-
iants from the full set of variants found in a tumor sample (Yoon
et al. 2009; Kumar et al. 2011). In recent years, these catalogs of hu-
man variation have grown exponentially, causing some research-
ers to question the necessity of sequencing a MN control for
every tumor sample (Kumar et al. 2011).

In this study, we address the questions of whether current
mutation databases are complete enough to correct for common
and rare polymorphisms and of how well this filtering performs
compared with the correction with a MN sample.

There are many public databases of human variation avail-
able. The Single Nucleotide Polymorphism Database (dbSNP) is a
free public archive for genetic variationwithin and across different
species (Sherry et al. 2001). Its latest build (138) contains over 63
million polymorphisms found within the human population.

The 1000 Genomes Project (1000G) database contains polymor-
phisms encountered in a set of 1092 genomes of healthy individ-
uals (The 1000 Genomes Project Consortium 2010, 2012). The
NHLBI Exome Variant Server (EVS) contains exonic variants
from over 6500 genomes (http://evs.gs.washington.edu/EVS).

In an effort to improve the control-free correction method
further, we constructed what we call a virtual normal (VN). This is
a set of 931 samples fromhealthy, unrelated individuals,whole-ge-
nome-sequenced to high depth, originating from two different
sequencing platforms. Our VN consists of 433 public samples
from Complete Genomics (Drmanac et al. 2010), sequenced in
the context of the 1000G, as well as 498 samples sequenced on
Illumina HiSeq technology by the Genome of the Netherlands
(GoNL) Consortium (Boomsma et al. 2013; The Genome of the
Netherlands Consortium 2014).

For copy-number analysis of sequencing data, tools exist that
correct for normal contamination in unmatched tumor samples
(Boeva et al. 2010). The idea of using a set of genomes for cor-
rection of copy-number variants has also been described (Yoon
et al. 2009). Apart from a correction based on GC content, this
read-depth method also corrects for regions found to have an in-
creased or decreased copy number across all five of their samples
(from healthy individuals) and therefore likely a polymorphism
within the population.We aim to assess the validity of such an ap-
proach and extend it by applying it to structural variation (SV), as
well as SNV and indel analysis, in whole-genome-sequenced
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cancer samples. Additionally, we investigate the minimal size of
such a VN necessary for adequate filtering and assess the influence
of different ethnicities within the set.

Variants in mutation databases are usually represented only
by their position relative to the reference genome and the variant
allele, as well as possibly a qualitymetric. The advantage of using a
VN is that we can also leverage information about the area sur-
rounding a variant (e.g., nearby variants in the same sample) to op-
timize correction. There are often several different ways to describe
the same variant, possibly involving (slightly) different chromo-
somal positions, which means that comparison methods that re-
quire an exact match of position and variant nucleotides may be
suboptimal, leading to false-positive somatic variants. The algo-
rithmwe use with our VN correction is capable of detecting equiv-
alences of differently described variants by taking into account the
reference sequence surrounding a variant, as well as neighboring
variants. This provides a valuable improvement over correction us-
ing variant databases, where this contextual information is lost.

Results

We evaluate the performance of the different correction methods
on four tumor-normal pairs from two different tumor types (breast
and prostate cancer). All of the samples were sequenced by
Complete Genomics. Two of the samples were also sequenced us-
ing Illumina technology. We evaluate the correction of SNVs and
indels of up to ∼50 bp, as well as the larger SVs. For the breast can-
cer samples, additional validation data were available from the
COSMIC database, and we used these confirmed variants to assess
the performance of the three different correction methods (MN,
mutation databases, VN).

We have made our VN correction method available as a
tool for the Galaxy workflow platform (Giardine et al. 2005;
Blankenberg et al. 2010; Goecks et al. 2010) as part of our tumor
analysis in Galaxy (TAG) tool suite (Hiltemann et al. 2014).

MN vs. VN

We use three correction methods in order to determine the set of
tumor-specific (somatic) variants: a correction for germline vari-
ants using a MN sample, a correction for polymorphisms using
the VN, and a correction for polymorphisms using public muta-
tion databases (dbSNP, 1000G, and EVS). All variants remaining
after application of all three correction methods represent
the (consensus) set of true somatic variants. A false-positive variant
of a method is any variant remaining after correction, which
would have been removed had we employed all three correction
methods.

Structural variations

There are far fewer common SVs, than SNVs and indels, present in
public databases. And the few sources of common SVs contain al-
most exclusively copy-number variants (large indels) and almost
none of the more complex SVs such as inversions and transloca-
tions. This makes filtering of tumor variants when there is no
MN sample very challenging. The Database of Genomic Variants
(DGV) (MacDonald et al. 2014) is currently the largest SV database,
with approximately 200,000 variants. However, >99%of these var-
iants are copy-number changes (gains or losses), and the database
contains only a limited number of the more complex structural
variant types such as inversions and (balanced) translocations,
while these are thought to be common in the normal population

(Sharp et al. 2006; The 1000 Genomes Project Consortium 2010,
2012;Mills et al. 2011).We additionally filtered using BreakSeq da-
tabase (Lam et al. 2010), BreakDB (Korbel et al. 2009), and the
1000G SVs (The 1000 Genomes Project Consortium 2010, 2012),
which collectively contain another 32,000 structural variants.

We compared the SVs found in the tumor sample to those in
the online databases and the VN. We consider two SVs a match if
both sides of the event occur within a small distance of the sides of
the other SV (200 bp when originating from the same platform,
500 bp when cross-platform).

In theCompleteGenomics samples, the VNmethod removed
most of the germline structural variants also removed by the asso-
ciated normal (∼97%) while also removing a further 6%–8% of
common variants not corrected for by the associated normal.

For the Illumina samples, the VNmethod removed fewer SVs
than theMNbut was still a huge improvement over using only the
database filter. The Illumina HCC1187 sample had 132,045 SVs
identified in the tumor sample, of which 1464were of high quality
(QUAL≥ 200). By use of the VN filter, we removed 961 polymor-
phic variants from this list (Fig. 1). Increasing the distance param-
eter further (to 2000–5000 bp) resulted in the filtering of more SVs
than the MN.

Experimental validation data for the two public genomes
HCC1187 and HCC2218 were obtained from the COSMIC data-
base (Forbes et al. 2008, 2011). We determined the number of
these confirmed somatic SVs detected in each sample and deter-
mined the number of detected SVs that survived our correction
method (Table 1). The CG samples had higher sensitivity (detected
more of the validated SVs), but for every tumor sample, those
variants that were detected by the platform and determined
somatic after correction with the MN all survived correction with
VN and DB.

SNVs and indels

For the analysis of SNVs and indels for both the MN method and
the VN method, we additionally filter variants for their presence
in dbSNP (Sherry et al. 2001), the 1000G (The 1000 Genomes
Project Consortium 2010, 2012), and the EVS (http://evs.gs.
washington.edu/EVS) using the ANNOVAR tool (Wang et al.
2010).

In annotating with the online databases, we require an exact
match of position, as well as a match in variant allele between the
cancer sample and the variant described in the database. For
dbSNP, we used the set of nonflagged variants (flagged variants
are those for which SNPs <1%minor allele frequency [MAF; or un-
known], mapping only once to reference assembly, or flagged as
“clinically associated”).

The Illumina FastTrack Cancer Service (http://www.illumina.
com/services/whole-genome-sequencing-services/sequencing-
service-providers-ign/sequencing-services.ilmn) identified
15,499 somatic SNVs in the HCC1187 sample and 27,823 in
HCC2218, after correction with the MN sample. We evaluate
performance of our method by correcting the list of all variants
found in the tumor sample using our VN set and comparing the
remaining variants to those variants determined to be somatic
by Illumina’s tumor-normal sequencing service.

Two variants are considered a match when they share the
same chromosomal position, as well as the same variant allele.
Because variants can often be described in various different yet
equivalent ways, we used a more advanced correction method
for those comparisons involving CG data (the TestVariants tool
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from CG’s tool suite). Detecting these equivalencies is very impor-
tant for variant comparisons and is discussed in more detail in a
later section.

Variants remaining after application of all three filters (MN,
database filter, and VN) represent the golden set of true somatic
variants (11,409 SNVs for HCC1187 and 20,560 for HCC2218).
We determined the number of false-positive somatic variants iden-
tified by several filter combinations (Fig. 1; Supplemental Data S2).
High-confidence variants determined by the VNmethod are those
variants not present in any of the VN samples, and the position
may not be no-called in more than ∼50% of the samples. This is
similar to the MN correction, where typically only those variants
are reported that were called reference in the normal sample; tu-
mor variants at positions that are no-called in the normal are usu-
ally not reported as (high-confidence) somatic variants.

The VN approach has similar performance to a MN for SNVs
and indels and even removes more variants than the associated
normal in some cases (Fig. 2). However, be aware that this does
notmean it removes all of the samevariants as thenormal but rath-
er it removes an equally large, but different set of variants. There are
alwayshighly personal germline variants that can only be removed
by the MN, but similarly, there are also polymorphisms that are
only removed by the VN and not the single MN sample.

Significant improvement is made over the situation where no
MN is available and only aggressive filtering with public databases
is used. The advantage of using a VN method rather than relying
solely on databases is greatest for indels, which are less abundant
in the public databases than SNVs and are more difficult to anno-
tate using a purely position-based method because they can often
be called in various different but equivalent ways.

To ascertain the quality of the somatic variants identified by
our method, we determined several metrics such as Ti/Tv ratio
(Supplemental Data S3). We see that the Ti/Tv ratio decreases as
more filtering is performed, which is expected for the tumor-spe-
cific mutations, as these are more random in nature. Breast cancer
specifically has been shown to favor transversion variants (Liu
et al. 2012). Mutational spectra of the somatic variants determined
by our method were also investigated (Supplemental Data S3) and

are consistent with the literature (Rubin and Green 2009) in terms
of mutation patterns.

Validation data were obtained from COSMIC for both sam-
ples. We used this list to determine the number of these validated
variants that were detected in the tumor samples by each platform
and to determine howmany survived correction by our VNmeth-
od (Table 2). Over 94% of the validated variants were detected in
each tumor data set, and of the detected variants, only one variant
in one of the samples was filtered out only by the VN, indicating a
possible false-negative of ourmethod. One confirmed somatic var-
iant in the HCC1187 sample (both Illumina and CG) was present
in the associated normals, the public databases, and the VN (17
samples), indicating a possible false positive in the COSMIC data-
base. One of the confirmed variants in COSMIC for the HCC2218
sample appeared in our VN nine times, as well as in the
dbSNP, the EVS, and 1000G, for both Illumina and CG, indicating
another possible false positive in COSMIC. For each of the sam-
ples, five confirmed somatic variants were present in the dbSNP

Figure 1. Comparison of matched normal (MN) and virtual normal (VN) methods for structural variations (SVs). Correction of high-confidence SVs from
Complete Genomics (left) and Illumina (right), using the database filter (DB), MN, and VN. Light gray area indicates the golden set (combination of the
three).

Table 1. Number of confirmed somatic SVs (as described in COSMIC
database) detected in the tumor samples by CG and Illumina, and the
number of these variants that are labeled somatic after corrections
with our VN method

Sample Detected Somatic
Description of variants

called nonsomatic

Illumina HCC1187 71 of 98 53 53 of 71 matches
survived MN
correction; all of
these survived DB +
VN correction

HCC2218 54 of 64 10 10 of 54 matches
survived MN
correction; all of
these survived DB +
VN correction

CG HCC1187 91 of 98 91 All survived MN +DB +
VN correction

HCC2218 55 of 64 55 All survived MN +DB +
VN correction
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(NonFlagged) database. These variants were not present in the VN,
the 1000G data, or the EVS and thus are likely disease-related var-
iants that should have been flagged in dbSNP but were not.

Size of VN

Structural variations

We determined the number of VN samples required for filtering of
common germline SVs for each sample (Fig. 3). For the Complete
Genomics samples, after using about 50 VN samples, the same
numbers of SVs are filtered out as when using the MN. A plateau
is reached after about 120 VN samples, and adding additional nor-
mal samples filters out only a small number of additional SVs.
Correction with the VN did not remove as many variants as the
MN for the Illumina sample, though it still provides significant im-
provement over filtering with databases alone. A plateau is also
reached for the Illumina samples at around 300 VN samples.
Increasing the distance threshold for when to consider two SVs a
match to 2000–5000 bp did result in correction of the same num-
ber of SVs as the MN but is likely less accurate.

SNVs and indels

We investigated howmany VN samples are necessary for adequate
filtering (Fig. 4). We are able to attach a confidence measure to the
remaining somatic variants by determining the number of VN
samples that are no-called at the variants’ locus (e.g., a variant at
a position that was fully called reference in all 931 normals is
more likely to be a true somatic variant than a variant that was
also not detected in any of the VN samples but no-called in all
normals).

The SNV and indel analysis results separated by variant type
are presented in Supplemental Data S8. The advantage of the VN
method over a database correction was greatest for indels, likely
due the fact that these variants canmore often be described in var-
ious different ways and at slightly different positions and therefore
benefit more from the enhanced correction algorithm used in our
method than the SNVs. For both SNVs and indels, the number of
variants removed is comparable to the number removed by the
MN and is significantly more than database corrections alone.

Analysis of SNVs revealed that for the CG samples, about
200 samples are needed to obtain the same performance as using
the online databases alone, and any additional genomes added

Figure 2. Number of false-positive SNVs and indels identified per filtering method for Illumina (left) and Complete Genomics (right). True positives (light
gray) are those variants remaining after application of all filters (for VN, we did not use the high-confidence criterion to determine the set of true positives).
DB denotes an aggressive database filter. HighConf VN+DB denotes the list of high-confidence somatic variants as determined by the VN and database
filters. MN +DB denotes the list of high-confidence somatic variants after correction with a MN combined with the database filter.

Table 2. Number of confirmed somatic variants (as described in
COSMIC database) detected in the tumor samples by CG and
Illumina, and the number of these variants that are labeled somatic af-
ter corrections with our VN method

Sample Detected Somatic
Description of variants

called nonsomatic

Illumina HCC1187 82 of 86 75 Five filtered by dbSNP;
one by VN only (1×);
1 N + DB + VN(17×)

HCC2218 178 of 182 172 Five filtered by dbSNP;
one in DB (dbSNP +
1kG + EVS) + VN(9×)

CG HCC1187 82 of 86 76 Five filtered by dbSNP;
one N +DB + VN
(17×)

HCC2218 173 of 182 167 Five filtered by dbSNP;
one in DB (dbSNP +
1kG + EVS) + VN(9×)
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beyond that point will improve the filtering of common variants
even further. The Illumina samples required a greater number of
CG normals, about 300. For indel variants, the number of normal
needed to surpass performance of the online databases alone is
fewer than 100 for both platforms. Indel variants can more often
be described in different but equivalent forms than SNVs, which
means they benefit most from the enhanced comparison method
used in our VN approach. The performance is better for Complete
Genomics samples than for Illumina samples, but for both plat-
forms, the performance is significantly improved by not relying
solely on public mutation databases.

Prostate cancer samples

Since HCC1187 and HCC2218 samples are both cell lines, we an-
alyzed two prostate cancer patient samples, G110 and G316, to

demonstrate that our method also works for patient data. The re-
sults are described in more detail in the Supplemental Data S7.
These two samples were sequenced by Complete Genomics and
use genome build hg18. Out of our 931 VN samples, 85 were
also available on hg18, so for this analysis we used a smaller VN.
Despite this reduced number of normals, our method could still
correct as many variants as the MN, requiring around 60–100 nor-
mals genomes to do so (20–40 for SVs).

Influence of ethnicity

The influence of ethnicity on the correction power was checked
for 54 VN genomes from the Complete Genomics’ diversity
panel. This panel contains individuals from five different popula-
tions across theworld.We found thatwhile therewas a clear differ-
ence between genomes from different races, this difference was

Figure 3. Number of structural variants filtered out after each additional VN sample for Complete Genomics (left) and Illumina samples (right). Blue de-
notes the HCC1187 sample; red, CG HCC2218. Dashed lines indicate the level reached by correction with the associated normal.

Figure 4. Number of SNVs and indels removed after filtering with each additional VN sample. Black dashed line indicates the number of variants labeled
as somatic when using only a database filter; red dashed line, the number of variants after correction with MN and the public databases; and the green
dashed line, the golden set variants, those remaining after application of all correction methods. The shaded area indicates the number of variants remain-
ing after VN filtering, ranging from all variants (upper bound) to highest-confidence somatic variants (lower bound).
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<10%, and the set as a whole is capable of correcting as efficiently
as a MN regardless of the background of the individual (Supple-
mental Data S6).

Improved correction method

When comparing the variants found in a (tumor) sample to lists of
knownpolymorphisms, themethodmost often used is to compare
start and end coordinates of the two variants, as well as the ob-
served sequence, and if these three values are identical, the vari-
ants are considered equal. However, this approach may be too
naïve as there are often various different ways of describing the
same variant, depending on the surrounding (reference) sequence
and nearby variants.

Consider the following very simple example: Given a refer-
ence sequence of CAG and a variant sequence of CAAG, do we
describe the variant as an A having been inserted after the C or be-
fore the G? Both descriptions are equally valid, but the position of
the inserted nucleotide will differ by one. There is no real commu-
nity consensus on how to resolve these kinds of canonicalization
issues, though left alignment is by far the most commonly used.
However, the HGVS recommendations urge “for all descriptions
[to use] themost 3′ position possible,”whichwould imply right align-
ment of variants on forward strand genes (http://www.hgvs.org/
mutnomen/recs-DNA.html).

Another example, and one of the most frequently observed
types of annotation difficulties in our data sets, are so-called block
substitutions.Whenever two SNVs occurwithin a 3-bpwindow and
are observed on the same reads, Complete Genomics will call a sin-
gle 2- or 3-bp substitution, while Illumina will simply call two
SNVs. Complete Genomics chooses this approach in order to re-
tain the knowledge that these two variants were encountered on
the same allele and possibly within the same codon, which is im-
portant for the determination of the impact of the variant on the
protein. While the observed sequence for both platforms was the
same, the descriptions differ, and naïve comparison methods
will not be able to detect the equivalence of these variants.

We identified four main classes of equivalent, but differently
described SNVs and indels in our data sets:

1. Multivariants.A series of nearby SNVs and indelsmay also be
described as a single, larger substitution in order to retain the
knowledge that they occurred on the same allele. The block sub-
stitutions are an example of this class (Fig. 5A).

2. Subvariants. A variant is present in both samples, but in one
of the samples, it was adjacent to another variant so in that sam-
ple the variant was part of a larger variant (Fig. 5B).

3. Canonicalization. The same variant sequence is observed in
both samples, but it can be described at a different position and
possibly with a different observed variant sequence (Fig. 5C).

4. Annotation issues. Different variant callers and different file
formats will have differences in the way they describe variants;
for example, when there aremultiple variants at the same locus,
the descriptions in the VCF format will be different than had
the variants occurred alone, turning SNVs intomultinucleotide
variants and turning simple indels into complicated descriptors
(Fig. 5D). For example, in the Illumina VCF files, variants of the
following pattern are frequently observed: TCA→ TA,TC. This
indicates that on one allele, the C nucleotide was deleted; on
another, the A nucleotide. However, had only the deletion of
A occurred, the variant would have been described as CA→C,
and thus, the position of the variantwould also have been shift-
ed by one. Similarly, had only the deletion of C occurred, the

description of the variant would have been TC→ T, with an un-
changed position field. Many tools converting VCF to a one-
line-per-variant format simply split on the comma (TCA→ TA
and TCA→ TC). While it is usually not difficult to reduce these
variants to their canonical forms,many tools do not handle this
issue correctly, and databases may not always ensure that only
canonical forms are entered.

When comparing variants originating from the exact same se-
quencing and processing pipelines, these issues are minimal, but
when comparing variants from different sources, they become
more pronounced and must be dealt with in order to maximize
the utility of variant databases. We encountered these problems
many times when doing comparisons to COSMIC variants and
describe several examples in more detail in Supplemental Data S4.

The comparison algorithm we use for our VN correction
(CGATools) is capable of detecting most of these equivalences be-
tween SNVs and indels and therefore reduces the number of false-
positive somatic variants identified.

The description of SVs is even less standardized,making com-
parisons of variants originating from different sources even more
challenging. The differences in calling conventions for SVs are dis-
cussed in Supplemental Data S4.

Tumor analysis in Galaxy

Galaxy is a free and open-source web-based analysis platform for
data intensive biomedical research (Giardine et al. 2005;
Blankenberg et al. 2010; Goecks et al. 2010). Our VN filtering
method is available as a tool for the Galaxy platform as part of
our TAG tool suite. The tool can be installed to a local Galaxy
instance via the DTL (Dutch Techcenter for Life Sciences) tool
shed (http://toolshed.dtls.nl). Additional normal samples can eas-
ily be added to the VN set in this tool. Further installation and
usage instructions can be found within the tool’s tool shed repos-
itory. The tools have been installed on our demo galaxy example
(http://galaxy-demo.ctmm-trait.nl/u/saskia-hiltemann/p/virtual-
normal-analysis) (Hiltemann et al. 2014); however, due to limited
resources, we have had to impose disk and job quotas and rec-
ommend installing the tool onto a local (production) Galaxy
server for optimal performance. Information about installing
and maintaining a Galaxy server is available from the Galaxy
wiki (http://galaxyproject.org).

Discussion

We have developed a method for the filtering of tumor variants in
the absence of aMN sample. To this end,wehave constructed aVN
consisting of a set of 931 whole genomes from healthy, unrelated
individuals (433 sequenced by Complete Genomics, 498 by
Illumina). We evaluated our method on four tumor-normal pairs
of two different cancer types, from two different sequencing plat-
forms (CG and Illumina), for both SVs and SNVs and indels. We
found that such a VN can correct as many variants as a MN (and
in many cases even more), allowing it to possibly serve as a substi-
tute for aMN sample in a research context or provide a valuable ad-
dition to the MN in a more clinical setting where highest accuracy
is required. It offers a huge improvement over the use of public da-
tabases alone, for example, in situations where no normal tissue is
available.

Germline variations detected in these tumors after correction
with associated normal are in the range of 80%–85% for SVs and
90%–96% for SNVs and small indels and substitutions. Our VN

Virtual normal correction method
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method is able to filter out most of these germline variants (96%–

99%) and removes a large number of additional common variants
not detected by the associated normal sample. The consensus set
of variants—those remaining after correction with associated nor-
mal, VN, and publicmutation databases—represents the set of true
somatic variants. Our method identifies ∼10%–30% false-positive
SVs and 20%–30% false-positive SNVs and indels, while the tu-
mor-normal method has ∼20%–50% and 40%–45% false positives
for SVs and SNVs and indels, respectively. This suggests that a VN

could act as a substitute for an associated
normal when the latter is unavailable,
and even outperforms the standard MN
correction in terms of false-positive rate
in some samples.

The reason for the observation that
correction using a VN collection can out-
perform the MN could be that the se-
quencing of a single MN sample will
not call all germline variants. At the mo-
ment with an approximately 100× cover-
age single-sample analysis by Complete
Genomics, ∼2.5% of bases (∼70,000,000
bases) are not called. If these noncalls
are random, a collection of samples will
always outperform the correction using
a single control. Therefore, we conclude
that at the current coverage of 100× or
less, a single normal matched control for
correction of germline variants should be
supplemented with (or even replaced by)
a series of at least 200 control genomes in
order to deliver optimal results.

We also investigated the optimal
size of the VN set and determined that
approximately 200–400 genomes are re-
quired in order to correct at least as effi-
ciently as the MN sample for SNVs
(fewer were required for CG-sequenced
samples, as our VN also consisted of
CG-sequenced samples). For SVs, 10–40
genomes were required for the CG sam-
ples, and for the Illumina samples, our
433 VN samples corrected fewer variants
than the associated normal, largely ow-
ing to the fact that the description of
breakpoints differs so greatly between
the two platforms; were we to construct
a VN of Illumina-sequenced samples, re-
sults would likely vastly improve.

Furthermore, we argue that using a
purely position-based annotation incurs
additional false positives, should be re-
placed by an algorithm capable of detect-
ing the equivalence of variants called
in different forms, and has knowledge
of the reference genome and other near-
by variants. When comparing variants
obtained from the same sequencing plat-
form and called using the same algo-
rithm, a purely position-based method
could suffice, but public databases often
contain variants from various sources

and are called using various different (versions of) algorithms; in
order to utilize the full power of these databases, algorithms
need to be able to detect equivalence of variants called in different
forms and/or at different locations.

Some caveats to this approach exist: a VN approach cannot
correct for those germline variants that are highly personal.
Therefore, additional caremust be takenwhen submitting variants
to public databases to ensure the anonymity of the patient. In ad-
dition, the possibility exists that by foregoing the sequencing of a

Figure 5. Examples of equivalent, but differently annotated variants. (A)When several nearby bases are
changed, this can be described as one large substitution or as several smaller ones, even though the re-
sulting sequence is the same. (B) Variant was present, but changes were described as part of a larger var-
iant. (C) Canonicalization issues: Variants can often be described at various different positions, and
variants originating from different sources may use different conventions, which must be taken into ac-
count during comparisons. (D) In the VCF format, overlapping variants can result in a different descrip-
tion of variants than had they occurred in isolation, a subtlety not always dealt with correctly in
comparison algorithms.

Hiltemann et al.

1388 Genome Research
www.genome.org



normal sample, rare germline variants may be mistakenly labeled
as somatic, whichmay lead to rare heritable mutations being over-
looked. Additional validation of the somatic status of the variants
may be desirable in these cases, either by work in the laboratory or
by considering larger groups of patients.

We are able to attach a confidencemeasure to the somatic var-
iants as determined by our VNmethod by considering the number
of VN samples that are no-called at the variants’ loci. A somatic
variant at a position that was fully called reference in all 931 nor-
mals is more likely to be a true somatic variant than a variant that
was also not detected in any of the VN samples but was no-called
in all normal samples (i.e., evidence of absence vs. absence of evi-
dence). Currently, this could only be done for the VN samples
sequenced by CG, as the Illumina data does not provide the neces-
sary information about no-called and half-called loci.

Our VN correction with the 931 samples can be run on any
VCF file or list of variants, regardless of the sequencing platform
of origin, and is available as a Galaxy tool from the DTLS tool
shed (http://toolshed.dtls.nl/repos/saskia-hiltemann/virtual_normal_
preprocessing) and is installed on our public demonstration
Galaxy server (http://galaxy-demo.ctmm-trait.nl).

Methods

Illumina vs. Complete Genomics

For this study we analyzed two breast cancer cell line samples,
HCC1187 and HCC2218, which have been whole-genome-se-
quenced by both Complete Genomics and Illumina and are pub-
licly available for download (ftp://ftp2.completegenomics.com/
Cancer_pairs/ and https://basespace.illumina.com/datacentral).

Comparisons between the Illumina and Complete Genomics
platforms have been previously described (Lam et al. 2012). We
compared the variants identified by each of the platforms for our
samples and found that >96% of the SNVs and >70% of the indels
identified by Complete Genomics were also present in the
Illumina samples (Supplemental Data S1).

The description of SVs differs greatly between the two plat-
forms, making comparison a challenging task. Our algorithm
found an overlap of ∼40%–45% (Supplemental Table S1.3). The
calling differences and comparison pitfalls are discussed in a later
section.

Complete Genomics samples

The HCC1187 breast cancer (primary ductal carcinoma) sample
was TNM stage IIA, grade 3. For HCC1187 BL, the normal sample
was derived from peripheral blood and immortalized with EBV
transformation. ATCC numbers were as follows: tumor, CRL-
2322; normal, CRL-2323. CG Software version used was 2.0.2.15.

The HCC2218 breast cancer (primary ductal carcinoma) sam-
ple was TNM stage IIIA, grade 3. For NA12880, the normal sample
was derived from peripheral blood and immortalized with EBV
transformation. ATCC numbers were as follows: tumor, CRL-
2343; normal, CRL-2363. CG Software version used was 2.0.2.15.

Samples have been sequenced to an average genome-wide
coverage of 123× for three of the samples and 92× for the
NA12880sample.TheHCC1187andHCC2218samplesweredown-
loaded from Complete Genomics (ftp://ftp2.completegenomics.
com/Cancer_pairs/).

The prostate cancer sample G110 is derived from a radical
prostatectomy. The tumor section from which DNA was isolated
had a Gleason score of 3 + 3 and contained 80% epithelial
tissue, of which 90% was cancer. The MN DNA was isolated from

peripheral blood. The G110 and MN samples were sequenced by
Complete Genomics to an average genome-wide coverage of 94×
and 109×, respectively. The software version used was 2.0.2.24.

The prostate cancer sample G316 is derived from a transure-
thral resection of the prostate (TURP). The tumor section from
which DNA was isolated had a Gleason score of 4 + 3 and con-
tained only epithelial tissue, of which 100% was cancer. The MN
DNA was isolated from peripheral blood. The G316 and MN
samples were sequenced by Complete Genomics to an average ge-
nome-wide coverage of 112× and 113×, respectively. The software
version used was 2.0.2.24.

VN samples

The 433 normal samples were sequenced by Complete Genomics
in the context of the 1000G and are accessible for download
from the EBI and NCBI ftp servers at ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/ or ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/.

For the hg18 prostate cancer samples, our VN set contained
66 normals, consisting of (1) the Complete Genomics diversity
panel (46 genomes), (2) the four unrelated individuals from the
CG pedigree, (3) the parents in the two CG trios (YRI and PUR),
and (4) 12 in-house samples of healthy, unrelated individuals.
This amounts to a total of 66 genomes. For the SNV and indel anal-
ysis, an additional 19 in-house samples were available, bringing
the total up to 85. The Complete Genomics public samples may
be downloaded from ftp://ftp2.completegenomics.com/. A list
of all variants found in our in-house VN samples is available
as a (public) shared data set from our demonstration Galaxy
server (http://galaxy-demo.ctmm-trait.nl) and in the Supplemen-
tal Materials.

For the Illumina normals, sample-level data were obtained
from theGoNLConsortium (http://www.nlgenome.nl) to perform
this analysis. Our tool will only output summary counts for these
data as the individual-level data are restricted.

Comparison to COSMIC validated variants

The validated variants obtained from COSMIC used hg19 coordi-
nates, while our in-house samples were sequenced on hg18. The
public CG samples were sequenced on both hg18 and hg19, so
for this comparison, we used a VN consisting of just the 54 public
hg19 genomes because a lift-over of genomic coordinates is
suboptimal.

SV analysis

We used CGATools JunctionDiff version 1.6 with default parame-
ter settings for both the tumor-normal filtering and the tumor-VN
filtering of the Complete Genomics samples. This means we con-
sidered two junctions to be the same when both the left sides and
the right sides of the two junctions are on the same strand and fall
within 200 bp of each other. For comparisons involving Illumina
SVs, we created a custom script labelling two SVs as similar if
they fall within a short distance of each other (for both sides of
the event). We used a distance of 500 bp if the events came from
the same platform, 1000 if they came from different technologies.

TheCGATools source code and binaries are freely available for
download at http://cgatools.sourceforge.net.

HCC1187 validation data in COSMIC are available at http://
cancer.sanger.ac.uk/cosmic/sample/overview?id=749711. Data
describe breast tissue, and the carcinoma is ductal. The number
of genes examined is 4675; simple mutations, 29; gene fusions,
12; and structural variants, 94.

HCC2218 validation data in COSMIC are available at http://
cancer.sanger.ac.uk/cosmic/sample/overview?id=749716. Data
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describe breast tissue, and the carcinoma is ductal. The number of
genes examined is 4670; simple mutations, 76; gene fusions, 0;
and structural variants, 62.

SNV and indel analysis

We used the Complete Genomics CGATool ListVariants and
TestVariants (version 1.6) for our SNV and indel analysis when
comparisons involvedCGdata.When comparing Illumina tumors
to Illumina VNs, we used vcftools (http://vcftools.sourceforge.net)
and vcflib (http://github.com/ekg/vcflib), which compares posi-
tions as well as observed variant sequence when determining a
match.

We used ANNOVAR (release date 2013 Feb 11) for annotation
with the public variant databases. In annotating with the online
databases, we require an exactmatch of position, as well as amatch
in variant allele between the cancer sample and the variant de-
scribed in the database. For dbSNP, we used the set of nonflagged
variants (flagged variants are those for which SNPs <1% MAF (or
unknown), mapping only once to reference assembly, or flagged
as “clinically associated”).

HCC1187 validation data are available at http://cancer.sanger
.ac.uk/cosmic/sample/overview?id=1235080. Data describe breast
tissue, and the carcinoma is ductal. The number of genes exam-
ined is 12,196; simple mutations, 55; gene fusions, 0; and struc-
tural variants, 0.

HCC2218 validation data are available at http://cancer.sanger
.ac.uk/cosmic/sample/overview?id=1235085. Data describe breast
tissue, and the carcinoma is ductal. The number of genes exam-
ined is 12,196; simple mutations, 107; gene fusions, 0; and struc-
tural variants, 0.

dbSNP annotations are from the Database of Single Nucleo-
tide Polymorphisms (dbSNP), National Center for Biotechnology
Information, National Library of Medicine (dbSNP Build ID: all
builds up to 38), and are available at http://www.ncbi.nlm.nih
.gov/SNP/.

Data access

WGS variation data from this study are available at the European
Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena), accession
number PRJEB9673. The list of variants present in our 31 in-house
normal samples can be found in the Supplemental Material.
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