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Abstract: Cancer stemness is proposed to be the main cause of metastasis and tumor relapse after
conventional therapy due to the main properties of cancer stem cells. These include unlimited
self-renewal, the low percentage in a cell population, asymmetric/symmetric cell division, and the
hypothetical different nature for absorbing external substances. As the mechanism of how cancer
stemness is maintained remains unknown, further investigation into the basic features of cancer
stemness is required. Many articles demonstrated that glucose-regulated protein 78 (GRP78) plays a
key role in cancer stemness, suggesting that this molecule is feasible for targeting cancer stem cells.
This review summarizes the history of finding cancer stem cells, as well as the functions of GRP78 in
cancer stemness, for discussing the possibility of targeting GRP78 to eradicate cancer stemness.
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1. Introduction

Cancer has been a high-ranked cause of death worldwide for many years [1], and there
are no therapeutic strategies that effectively prevent metastasis and tumor relapse in all
cancer types. With the disappointing outcomes of conventional therapeutic strategies [2],
the novel explanations for the occurrence and progression of tumors are constantly being
investigated for developing precise methods to eradicate tumors. Ever since the hypothesis
of cancer stemness was proposed, the mechanisms of tumorigenesis and carcinogenesis
have begun to lose their secret veil. Multiple cancer models demonstrated the existence of
cancer stem cells [3–7], and the objective of eradicating tumors is believed to be achievable
in the future. Due to the diverse background, concepts, and focus of different research
groups, tumorigenic cells are called cancer stem cells or tumor-initiating cells, and different
methods also have been utilized to investigate the various aspects of cancer stemness. This
review summarizes the early history of the research of normal and cancer stemness, and
the current status of GRP78 studies, serving the purpose of discussing the roles of GRP78
in stemness and the possibility of cancer eradication via targeting GRP78.

2. The History of Stem Cell Investigation and Evidence of the Existence of Cancer
Stem Cells

Following the term “stem cell” created for describing the originator unicellular organ-
ism from which multicellular organisms evolved [8,9], the scientists in the fields of em-
bryogenesis and hematopoiesis took the lead using this term to name the high-hierarchical
undifferentiated cells in their research models [9–12]. In 1896, Artur Pappenheim also
applied this term and proposed a common precursor for red and white blood cells [13].
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However, the existence of the hematopoietic stem cell could not be experimentally demon-
strated and reported until 1961 [14]. Nowadays, stem cells are the ideal model for multiple
diseases and cell therapy research. To investigate pathological mechanisms and therapeutic
strategies, the research scope of stem cells has been expanding.

The achievement of current stem cell research has three milestones. The first milestone
was the earliest model of stem cells beginning with a reprogramming type of experimental
design using somatic nuclear transplantation. The first nuclear transplantation model using
Northern Leopard Frog was reported in the 1950s, and more than 50% of the transplanted
nuclei from advanced blastulas or early gastrulas into recipient enucleated frog eggs devel-
oped into frog embryos [15]. This successful demonstration led to the Nobel-Prize-awarded
work, in which the successful embryo development rates of nuclear transplantation from
early frog embryos were compared to that from differentiated intestine epithelial cells of
tadpoles [16,17]. Dolly the sheep and Carbon Copy the cat were the cloned mammals result-
ing from nuclear transplantation from adult somatic cells [18,19]. Hereafter, these animal
cloning models opened the door for the research of embryonic stem cells and inducible
pluripotent stem cells.

The second milestone of stem cell research is the investigation of embryonic stem cells
originating from the need to understand immune diseases, transplantation, tumorigenesis,
and carcinogenesis, as well as the ineffective outcome of therapeutic strategies for cancers.
To avoid the ethical issues of using human embryos and the welfare consideration of
using animals, teratomas and teratocarcinomas are an applicable resource to establish cell
lines for embryonic stemness study models. Steven et al. took the lead and generated
an in vivo model of embryonic stemness by generating a transgenic mouse strain prone
to spontaneous testicular teratomas [20]. For an authentic and continuous resource of
embryonic stem cells, Dr. Brinster spent more than 10 years establishing in vitro methods
of cultivating mouse embryos and produced the first mouse chimera bearing a different
fur color that was derived from injected blastocyst cells [21–24]. Evans et al. further
generated the first pluripotent stem cell line (which actually developed into tumors after
being transplanted into mice) from the culture of mouse blastocysts [25], providing an
efficient and easy model for studying the molecular mechanisms of embryonic stemness.
For example, Niwa et al. were the first to report that Leukemia Inhibitory Factor (LIF) is
required to maintain pluripotency of mouse embryonic cells using a mouse embryonic stem
cell line [26]. However, the applications of embryonic stemness research inevitably face the
challenge of politics and ethics [27–35], evincing the need for experimentally manipulatable
pluripotency models.

The third milestone of stem cell research is the establishment of inducible pluripo-
tent stem cells (iPSCs) by Takahashi et al. relying on a collection of research outcomes
investigating the many transcription factors of embryonic stem cells. Without the aim
of high throughput results of omics platforms, Takahashi et al. defined that “Yamanaka
4 factors”, including Oct3/4, Sox2, c-Myc, and Klf4, were the essential transcription fac-
tors required for reprogramming differentiated mouse fibroblasts, from both adult and
embryonic, into pluripotent stem cells [36]. Thereafter, Yamanaka 4 factors became the
paradigm of in vitro and in vivo pluripotency studies, and these four molecules have also
been studied in the field of cancer stemness [7,37–41]. Besides iPSC, stimulus-triggered
acquisition of pluripotency (STAP) was another approach that attempted to experimentally
manipulate pluripotency. Obokata et al. withdrew their published articles as their results
were not reproducible and an investigation was undertaken by the Research Integrity Board
of Institute of Physical and Chemical Research (Riken). Their research stated that a short
incubation of weak acid followed by treatment with LIF was able to induce pluripotency in
mouse somatic cells (references not cited). However, acidic extracellular pH was shown
by another research group to influence cell fate determination of a model of acute T cell
leukemia [42].

Cancer stemness and normal stem cells have an intertwined history of identifica-
tion [43–45]. The original concept of cancer stem cells was first initiated and described
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in a pathology textbook authored by a pathologist, Rudolph Virchow, in 1855. Using a
regular light microscope, Virchow noticed the histological similarity between a developing
fetus and teratocarcinoma and suggested that tumors arose from embryo-like cells [46].
Francesco Durante also used a light microscope to observe cancer and embryonic organ
cells which were from the same tissue of origin, and he briefly recorded that his finding
was similar to Virchow’s [47]. In a later version of that pathology textbook, Julius Friedrich
Cohnheim elaborated on Virchow’s original concept as the “Embryonal-Rest Hypothesis”,
speculating that cancer results from the activation of dormant embryonic-tissue remnants
in an individual [48]. This view was not well studied until James Till and Ernest McCulloch
postulated the existence of hematopoietic stem cells after transplanting bone marrow cells
into the mice after lethal irradiation exposure, which is the first evidence of somatic stem
cells in grown individuals [14]. Bruce et al. reported the first direct evidence of cancer stem
cells using serial dilution, which composed 1–4% of the total population of a mouse lym-
phoma cell line, were able to propagate the spleens of irradiated recipient mice, showing a
similarity or a possible causative relationship between normal and cancer stem cells [6].
Finally, when the cell sorting technique and related antibodies became available in the
1990s, Bonnet et al. demonstrated that CD34++CD38− acute myeloid leukemia cells exhibit
the main feature of cancer stem cells [5].

Over recent decades, there have been rapidly accumulating articles supporting the
hypothetical existence of cancer stem cells, and two main hypotheses have been proposed
to postulate the identity of cancer stem cells. The first hypothesis, the Hierarchy model,
postulates that the cancer cells in a population are heterogeneous and only a low percentage
of the population, which are called cancer stem cells or tumor-initiating cells, have the
capacity for self-renewal to maintain pluri- or multi-potency-like capability, which means
the capacity for unlimited cell division and proliferation without the fate of differentiation
or senescence and death. Self-renewal to maintain cancer stemness is hypothetically
achievable via asymmetric cell division, during which two offspring cells possessing
different cell fates are generated. One of the offspring cells is an identical copy to the
mother cell (maintaining the stemness), the other does not inherit the cancer stemness but
does possess multipotency to differentiate into multilineage progenies. The progenitors that
do not inherit cancer stemness are hypothetically not capable of performing asymmetric cell
division and therefore only undergo symmetric cell division resulting in identical daughter
cells that do not possess cancer stemness either. The other hypothesis, the Stochastic model,
claims that all cancer cells in a population have an equal ability to undergo self-renewal,
but the probability of each tumor cell entering a cell cycle and finding an optimal niche
for performing self-renewal and tumor growth is low (Figure 1) [43,49]. An attempt to
challenge the boundary between the Hierarchy and Stochastic model by merging these two
hypotheses was proposed [50]. However, the understanding of the essential differences
between these two hypotheses will provide solid reasoning and evidence to establish a
novel hypothesis overriding these two. This will likely be after convincing data referring
the Stochastic model can be demonstrated.

Perhaps due to the currently available investigation strategies and platforms, more
articles supporting the Hierarchy model [3,6,7,51–53] than the Stochastic model [54–56]
are published. Most articles use the mathematical method (serial dilution) and cell sorting
for experimental evaluation in the Hierarchy model [3,6,7], but a few research groups
have reported their findings using hypothetical features of cancer stemness, including cell
division pattern and cell cycle phase distribution, in the scope of the Hierarchy model [7,57].
Hopefully, these other features of cancer stemness can be examined in more cancer models
in the future. Meanwhile, research designs should be encouraged to develop evaluations
for determining whether the Stochastic hypothesis can be discerned in any processes or
characteristics of tumorigenesis and carcinogenesis. Once more scientific methods and
equipment are developed, further in-depth information and evidence will be reported to
decipher the mechanism of cancer stemness maintenance.
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Figure 1. The Hierarchy model and the Stochastic model are the two main hypotheses addressing
cancer stemness. Owing to a lack of research investigations referring to the Stochastic model (A), this
hypothesis is facing the challenge of being combined with the Hierarchy model (B) [50]. However,
another hypothesis overriding these two relies on the novel ideas or state-of-art experimental designs
or platforms that can evaluate the Stochastic model, leading to the in-depth understanding of how
these two current models explain all aspects of cancer stemness.

3. Identification of Cancer Stem Cell Surface Markers in Different Cancer Models

The identification of cell surface markers has been the goal of many cancer stemness
research projects, and it seems that currently there is no satisfying answer for all cancer
types. As it was the first cancer model to demonstrate the existence of cancer stem cells,
leukemia has the longest history of investigation for targeted therapy and cancer stem-
ness [6]. Since CD44 and CD24 are expressed on the cell surface of the lymphocytes homing
to the thymus during hematopoiesis [58,59], these two molecules were considered possible
markers for diagnosis or target therapy. However, an article in 2003 demonstrated that
CD44 and CD24 are viable cell surface markers for identifying breast cancer stem cells by
in vivo xenograft formation of serially diluted xenograft tumor cells derived from multiple
passaging in mice [3]. This finding led to a long trend of many cancer research projects to
evaluate whether CD44 and CD24 can be cancer stem cell markers in other solid cancer
models using several approaches. For example, CD44+CD24− prostate cancer cells exhib-
ited anchorage-independent in vitro self-renewal and formed xenografts in NOD/SCID
mice when merely 100 cells were implanted [60]. CD44+CD24− ovarian cancer cells showed
enhanced invasion, differentiation, and chemo-resistance [4]. CD44+CD24−/lo cell pop-
ulations of multiple breast cancer cell lines demonstrated enhanced migration/invasion
ability and a high correlation to asymmetric segregation of template DNA strands [61],
which is one of the proposed mechanisms to achieve self-renewal of cancer stemness.
CD44+CD24−GRP78+ head and neck cancer cells exhibit strong capabilities of tumorigene-
sis, chemo-radioresistance, and invasion [62], fitting the hypothesis that cancer stem cells
possess the properties of unlimited self-renewal and enhanced motility across different
niches. Although CD44 and CD24 were not concluded as the optimal cancer stem cell
markers for lung adenocarcinoma cells, CD44+CD24−/lo A549 cells also showed mildly
enhanced anchorage-independent in vitro self-renewal [63]. CD44+CD24−/lo was one of
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the heterogeneity phenotypes exhibited by two of the four single cell-derived subclones
from a glioblastoma patient [64].

Other more common cell surface markers for cancer stem cells include, among others,
CD133, SSEA family members [65], and GRP78 [7,51,62]. CD133 is a membrane glyco-
protein expressed in a variety of normal stem cells. This penta-spanned transmembrane
glycoprotein interacts with the Wnt/β-catenin and PI3K-Akt signaling pathways and is in-
volved in multiple tumor functions, including metastasis, metabolism, tumorigenesis, drug
resistance, and apoptosis [66]. While injecting 105 CD133−, cells failed to form any tumors,
intracranial implantation of merely 100 CD133+ cells isolated from tissues of medulloblas-
toma and glioblastoma multiforme in human patients formed tumors in NOD-SCID mouse
brains [67]. Compared to the CD133− cells, CD133+ cells from tissue samples of non-small
cell lung cancer patients and lung cancer cell lines had higher expressions of Oct-4 and
better in vitro and in vivo self-renewal capability [68]. Stage-specific embryonic antigens
(SSEAs) are a family of glycosphingolipids expressed as a part of the cell membrane of
embryonic stem cells. SSEA3 and SSEA1 (CD15) were detected in CD45−CD44+CD24−

breast cancer stem cells [69], and brain tumor stem cells [70], respectively. Cell surface
GRP78+ head and neck cancer cells also displayed better in vivo self-renewal capability
than csGRP78− cells [51]. It is important to investigate the different roles of these cell
surface markers between normal stem cells and cancer stemness since these cell surface
markers are also expressed on normal stem cells [65].

4. The Conventional Functions of GRP78, and Following Its Emerging Role in
Cancer Stemness

GRP78 has an interesting history regarding its finding and naming. This molecule was
originally observed and described in 1974 by Stone et al. For the purpose of generating a
vaccine against the avian RNA tumor viruses, they described a plasma membrane protein
of about 73 kDa that was upregulated in chick embryo fibroblasts transformed with Avian
Sarcoma Viruses [71]. Until 1976, scientists had considered this 73 kDa membrane protein as
a specific molecule related to virus transformation/infection. However, in 1977, Shiu et al.
demonstrated that glucose starvation upregulated this 78 kDa membrane protein (analyzed
by a better protein marker) in both immortalized and Rous virus-transformed chick embryo
fibroblasts. Therefore, they concluded that this membrane protein was not related to viral
transformation but was rather related to glucose regulation in cells, and thus it was named
Glucose-Regulated Protein 78 (GRP78) [72]. Coincidentally, Haas et al. discovered an
immunoglobulin heavy chain binding protein, named BiP, also weighing 78 kDa [73]. After
cloning the cDNA of BiP, Haas et al. found that BiP belongs to the 70 kDa heat shock
protein family [74] and participated in immunoglobulin chain synthesis and defective
protein degradation in the endoplasmic reticulum [75,76]. Finally, Haas et al. clarified that
BiP is GRP78 in a review publication [77]. Thereafter, it is known that GRP78 is not specific
to glucose depletion nor virus infection. It is a resident chaperone in the endoplasmic
reticulum whose physiological function is to facilitate normal protein production. GRP78
overexpression/upregulation is correlated with many stress/pathological conditions, such
as hypoxia, radiation/ultraviolet exposure, immune diseases, low pH conditions, and most
importantly, tumor malignancies [78–81].

There are many articles demonstrating a relationship between the expression levels
of GRP78 protein and the severity of cancers and other diseases. Being the dominant
resident chaperone in the endoplasmic reticulum and the main regulator functioning in
the unfolded protein response in multiple physiological or pathological stress conditions,
GRP78 has consistently been demonstrated to be upregulated, providing a protective effect
and/or an essential function in multiple disease models. Total cellular levels of GRP78
received the most attention and investigation in the cancer models. GRP78 was found to
be upregulated in prostate and head and neck cancers [81,82], and higher levels of GRP78
protein correlated with a poor prognosis of patients with these and lung cancers [82–84].
Importantly, hyper-expression of GRP78 in patients with head and neck cancers was demon-
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strated to be correlated with the malignancy levels of several oral diseases, as well as with
the malignancy-free survival rates of precancerous oral diseases [84], highly supporting
that cell surface GRP78 is a significant molecule for targeting cancer stem cells. GRP78
silencing also compromised the in vitro ability of migration and invasion, as well as in vivo
tumor growth of head and neck cancer cells [51,81]. GRP78 downregulation enhanced the
sensitivity to chemotherapy drugs of multiple types of cancer cells and tumor endothelial
cells, including head and neck, breast, lung, colon, glioma, and bladder cancers [62,85–91].
Compared to the tissues of patients with benign ovarian tumors, malignant ovarian cancers
have upregulated expression of GRP78 mRNA [92]. GRP78 was also studied in diseases
other than cancer models. In a cardiac hypertension model, GRP78 protein expression
was increased in cardiomyocytes after high blood pressure was induced in mice, and
exogenous overexpression of GRP78 in cardiomyocytes enhanced hypertrophic growth
of cardiomyocytes via the activation of GATA-Binding Protein 4, intensifying the level of
cardiac vessel hypertension [93]. In the research project on type 2 diabetes mellitus in a
Chinese population, GRP78 was detected in the circulating blood of these patients and
circulating GRP78 also correlated with the severity of this kidney disease [94].

GRP78 expression on the cell surface of human rhabdomyosarcoma cells treated with
thapsigargin and GRP78 autoantibody detected in normal human peripheral blood [95]
suggested a potential signaling role of this molecule. GRP78 autoantibodies purified from
the serum of prostate cancer patients exhibited pro-proliferative effects and increased
intracellular calcium levels in cell lines of prostate cancer and melanoma; this autoantibody
was shown to specifically recognize a tertiary structural motif mimicking an epitope in
GRP78 [96]. Thereafter, cell surface GRP78 was hypothesized to function as an oncogenic
signaling receptor, and the ligands of this hypothetic signaling receptor and the signal-
ing outcomes have been extensively explored. The potential molecules associated with
or binding to GRP78 were reported by multiple research groups, yet different ligand as-
sociations with cell surface GRP78 result in different signaling outcomes. For example,
α2-macroglobulin [97] and Cripto [98] were shown to associate with cell surface GRP78
in prostate cancer cells and promoted signaling pathways of proliferation, metastasis,
and tumor growth. When Par-4, TRAIL (tumor necrosis factor related apoptosis inducing
ligand) [99] and recombinant Kringle 5 of human plasminogen [100] associated with cell sur-
face GRP78 in prostate cancer, endothelial, and glioma cells, apoptosis was induced. GRP78
was reported as an autoantigen for B and T cells in rheumatoid arthritis patients [101,102].
Entry into the host cells of several virus strains, including Coxsackie virus A9 [103], Borna
disease virus [104], severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, which
causes COVID-19) [105], depended on GRP78 expressed on the cell surface of the host cells.
Although it could be certain that GRP78 plays important roles in various cellular events, it
was also questionable why a resident chaperone expressed in the endoplasmic reticulum
in most of the somatic cells was reported to function as a signaling receptor in another
subcellular compartment.

The molecules associated with cell surface GRP78 were never comprehensively and
systematically investigated before Chen et al. reported their findings. Using the newly
designed quantitative mass spectrometry platform, they detected and verified multiple
endogenous interactome candidates of cell surface GRP78 and intracellular GRP78 in
head and neck cancer cells [7]. There are also other articles reporting other molecules
associated with cell surface GRP78 or intracellular GRP78 [80–84]. Collectively, these
sound demonstrations consolidate that GRP78 still functions as a chaperone in the plasma
membrane compartment. If the endogenous interactome of GRP78 in different subcellular
compartments of other cancer models can be identified by the quantitative platform of mass
spectrometry, not only will it provide the molecular machinery of malignancy phenotypes,
but it will also provide detailed molecular profiles of cancer stemness due to GRP78’s roles
in cancer stemness discussed below.

The previous findings of GRP78 led to the suggestion that GRP78 plays a role in
cancer stemness. GRP78 overexpression in Chinese Hamster Ovary cells increased their
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resistance to Etoposide treatment [85]. Since Etoposide hampers the function of DNA
polymerase, and cell division pattern and frequency are the characteristics within the scope
of cancer stemness, this finding is the first to show that GRP78 can protect somatic stem
cells from apoptosis. This is also an indirect suggestion that GRP78 may have functions
in cancer stemness because of the possibility of the tumorigenic origin of somatic stem
cells. Then, Wu et al. were the first to demonstrate the possibility of cell surface GRP78
serving as a cancer stem cell marker. They showed that the head and neck cancer cell
population of cell surface GRP78hi (csGRP78hi) had better tumorigenesis capability than
that of csGRP78lo in the mouse xenograft model determined by serial dilution of the
transplanted cell numbers [51], which is one of the traditional methods to evaluate the
occurrence, or the level, of cancer stemness. Since serial dilution of the cell number of sorted
head and neck cancer cells based on the cell surface GRP78 level has a direct influence
on xenograft tumorigenesis in a mouse model, cell surface GRP78 is hypothesized to
serve a direct role in cancer stemness. Therefore, Chen et al. further investigated the
influence of the expression levels of csGRP78 on other hypothetical properties of cancer
stemness [7], including cell division pattern and cell cycle phase profile since asymmetric
cell division is considered as a sign of differentiation in cell fate determination [106],
and pluripotency state of embryonic stem cells was shown to be maintained in the cell
cycle S and G2 phases [107]. They found that the percentages of csGRP78hi head and
neck cancer cells in the G2/M cell cycle phase were more than 9-fold higher than that of
csGRP78lo in the G1 cell cycle phase. By using the flow cytometry-based cell division assay
developed by Chen et al., head and neck cancer cells expressing Progranulin on their cell
surface exclusively perform symmetric cell division, while those expressing cell surface
GRP78 perform both symmetric and asymmetric cell division. Meanwhile, GRP78 silencing
downregulated multiple stemness-related markers. This investigation demonstrates that
GRP78 is a chaperone related to cancer stemness maintenance in head and neck cancer cells
(Figure 2), considering that multiple interactome molecules to csGRP78 were detected [7].
Furthermore, Chen et al. noticed that there was a distinct cell population expressing an
ultra-high level of csGRP78 (Figure 3) in the symmetrically divided csGRP78+ cells in three
head and neck cancer cell lines (The data presented in this study are available in Gate R3 of
Figure 5B,D,F of reference [7]), but it is unknown whether these distinct cell populations
possess cancer stemness of the highest rank of the hierarchy.

Besides the head and neck cancer model, the potential function of GRP78 in cancer
stemness is also reported in other cancer models. Exogenous expression of GRP78 in
MDA-MB-231 cells increased the percentage of cell population expressing CD44+/CD24−,
and cGRP78+ MCF7 cells exhibited better in vitro and in vivo tumorigenesis than the total
unsorted and the CD44+/CD24− population [108]. GRP78 silencing significantly decreased
the in vivo survival of glioma stem cells after ionizing radiation [109]. Being chaperoned
by csGRP78 for lysosomal degradation, BACE2 silencing suppressed in vitro and in vivo
tumorigenesis capability of glioma stem cells, demonstrating that csGRP78 engages in the
regulation of cancer stemness in glioma [110]. Interestingly, using a CRISPR knockout
system, GRP78 was shown to prime non-small lung adenocarcinoma cells for cell cycle re-
entry after Cisplatin treatment, allowing cancer cells to escape the fate of senescence [111].
How cancer stem cells regulate cell cycle progression and initiate the entry or arrest is
proposed to be a key cellular event of cell stemness maintenance [7]. The mechanism of
how GRP78 contributes to cancer stemness needs to be investigated for precise targeting of
cancer stem cells. Several cell-signaling pathways were suggested to be responsible for the
regulation of self-renewal in cancer stem cells [112]. Therefore, verifying whether GRP78
regulates these pathways, or vice versa, will be valuable for understanding the mechanism
of cancer stemness maintenance.
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Figure 2. Both cancer stem cells and non-stem-like cancer cells are hypothesized to express cell
surface GRP78, but the amounts of cell surface GRP78 and its interactome of these two types of cells
are different. (A) Previously, Chen et al. designed a quantitative mass spectrometry platform to
detect the interactome of cell surface GRP78 in head and neck cancer cells [7]. Given that GRP78
silencing has a regulatory influence on stemness-related markers [7], it is logical to hypothesize that
cancer stem cells possess a more diverse GRP78 interactome than non-stem-like cancer cells; and that
cancer cells expressing a higher amount of cell surface GRP78 may possess the highest hierarchical
rank of cancer stemness. (B) Due to the higher proliferation rate of cancer cells, an increase in
plasma membrane synthesis in the endoplasmic reticulum is required, resulting in the translocation
of resident chaperone GRP78 to the cell surface. Under this circumstance, non-stem-like cancer cells
may express a certain amount of cell surface GRP78 even if there are no plasma membrane-bound
proteins that need to be chaperoned to the subcellular compartment of the plasma membrane. GRP78
is likely secreted afterwards.
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division assay was developed to characterize the profile of asymmetric/symmetric cell divisions in 
the heterogeneous cell populations of three head and neck cancer cell lines, OECM1 (A), FaDu (B), 
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Figure 5B,D,F of reference [7]), distinct cell populations expressed ultra-high levels of cell surface 
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quantification of the R5 gates of the three head and neck cancer cell lines. The percentages of R5 
gates are 1–9% of the total cell populations. 

Besides the head and neck cancer model, the potential function of GRP78 in cancer 
stemness is also reported in other cancer models. Exogenous expression of GRP78 in 
MDA-MB-231 cells increased the percentage of cell population expressing CD44+/CD24−, 
and cGRP78+ MCF7 cells exhibited better in vitro and in vivo tumorigenesis than the total 
unsorted and the CD44+/CD24− population [108]. GRP78 silencing significantly decreased 
the in vivo survival of glioma stem cells after ionizing radiation [109]. Being chaperoned 
by csGRP78 for lysosomal degradation, BACE2 silencing suppressed in vitro and in vivo 
tumorigenesis capability of glioma stem cells, demonstrating that csGRP78 engages in the 
regulation of cancer stemness in glioma [110]. Interestingly, using a CRISPR knockout 
system, GRP78 was shown to prime non-small lung adenocarcinoma cells for cell cycle re-

Figure 3. Distinct small populations of symmetrically divided cancer cells expressing ultra-high
levels of cell surface GRP78 were consistently observed in the flow cytometry-based cell division
assay. In a previously published article by Chen et al. [7], a high throughput flow cytometry-based
cell division assay was developed to characterize the profile of asymmetric/symmetric cell divisions
in the heterogeneous cell populations of three head and neck cancer cell lines, OECM1 (A), FaDu
(B), and BM2 (C). In the three cancer cell lines that went through symmetric cell division (Gate R3 of
Figure 5B,D,F of reference [7]), distinct cell populations expressed ultra-high levels of cell surface
GRP78 (the R5 gates) consistently above the levels of major csGRP78 positive populations. (D) The
quantification of the R5 gates of the three head and neck cancer cell lines. The percentages of R5 gates
are 1–9% of the total cell populations.

5. GRP78-Based Therapy for Multiple Cancer Models, and Specificity Concerns of
GRP78 Targeting

Recently, GRP78-based target strategies for therapy were demonstrated in several
cancer models. Antibodies were the initial strategy for targeting GRP78 [113,114]. A clinical
therapeutic trial using a monoclonal antibody recognizing GRP78 to treat patients with
advanced melanoma was completed [114]. Coating with SP94 peptide that specifically
binds to GRP78, nanoparticles containing doxorubicin significantly reduced the sizes of
prostate cancer xenografts in mice exposed to ultrasound real-time imaging [115]. Other
nanoparticles coated with VAP (a D-peptide ligand of GRP78) [116] and RI-VAP (a specific
ligand of cell surface GRP78) [117] were shown to effectively target glioblastoma and
glioma, respectively. Hebbar et al. generated T cells expressing chimeric antigen receptors
(CARs) which specifically recognize GRP78 (GRP78-CAR T cells) by expressing a peptidic
GRP78 ligand in T cells in vitro differentiated from human peripheral blood mononuclear
cells (PBMCs) from healthy donors. Their GRP78-CAR T cells showed effective killing
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activity against the xenografts of acute myeloid lymphoma in mice yet leaving normal
hematopoietic progenitor cells unharmed [118]. Salidroside suppressed the growth of
nasopharyngeal cancer xenografts in mice, and the mechanism of this suppression was
shown to correlate with the downregulation of GRP78 via Salidroside-induced upregulation
of miR-4262 [119].

It is unknown whether GRP78 is expressed on the cell surface of normal stem cells,
and as a result, the specificity of GRP78-targeted therapy is the main concern for cancer
patients. Several reports mentioned or characterized the role of GRP78 in the field of normal
stem cells. GRP78 was found to serve an essential role during the early development of
mouse embryos and embryo implantation. GRP78 knockout in the mouse embryos resulted
in apoptosis of the inner cell mass, and homozygous knockout of GRP78 was lethal to
the mouse embryos [120]. GRP78 protein expression was detected in the luminal and
glandular epithelia of the mouse uterus during early pregnancy, and a high level of GRP78
was detected at the implantation site of the embryo [121]. In a cartilage development
model, GRP78 protein expression was found in the chondrocytes of the growth plates of
late-pregnancy mouse embryos and newborns. Additionally, GRP78 overexpression in the
undifferentiated mouse embryo fibroblasts and differentiated chondrogenic cells increased
the percentages of cells in the S phase in the total population [122]. Intravenous injection of
GRP78 siRNA appeared to compromise the stem cell niche of normal mouse hair follicles
Fig 6. B-1 of reference [81] . Yang et al. reported that GRP78 overexpression decreased
the apoptosis induced by misfolded androgen receptor in mouse embryonic stem cells,
and GRP78 knockdown increased the accumulation of androgen receptor aggregates and
caspase 3 activity [123]. This shows that GRP78 is an important regulator of lineage deter-
mination of differentiating embryonic stem cells. CsGRP78 was demonstrated to promote
reprogramming of human neonatal keratinocytes and iPSCs derived from fibroblasts [108].
Further investigation of cell surface GRP78 in the fields of normal stem cells and cell fate
determination is required for evaluating the specificity of targeting csGRP78 in cancer
therapeutic strategies.

6. Conclusions

After the investigation of GRP78 for nearly half of a century, different methods have
been invented for targeting this molecule, including antibodies, nanoparticles coated
with specific ligand peptides, and specific CAR-T cells. For prolonging the disease-free
survival of cancer patients, it is necessary to precisely target the cancer stem cells for
eradicating cancers. Therefore, studying the mechanism of how GRP78 contributes to the
maintenance of cancer stemness is important for understanding the characteristics of cancer
stem cells. Given that ultra-high levels of csGRP78 may represent high-hierarchical cancer
stem cells (Figure 2), targeting csGRP78 may still be a feasible therapeutic intervention for
eradicating cancers.
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