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ABSTRACT
Background: Monitoring countries’ progress toward the achievement of their nutrition targets is an important task,

but data sparsity makes monitoring trends challenging. Childhood stunting and overweight data in the European region

over the last 30 y have had low coverage and frequency, with most data only covering a portion of the complete age

interval of 0–59 mo.

Objectives: We implemented a statistical method to extract useful information on child malnutrition trends from sparse

longitudinal data for these indicators.

Methods: Heteroscedastic penalized longitudinal mixed models were used to accommodate data sparsity and predict

region-wide, country-level trends over time. We leveraged prevalence estimates stratified by sex and partial age intervals

(i.e., intervals that do not cover the complete 0–59 mo), which expanded the available data (for stunting: from 84 sources

and 428 prevalence estimates to 99 sources and 1786 estimates), improving the robustness of our analysis.

Results: Results indicated a generally decreasing trend in stunting and a stable, slightly diminishing rate for overweight,

with large differences in trends between low- and middle-income countries compared with high-income countries. No

differences were found between age groups and between sexes. Cross-validation results indicated that both stunting

and overweight models were robust in estimating the indicators for our data (root mean squared error: 0.061 and 0.056;

median absolute deviation: 0.045 and 0.042; for stunting and overweight, respectively).

Conclusions: These statistical methods can provide useful and robust information on child malnutrition trends over

time, even when data are sparse. J Nutr 2022;152:1773–1782.
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Introduction

Monitoring countries’ progress toward the achievement of their
nutrition targets using national surveys is of great interest in
global health. Global rates of childhood stunting prevalence are
still unacceptably high and thus a cause for major concern (1,
2); meanwhile, childhood overweight and obesity is increasingly
common (3, 4). The 2012 World Health Assembly endorsed a
40% reduction in stunting, and no increases in overweight, for
children <5 y of age by 2030 (5). These are also addressed by
target 2.2 of the Sustainable Development Goals (SDGs) and the
WHO General Program of Work 2019–2023 (GPW13) (6, 7).
Monitoring trends in stunting and overweight can be difficult,
however, owing to data sparsity, which is a common challenge
in nutritional epidemiology and public health. Developments
in statistical methods allow us to gain valuable insights using
longitudinal data for these indicators, even when data are

sparse (8, 9). In this study, we implement these methods to
examine the longitudinal trends in stunting and overweight for
children under the age of 5 y over a 30-y period—between 1990
and 2020—using existing stunting and overweight data from
the WHO European region, where data coverage is poor. We
demonstrate a method to produce suitable estimates from sparse
data, and therefore a useful tool for monitoring and assessing
trends in childhood malnutrition.

Stunting, resulting from chronic malnutrition, indicates past
deficient environment and is an accurate marker of inequality
(1, 10). Stunting is a useful overall indicator of a child’s well-
being and a useful marker for future child development, work
capacity as an adult, and susceptibility to chronic disease (1,
10). Stunting is also associated with metabolic, physiological,
and psychological risk factors for subsequent child overweight
and adult overweight (11–13), which are associated with
serious health issues such as an increased risk of premature
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TABLE 1 Summary statistics for stunting and overweight prevalence estimates as rates (1 equaling to 100% of the population),
stratified by age and sex, of children under the age of 5 y for countries in the European region between 1990 and 20201

Stunting Overweight

Age group Both sexes Girls Boys Both sexes Girls Boys

0–59 mo
n 84 66 66 80 66 66
Mean ± SD 0.14 ± 0.09 0.14 ± 0.08 0.15 ± 0.09 0.11 ± 0.06 0.11 ± 0.06 0.12 ± 0.07
Min–max 0.01–0.40 0.01–0.38 0.00–0.41 0.03–0.30 0.02–0.31 0.02–0.29

0–5 mo
n 65 63 64 65 63 64
Mean ± SD 0.12 ± 0.07 0.11 ± 0.08 0.13 ± 0.08 0.09 ± 0.05 0.09 ± 0.06 0.10 ± 0.06
Min–max 0.02–0.39 0.01–0.43 0.01–0.41 0.01–0.26 0.00–0.33 0.00–0.26

6–11 mo
n 71 68 68 70 68 68
Mean ± SD 0.11 ± 0.08 0.10 ± 0.08 0.13 ± 0.09 0.11 ± 0.07 0.11 ± 0.07 0.11 ± 0.07
Min–max 0.01–0.39 0.00–0.33 0.01–0.43 0.02–0.28 0.01–0.33 0.02–0.31

12–23 mo
n 72 68 68 71 68 68
Mean ± SD 0.16 ± 0.09 0.15 ± 0.09 0.18 ± 0.10 0.14 ± 0.09 0.13 ± 0.08 0.15 ± 0.09
Min–max 0.01–0.44 0.01–0.41 0.00–0.45 0.03–0.34 0.01–0.39 0.03–0.37

24–35 mo
n 72 69 69 71 69 69
Mean ± SD 0.18 ± 0.12 0.17 ± 0.11 0.19 ± 0.13 0.12 ± 0.07 0.12 ± 0.07 0.13 ± 0.07
Min–max 0.01–0.50 0.00–0.50 0.00–0.51 0.03–0.36 0.01–0.37 0.03–0.36

36–47 mo
n 70 67 67 69 67 67
Mean ± SD 0.15 ± 0.10 0.15 ± 0.10 0.15 ± 0.11 0.11 ± 0.07 0.10 ± 0.07 0.12 ± 0.07
Min–max 0.00–0.44 0.00–0.45 0.00–0.43 0.02–0.28 0.02–0.29 0.01–0.29

48–59 mo
n 71 68 68 70 68 68
Mean ± SD 0.13 ± 0.09 0.13 ± 0.10 0.12 ± 0.10 0.10 ± 0.06 0.09 ± 0.07 0.11 ± 0.07
Min–max 0.00–0.45 0.00–0.46 0.00–0.45 0.01–0.30 0.00–0.28 0.00–0.35

Other partial groups2

n 121 110 110 115 109 109
Mean ± SD 0.17 ± 0.10 0.15 ± 0.09 0.17 ± 0.09 0.12 ± 0.07 0.12 ± 0.07 0.13 ± 0.07
Min–max 0.01–0.45 0.01–0.45 0.01–0.46 0.03–0.31 0.03–0.33 0.03–0.32

1Additional details are provided in the text. Stunting is defined as <2 SDs of height-for-age; overweight as >2 SDs of weight-for-length/height. Our data were compiled from
the 2021 Joint Malnutrition Estimates and the WHO Global Database on Child Growth and Malnutrition.
2Additional details are provided in the text. These are age groups with nonstandard intervals and do not fit into any of the above groups.

illness and death in adulthood (3, 4). On its own, childhood
overweight and obesity is becoming increasingly common
(14).

In the WHO European region, data coverage for stunting
and overweight in children <5 y old is low. The 2021 edition
of the UNICEF-WHO-World Bank Joint Child Malnutrition
Estimates (JME)—a comprehensive global database of stan-
dardized child malnutrition estimates—recorded only 27 out
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of the 53 countries in the region as having available data
(15). Whereas in other regions several surveys are implemented
on a regular basis, most countries in the WHO European
region rely heavily on kindergartens to collect data for children
<5 y of age. This results in several of the available data sets,
from either surveys or studies, covering only a small part of
the indicators’ full age range of birth to 5 y. Furthermore,
inclusion in the JME database requires the data to cover
≥3 y of the full age interval. These types of data are therefore
usually not included in the JME global exercise, even though
they are nationally representative and include no major data
quality concerns as per the UNICEF and WHO criteria for
child anthropometric data (16). Other concerns with sparse data
in this region include the sporadic administration of national
surveys and a lack of standardized methodology across different
data sources. Utilizing all available data is important given the
data scarcity, provided appropriate reanalyses are conducted
of the raw data whenever available and that adjustments are
applied for harmonizing estimates across years and countries.
Statistical modeling can be used to accommodate data sparsity
by applying trends from data-rich countries and periods to areas
and times when data are sparse (8).
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FIGURE 1 Age group–adjusted and sex-stratified stunting prevalence estimates by country and year for 26 European countries in 1990–2020
for ages 0–59 mo. Sex groups are denoted by different shading as shown in the legend. Estimates for both sexes were from a database with
sexes combined. Predicted estimates are denoted by the solid gray line, 95% CIs in dotted gray lines, and prediction intervals in dot-and-dash
gray lines.

This study builds on a previous analysis that used het-
eroscedastic penalized longitudinal models with multisource
summary measures in the WHO African region (9) and its
subsequent enhanced version applied at global level for the JME
2021 edition (17), by using additional covariates and modeling
features for implementation now in the WHO European region.
This study aims to address one of the main concerns in
this region by proposing a method to use all available data,
even if age intervals covered are shorter than the standard
age interval of birth to 5 y, and systematically adjust for
differences in age representation (17). Separate models were run
for stunting and overweight in children under the age of 5 y.
The models used age, sex, and countries’ income classification,
which had 3 benefits. First, we used a flexible strategy to
leverage data with partial age intervals in situations where
complete age intervals were missing. Second, the estimates
were stratified on sex to investigate whether any inequalities
in malnutrition prevalence existed due to sex, because several
studies have found that, for children <5 y old, boys are
more likely to be stunted than girls for various reasons (18,
19). Third, World Bank countries’ income classification, using
the 2 groups low- and middle-income countries (LMICs) and
high-income countries (HICs), was used to adjust for differ-
ences between countries’ malnutrition prevalence by income

classification and to aid in prediction of country-level trends
(2, 11, 20).

Even though stunting is not as pressing an issue in
the European region as in other regions (e.g., Africa), low
availability of quality data is a major concern in nutritional
epidemiology. Target 17.18 of the SDGs calls for increased
availability of high-quality data by 2020 (6). We demonstrate
that the methods discussed in this article can provide useful
information in monitoring health indicators such as child
malnutrition from existing sparse longitudinal data.

Methods
Data
Child stunting and overweight prevalence for countries within the
WHO European region (Supplemental Text 1) were compiled from
the JME Database (15) and the WHO Global Database on Child
Growth and Malnutrition (21, 22). These databases derive childhood
malnutrition prevalence estimates from data sources such as national
surveys, nationally representative surveys, and representative studies on
childhood malnutrition, whereby the recorded prevalence estimates are
standardized as per the methods described in the WHO Child Growth
Standards (23, 24). These standards provide the global guideline
used for monitoring childhood malnutrition; prevalence estimates are

Estimating European stunting and overweight trends 1775



e,

FIGURE 2 Age group–adjusted and sex-stratified overweight prevalence estimates by country and year for 26 European countries in 1990–
2020 for ages 0–59 mo. Sex groups are denoted by different shading as shown in the legend. Estimates for both sexes were from a database with
sexes combined. Predicted estimates are denoted by the solid gray line, 95% CIs in dotted gray lines, and prediction intervals in dot-and-dash
gray lines.

standardized using the methods provided in the guideline so that the
estimates are comparable across different time periods and different
locations. This guideline defines stunting as <2 SDs of height-for-age
and overweight as >2 SDs of weight-for-length/height (23). Prevalence
estimates with missing sampling standard error (SSE) of the prevalence
and missing population size were excluded. Age and sex groups
are internal to the data, whereas income classification was created
by the authors. Income classification was obtained from the World
Bank; countries were determined as LMICs or HICs based on their
classification for the last 10 y (25).

A total of 99 and 90 data sources for stunting and overweight,
respectively, were available from 26 countries, spanning the years 1990–
2020. In this article we use “year”to refer to the calendar year in which a
survey was done, distinct from “age” which refers to a child’s age, given
in months. The data were all collected by October 2020. The data for
Greece were not available during the time of this analysis and therefore
were not included in our analyses even though the data were included
in the 2021 JME database. Including age and sex stratifications, we had
a total of 1786 prevalence estimates for stunting and 1769 prevalence
estimates for overweight. The prevalence estimates in our data may be
stratified by sex and partial age group.

Age is represented as a categorical variable in our data, where the
first 5 y of life are split into 6 periods. The 6 periods are 0–5, 6–11, 12–
23, 24–35, 26–47, and 48–59 mo, consistent with the age stratification
used in standard nutrition surveys. The sex variable has 2 categories
of males and females. Countries’ income classification has 2 categories:
low-or-middle income or high-income, as classified by the World Bank

over the last 10 y (25). Supplemental Texts 2, 3 and 4 and Supplemental
Tables 1 and 2 further explain the model covariates, detail the data
preparation, and provide example data.

Had partial age intervals not been considered, 15 of the 99 stunting
(15%) and 10 of the 90 overweight (11%) data sources would have been
excluded; in addition, there were only 84 prevalence estimates out of the
1786 (5%) for stunting that spanned the complete age interval (birth to
60 mo) for both sexes (Table 1); for overweight, this was only 80 out of
1769 (5%) estimates. By including prevalence estimates with partial age
intervals, we have more estimates available for stunting and overweight
prevalence than if we only included the complete age interval of birth to
5 y of age. Splitting the complete age estimate into multiple partial age
intervals had a small impact on the effective sample size compared with
adding a new data source, but they helped improve the contribution of
predictor variables (26). A total of 28 of the 189 (15%) data sources for
both stunting and overweight did not include partial age intervals. There
were more prevalence estimates with partial age intervals recorded after
the year 2000; this came with an increase in the number of surveys
generally after the year 2000.

Of the 26 countries, only 17 and 18 countries had ≥3 surveys
with data over the complete age interval available for stunting and
overweight, respectively, for the 30-y period of interest from 1990 to
2020. For the remaining countries, 4 countries had 2 data sources
and 5 countries had 1 data source for stunting. For overweight, 3
countries had 2 data sources and 7 countries had 1 data source.
One of the objectives of this modeling was to predict prevalence
estimates for countries and years where data were missing. For both
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FIGURE 3 Age group–adjusted and sex-stratified stunting prevalence estimates by country and year for 26 European countries in 1990–2020
for ages 0–59 mo and sexes combined, with the country’s World Bank income classification accounted as an additional covariate. Income
classification groups are denoted by different shading as shown in the legend. Predicted estimates are denoted by the solid gray line, 95% CIs
in dotted gray lines, and prediction intervals in dashed gray lines.

stunting and overweight, few data sources existed in the period of
1990–1994; the data coverage improved marginally in subsequent
years. In the periods 2010–2014 and 2015–2020, the data coverage
dropped again. The data set contained an average of 22 and 21
age-group-specific prevalence estimates per country over a 30-y period
for stunting and overweight, respectively.

Statistical analysis
Penalized longitudinal models with heterogeneous error terms were
implemented, where the nonlinear longitudinal patterns in the outcomes
were captured using penalized cubic B-splines (P-splines). Among-
country heterogeneity in the longitudinal pattern was captured using
country-specific intercepts and cubic B-splines. The model was fit using
the lme function in R (25, 27) and used the connection between P-
splines and random-effect models proposed by Currie and Durban
(8, 27).

Our model for stunting and overweight prevalence was designed to
capture the unique aspects of the data. In total, our model consisted of
a linear mixed model with penalized cubic B-splines (P-splines) and a
heterogeneous error term on logit-transformed malnutrition prevalence
(9, 28). This model has 4 main components. First, the nonlinear
longitudinal patterns in the outcomes over time were captured using
penalized cubic B-splines (P-splines). Specifically, all models used cubic
B-splines spaced 2 y apart over the total study period (1990–2019).
Penalizing promotes small B-spline coefficients and a linear pattern.
P-splines optimally adapt the penalty to the degree of nonlinearity

in the data (8). Second, the SSE values were used to account for
increasing residual variance with the SE of the survey. Third, we
added to the model the covariates age, sex, and countries’ income
classification. Fourth, random intercepts and random B-splines were
used to account for among-country heterogeneity. The random B-
splines were evenly spaced over the study period; their number and
covariance were determined through a model selection process based
on the Akaike information criterion with correction (AICc) (29). The
model was fit using the statistical software R with the nlme package (25).
This method is an extension of previously published methodology for
penalized longitudinal models applied to childhood malnutrition and
the software program used for this model can be found on GitHub
(9, 30). Supplemental Text 2 provides further details on statistical
methodology.

Two surveys had a recorded stunting prevalence of 0, which could
not be incorporated due to the logit transformation on the outcome.
To circumvent this, we considered these instances to be a limit-of-
detection problem, whereby a nonzero prevalence could not be detected.
In keeping with the limit-of-detection literature, each such prevalence
was replaced with the value 1/2n, n being the unweighted sample size
for the survey (31).

A k-fold cross-validation was conducted to check the validity and
robustness of our model, where the data were randomly divided into k
number of groups at the survey level. One group was then taken out
and the model rerun on the remaining k − 1 groups; this was repeated
k times. Subsequently, coverage probability of uncertainty intervals,
bias, root mean squared error (RMSE), and median absolute deviation
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FIGURE 4 Age group–adjusted and sex-stratified overweight prevalence estimates by country and year for 26 European countries in 1990–
2020 for ages 0–59 mo and sexes combined, with the country’s World Bank income classification accounted as an additional covariate. Income
classification groups are denoted by different shading as shown in the legend. Predicted estimates are denoted by the solid gray line, 95% CIs
in dotted gray lines, and prediction intervals in dashed gray lines.

(MAD) were calculated for each subset and then averaged across the k
subsets to assess model performance (32).

Results

To decide the best covariance structure and number of splines
for the model, we checked the AICc statistic for various model
configurations. Based on the AICc, a compound symmetry
covariance structure for the random effects was chosen for both
stunting and overweight models. The penalized splines were
equally spaced at every 2 y for the stunting model and at every
4 y for the overweight model. Cross-validation indicated that
the selected model was valid and robust. Refer to Supplemental
Text 5 for further details on cross-validation.

Stunting prevalence had a generally decreasing trend
between 1990 and 2020 (Figure 1), whereas overweight
prevalence had a generally increasing trend which subsequently
declined (Figure 2). Stunting and overweight prevalence did not
differ between age groups or between sexes. Regarding income
classification, LMICs tended to have higher rates of stunting
with a sharper decline over the 30-y period, whereas HICs had
an overall stable rate of stunting consistently close to 0 over
the years (Figure 3). Similar trends occurred for overweight;
HICs had a more stable prevalence of overweight over the years

than LMICs (Figure 4). For both indicators, there were fewer
observed prevalence estimates for HICs than for LMICs, which
may have contributed to the stable fitted values over time for
HICs. Furthermore, data from LMICs had higher SEs than data
from HICs.

Most of the observed prevalence estimates fit well within the
range of the predictive intervals. The few estimates that did not
fall within this range did not have a recorded SSE associated
with the prevalence. Cross-validation results revealed that
uncertainty intervals for stunting were appropriate, whereas the
overweight intervals were too narrow, which may be due to
the elasticity of weight-related indicators. We also observed no
important differences in the prediction errors from the k-fold
cross-validation, even between age groups, for both stunting
and overweight. This implied our fitted models were valid and
robust for the data observed.

Table 1 presents summary statistics for stunting and
overweight prevalence estimates for children <5 y old in the
European region from 1990 to 2020, stratified by age and
sex. Table 2 presents summary statistics of these prevalence
estimates stratified by age and income. We observed similar
trends to the model-derived estimates found in Figures 1–4.

Our 10-fold cross-validation results indicated that the
models were robust in estimating the indicators for our data
which included incomplete age intervals. Refer to Table 3
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TABLE 2 Summary statistics for stunting and overweight prevalence estimates as rates (1
equaling to 100% of the population), stratified by age and income classification, of children under the
age of 5 y for countries in the European region between 1990 and 20201

Stunting Overweight

Age group LMICs HICs LMICs HICs

0–59 mo
n 188 28 186 26
Mean ± SD 0.16 ± 0.08 0.02 ± 0.01 0.12 ± 0.06 0.05 ± 0.02
Min–max 0.04–0.41 0.00–0.03 0.03–0.31 0.02–0.10

0–5 mo
n 177 15 177 15
Mean ± SD 0.13 ± 0.08 0.04 ± 0.02 0.10 ± 0.06 0.03 ± 0.02
Min–max 0.01–0.43 0.01–0.06 0.00–0.33 0.01–0.07

6–11 mo
n 189 18 188 18
Mean ± SD 0.12 ± 0.08 0.02 ± 0.01 0.12 ± 0.07 0.03 ± 0.02
Min–max 0.02–0.43 0.00–0.05 0.01–0.33 0.02–0.08

12–23 mo
n 190 18 189 18
Mean ± SD 0.18 ± 0.09 0.03 ± 0.02 0.15 ± 0.09 0.05 ± 0.02
Min–max 0.04–0.45 0.00–0.11 0.02–0.39 0.01–0.09

24–35 mo
n 189 21 188 21
Mean ± SD 0.20 ± 0.11 0.01 ± 0.01 0.13 ± 0.07 0.07 ± 0.05
Min–max 0.02–0.51 0.00–0.03 0.01–0.37 0.02–0.19

36–47 mo
n 180 24 179 24
Mean ± SD 0.17 ± 0.09 0.01 ± 0.01 0.12 ± 0.07 0.04 ± 0.01
Min–max 0.02–0.45 0.00–0.03 0.01–0.29 0.02–0.06

48–59 mo
n 183 24 182 24
Mean ± SD 0.14 ± 0.09 0.01 ± 0.01 0.10 ± 0.07 0.05 ± 0.05
Min–max 0.01–0.46 0.00–0.05 0.00–0.35 0.00–0.26

Other partial groups2

n 334 7 326 7
Mean ± SD 0.17 ± 0.09 0.02 ± 0.01 0.12 ± 0.07 0.04 ± 0.01
Min–max 0.01–0.46 0.01–0.04 0.03–0.33 0.03–0.05

1Additional details are provided in the text. Stunting is defined as <2 SDs of height-for-age; overweight as >2 SDs of
weight-for-length/height. Our data were compiled from the 2021 Joint Malnutrition Estimates and the WHO Global Database on
Child Growth and Malnutrition. HICs and LMICs were grouped as per the World Bank Income Classification scheme. HIC,
high-income country; LMIC, low- and middle-income country.
2Additional details are provided in the text. These are age groups with nonstandard intervals and do not fit into any of the above
groups.

for the resulting metrics derived from cross-validation and
Supplemental Text 5 for a further explanation of these metrics.
The coverage probability for stunting was close to 95%,
whereas for overweight it was lower at 85.5%, indicating that

TABLE 3 Estimates of coverage probability, bias, test errors,
and MAD obtained from 10-fold cross-validation for stunting and
overweight1

Stunting Overweight

Coverage probability 0.938 0.855
Average bias 0.006 –0.002
Median bias 0.002 –0.005
Mean squared error 0.004 0.003
RMSE 0.061 0.056
MAD 0.045 0.042

1MAD, median absolute deviation; RMSE, root mean squared error.

the SE was underestimated. Bias was close to 0 for both models,
and the RMSE values were low: 0.061 for stunting and 0.056
for overweight. The MAD of 0.045 for stunting indicated that
our predictions will be within 0.045 of the observed value
half the time; the MAD for overweight at 0.042 was similarly
close. These results were desirable and indicated that both
stunting and overweight models were robust in estimating
the indicators for our data which included incomplete age
partitions.

To determine if there were any differences in RMSE and
MAD values between age groups, a random-effect ANOVA of
the RMSE and MAD on age group was run for both stunting
and overweight (Tables 4 and 5). The RMSE values were not
different between age groups for the stunting and overweight
estimates (P = 0.782 and P = 0.995, respectively); MAD
values were not different between age groups either for both
stunting and overweight estimates (P = 0.139 and P = 0.994,
respectively).
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TABLE 4 RMSE and MAD values from cross-validation by age group for stunting1

RMSE MAD

Age group, mo Mean ± SD 95% CI Mean ± SD 95% CI

0–5 0.0159 ± 0.002 0.0125, 0.0194 0.0125 ± 0.001 0.0099, 0.0151
6–11 0.0149 ± 0.002 0.0115, 0.0184 0.0088 ± 0.001 0.0062, 0.0114
12–23 0.0140 ± 0.002 0.0106, 0.0175 0.0077 ± 0.001 0.0051, 0.0104
24–35 0.0168 ± 0.002 0.0133, 0.0202 0.0114 ± 0.001 0.0088, 0.0140
36–47 0.0141 ± 0.002 0.0106, 0.0175 0.0098 ± 0.001 0.0072, 0.0124
48–59 0.0138 ± 0.002 0.0103, 0.0172 0.0095 ± 0.001 0.0069, 0.0121

1MAD, median absolute deviation; RMSE, root mean squared error.

Discussion

The methods used in this study were primarily intended to
accurately track changes in childhood stunting and overweight
in the WHO European region, where data were sparse and
data with complete age intervals were not always possible
to obtain. We developed penalized longitudinal models with
multisource summary measures to estimate stunting and
overweight prevalence with their uncertainties for all data
available that met the inclusion criteria. The model estimates
were obtained using data from any country which had ≥1
survey estimate for stunting or overweight. We specified models
adjusted for age group using age partition covariates, stratified
for sex, and adjusted for the countries’ income group. SSEs were
imputed where they were missing in the original data set. Cross-
validation was conducted to assess the validity and robustness
of the model, accounting for all age intervals in the analysis data
set, not only those covering birth to 5 y.

This method has several strengths. First, it is an effective
way to produce estimates from sparse data, due to either
lack of surveys conducted for a country in a year or the
different sampling frames for age intervals. Second, the method
is specifically designed to account for the unique aspects in
the data, mainly modeling nonlinear trends in prevalence over
time with partial age intervals and incorporating missing and
observed SSEs and among-country heterogeneity. Third, this
method is useful to compare data collected using standardized
procedures with those collected from alternative data sources
where procedures are not necessarily standardized (e.g., pedi-
atric clinics) and to subsequently evaluate the impact of data
quality on prevalence estimates. Fourth, code, sample data, and
examples for how to implement the model are publicly available
(9, 30). Future research is needed to examine how the landscape
looks depending upon which data source is used.

A challenge when using this method is the mathematical
complexity of this model. Despite the straightforward imple-
mentation programmatically, some understanding of statistical

methods is required to appropriately fit mixed-effects models
and to select the appropriate model parameters, such as
covariance structure and number of splines. Another is that
prediction errors could be difficult to use when judging model
fit. Prediction errors for this model were heavily driven by the
overall prevalence estimate; errors will be smaller if a prevalence
estimate is closer to 0 than if it is closer to 0.5. Another
potential challenge for using this method is in determining
whether one has enough observed prevalence estimates to
conduct the modeling process. Even though the objective of this
method is to assist in predicting prevalence where there is data
sparsity, a minimal frequency of observed prevalence estimates
is needed to derive results that are accurate and informative in
monitoring countries’ progress. Cross-validation must therefore
be done postestimation to ensure the fitted model is valid and
robust.

In conclusion, monitoring childhood malnutrition preva-
lence and trends, especially as manifested by stunting and
overweight, is a global health public concern. Deriving useful
information on the trends of childhood stunting or overweight
from sparse longitudinal data is a useful exercise in line
with target 17.18 of the SDGs for improved data quality.
These methods can be repeated for other regions that aim
to monitor trends in their countries’ levels of childhood
malnutrition despite sparse data. Assessing these trends can
provide important information to policy makers as they
examine the effectiveness of nutrition programs over time or
identify priority areas for action.

Our method accounted for age partition, sex, and income
classification to estimate differences in stunting and overweight
prevalence in the WHO European region. The trends in
stunting and overweight prevalence differed between LMICs
and HICs, justifying the proposed adjustment by income group
and increasing the estimates’ accuracy. Although prevalence
did not differ between age groups and between sexes for
these indicators in this region, sex-stratified reporting and
monitoring is important to allow for the expected inequality

TABLE 5 RMSE and MAD values from cross-validation by age group for overweight1

RMSE MAD

Age group, mo Mean ± SD 95% CI Mean ± SD 95% CI

0–5 0.0540 ± 0.002 0.0504, 0.0577 0.0408 ± 0.001 0.0381, 0.0436
6–11 0.0551 ± 0.002 0.0517, 0.0586 0.0419 ± 0.001 0.0393, 0.0445
12–23 0.0541 ± 0.002 0.0508, 0.0574 0.0411 ± 0.001 0.0386, 0.0436
24–35 0.0537 ± 0.002 0.0502, 0.0571 0.0408 ± 0.001 0.0381, 0.0434
36–47 0.0539 ± 0.002 0.0504, 0.0575 0.0412 ± 0.001 0.0385, 0.0439
48–59 0.0540 ± 0.002 0.0506, 0.0575 0.0412 ± 0.001 0.0386, 0.0438

1MAD, median absolute deviation; RMSE, root mean squared error.
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analysis, emphasized in the SDGs. The cross-validation showed
no difference in the prediction errors between age partitions.
Data from LMICs had higher SEs than data from HICs,
which is mainly due to the prevalence estimates for LMICs
being closer to 0.5 (where uncertainty is maximized) but
perhaps also due to variability in the LMICs’ nutritional
status. Nevertheless, validation techniques indicated the models
were largely accurate and unbiased for both stunting and
overweight.

Although aiming to fill in data gaps in the European
region, this analysis reiterates the importance of both collecting
anthropometric data across the entire birth-to-5 y age interval
and improving practices that enhance data quality (16). Even
with data sparsity, carefully developed and applied statistical
methods such as penalized longitudinal models allowed us to
generate robust estimates of trends in childhood malnutrition
indicators for areas with sparse data.
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