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ABSTRACT

The ciliate Tetrahymena thermophila is an important
eukaryotic model organism that has been used in
pioneering studies of general phenomena, such as
ribozymes, telomeres, chromatin structure and gen-
ome reorganization. Recent work has shown that
Tetrahymena has many classes of small RNA mol-
ecules expressed during vegetative growth or
sexual reorganization. In order to get an overview
of medium-sized (40–500 nt) RNAs expressed from
the Tetrahymena genome, we created a size-
fractionated cDNA library from macronuclear RNA
and analyzed 80 RNAs, most of which were previ-
ously unknown. The most abundant class was small
nucleolar RNAs (snoRNAs), many of which are
formed by an unusual maturation pathway. The
modifications guided by the snoRNAs were analyzed
bioinformatically and experimentally and many
Tetrahymena-specific modifications were found, in-
cluding several in an essential, but not conserved
domain of ribosomal RNA. Of particular interest,
we detected two methylations in the 50-end of U6
small nuclear RNA (snRNA) that has an unusual
structure in Tetrahymena. Further, we found a can-
didate for the first U8 outside metazoans, and an
unusual U14 candidate. In addition, a number of
candidates for new non-coding RNAs were char-
acterized by expression analysis at different growth
conditions.

INTRODUCTION

Non-coding RNAs (ncRNA) represent a large proportion
of the transcribed sequences in eukaryotes (1,2). Although
functional studies are lagging behind the sequencing ef-
forts, ncRNAs have been associated with aspects of many
fundamental cellular processes, and hence also implicated

in a wide range of diseases (3). NcRNA is a heterogeneous
group of transcripts ranging in size from 20 to 24 nt micro
RNAs (miRNAs) (4) to several thousands of nucleotides,
such as the Xist RNA (5). Their overall sequence conser-
vation, even within the same class of ncRNAs, can be very
low which makes them hard to convincingly predict and
map by in silico methods.
The most abundant classes of ncRNAs beside the riboso-

mal RNAs are small RNAs well below the size of mRNAs.
The smallest, 20–25nt ncRNAs, such as miRNA and
siRNAs have been implicated in regulatory processes in-
cluding transcriptional and post-transcriptional gene silenc-
ing (4). Another prominent large class of ncRNAs is small
nucleolar RNAs (snoRNAs). Based on specific sequence
motifs, snoRNAs are divided into two subclasses, box C/
D and box H/ACA, each associated with a specific set of
proteins and known to guide 20-O-ribose methylations
(Nms) and pseudouridylations (�s), respectively (6,7).
The majority of snoRNAs guide site-specific modification
of nucleotides in the nascent pre-rRNA through base-
pairing interactions. In addition, a few snoRNAs are
important in the processing that lead to the excision of
ribosomal spacers from pre-rRNA (8). In the recent years
the complexity of the snoRNA biology has increased and
snoRNAs targeting snRNAs, tRNAs and mRNAs have
been described along with orphan snoRNAs with no
apparent target among the main groups of RNA.
Furthermore, some snoRNA genes have been shown to
be differentially expressed depending on tissue type and
to be among the relatively few genes that are parentally
imprinted (9,10). Recently, miRNA and snoRNA biology
converged when it was demonstrated in humans and in
the protozoan Giardia lamblia, that miRNAs controlling
mRNA translation could be produced from snoRNAs
in a dicer-dependent manner (11,12). The genomic
organization of snoRNAs is highly variable. SnoRNA
genes can be found both as independent units transcribed
from their own promoter or as intron encoded genes.
The latter, have been shown to be processed to mature
snoRNAs by either a splicing-dependent or independent
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pathway. Furthermore, both intronic and independent
snoRNA genes can be found as individual genes or as
part of a cluster. In many cases, clustered snoRNAs
have been shown to be transcribed as a single unit and
subsequently processed by ribonucleases to the mature
gene products. Typically, organisms have more than one
type of genomic organization of their snoRNA genes.
However, most show a strong preference toward a certain
type(s) of organization (13,14).
Considering the structural and functional diversity of

ncRNA, it is of interest to explore these RNAs in a
variety of organisms. As examples, recent reports have
described small ncRNAs from Arabidopsis and the silk-
worm, Bombyx mori (15,16). Our emphasis is on the ciliate
Tetrahymena thermophila that has been used as a model
in RNA research for decades and has pioneered the ribo-
zyme (17) and telomerase (18) fields. As most ciliates,
Tetrahymena has two structurally and functionally distinct
nuclei. The diploid micronucleus (MIC) is the germ line
transmitting genetic information during sexual reproduc-
tion. However, the MIC is transcriptionally inactive
during most of the lifespan of the cell and through vege-
tative cell divisions. The genome in the somatic macro-
nucleus (MAC) is derived from the MIC genome during
sexual reorganization in a process that involves DNA re-
arrangements. The genome is fragmented, as well as ampli-
fied from 5 MIC chromosomes to an estimated 250–300
MAC chromosomes and a ploidy of �45 (19). Furthermore,
10–20% of the corresponding MIC genome is eliminated,
preferentially by deletion of centromeres, foreign DNA,
transposable elements and other repetitive elements
(20,21). Since most classes of ncRNAs constitute a
specific challenge due to their diversity and relatively poor
sequence conservation, many genome projects are under-
represented in ncRNA annotation. In Tetrahymena, the
smallest 20–25 nt long ncRNAs have been demonstrated
to have a high complexity (22,23) and remarkably, it has
been shown that a class of 27–30 nt small ncRNAs termed
scnRNAs are involved in guiding the precise excision of
DNA during MAC formation (24,25). In addition, the
spliceosomal small nuclear RNAs (snRNAs) U1–U6 have
been described (20,26,27), as well as a few snoRNAs (28,29).
However, no systematic effort for describing ncRNAs
other than the 20–40 nt and the most prominent rRNA,
tRNA and snRNAs has been carried out.
Here, we generated and analyzed a cDNA library of

40–500 nt ncRNAs from the Tetrahymena MAC. We
identified 80 ncRNAs, of which 64 (80%) were previously
unknown and studied their genomic organization. The
majority could be placed into one of the known classes
of ncRNAs, predominantly snRNAs and box C/D and
H/ACA snoRNAs. Among the snoRNAs, we identified
the first U8 candidate outside metazoans and a
Tetrahymena U14 candidate lacking one of two canonical
U14 elements. The box C/D snoRNAs showed signs of an
alternative maturation in that most did not include a small
terminal stem known from box C/Ds in other organisms.
Instead, most Tetrahymena box C/D snoRNAs had the
potential to form extensive external and internal base-
pairing. Further, we determined possible targets for the
identified snoRNAs and observed a Tetrahymena-specific

pattern, which we tested experimentally. Among the pre-
dicted and experimentally verified modifications were two
methylations in the 50 stem-loop of U6 snRNA.

MATERIAL AND METHODS

Tetrahymena cell culture

SB210 and B1868VII isolates were maintained at 30�C in
NEFF medium (0.25% proteose peptone, 0.25% yeast
extract, 0.5% glucose, 30 mM FeCl3). Heat shock and
cold shock was induced by harvest of the cells in log
phase growth (1.5–3� 105 cells/ml) followed by resuspen-
sion of the cell pellet in NEFF medium pre-warmed/
cooled at the desired temperature. Subsequently, cells
were kept shaking at the designated temperature for 2 h.
Starvation was obtained by harvest of log phase cells, fol-
lowed by two washes in 10mM Tris–HCl (pH 7.5), resus-
pension of the washed cells in 10mM Tris–HCl and
continued growth at 30�C. Stationary phase cells were
obtained by continuous growth in NEFF media to max-
imum density �1–2� 106 cells/ml. Harvest of stationary
phase cells was done after 20–24 h at maximum density.

Isolation of nuclei and RNA preparation

For extraction of nuclear RNA, cells (0.5–1 l of culture) in
early log phase were harvested and resupended in 70ml
ice-cold Tris-Magnesium-Sucrose buffer (10mM Tris pH
7.5, 10mM MgCl2, 3mM CaCl2, 250mM sucrose). Lysis
was obtained by adding 200 ml NP40 and shaking vigorous-
ly for 10min at 0�C. A quantity of 63 g sucrose was added
and shaking continued for 1 h. The lysate was spun at
6500 rpm in a HB4 swing rotor (Sorvall) and the super-
natant removed. Nuclei were washed once in 5ml TMS
buffer before they were resuspended in 1ml proteinase K
buffer (10mMTris pH 7.3, 100mMNaCl, 0.5% SDS) sup-
plemented with 10 ml proteinase K (10mg/ml) and
incubated at 30�C for 30min. The reaction was precipitated
with 2.5� volume 96% ethanol and DNase treated for
30min at room temperature in DNase buffer (10mM Tris
pH 7.3, 3mMMgCl2, 50mM KCl) supplemented with 5 ml
DNase I (Invitrogen). The RNA was phenol extracted and
the concentration determined by spectrophotometry.
Whole cell RNA was prepared by the TRIzol (Gibco
BRL) method.

Library construction

The cDNA libraries were constructed from RNA by the
RNomic approach essentially as described by Hüttenhofer
et al. (30). Briefly, �5 mg of isolated macronuclear RNA
was separated on a 5% polyacrylamide gel (50% urea,
1�TBE) and RNA in the size range between 40 and
500 nt excised, eluted from the gel, and tailed with a
poly(C)-tail using Escherichia coli poly(A) polymerase
(Invitrogen) in C-tailing buffer (50mM Tris–HCl pH
8.0, 200mM NaCl, 10mM MgCl2, 2mM MnCl2,
0.4mM EDTA, 1mM DTT, 2mM CTP and trace
amounts of [a-P32]CTP). Then poly(C)-tailed RNA was
reverse transcribed using a 30 poly(G15)-primer including
restriction sites. For second strand cDNA synthesis,
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followed by 50-end double strand DNA adapter ligation,
the SuperScript Choice System for cDNA Synthesis
(Invitrogen) was applied. The cDNA was then amplified
by 20 cycles of PCR, digested with XbaI and EcoRI and
ligated into the pUC19 vector. The resulting plasmids
were introduced into competent DH5a cells (Invitrogen)
according to the manufacturer’s instructions. DNA from
positive colonies (determined by b-gal activity) was PCR
amplified directly from the colony using plasmid targeted
oligos and PCR products were analyzed by 2% agarose
gel electrophoresis. PCR products with a length indicating
the presence of an insert were sequenced by Sanger
sequencing. Additional snoRNAs were found by scanning
the surrounding genomic sequence of cloned ncRNAs for
snoRNA sequence motifs. The expression of a few snoRNA
candidates identified in this way was confirmed by primer
extension analysis. Sequences and genomic localization of
the clones were confirmed by BLAST/BLAT against the
Tetrahymena genome at http://www.ciliate.org (20). All
unique sequences were folded using the RNA mfold
server at http://mfold.bioinfo.rpi.edu/ (31) and selected
RNAs were compared to the Rfam 10.0 models (cutoff
score 0) using the Infernal software 1.02. Some sequences
were elongated manually by using genomic sequence to
include canonical box C/D and H/ACA structures (32).
A subset of the RNAs was analyzed by primer extension
(as described below) giving information on the mature
ncRNA 50-ends and expression. Primers used for cloning,
sequencing, northern blotting and primer extension are
listed in Supplementary Table S1.

Northern blot

For northern blot analysis, 5–10mg whole cell RNA was
resolved on a 5% denaturing (50% urea) polyacrylamide
gel. RNA was visualized by SYBR Gold (Invitrogen)
staining and transferred to a Hybond-N+ membrane (GE).
End-labeled oligos were hybridized to the membrane-
bound RNA at 42–50�C in 6� SSC, 0.1% SDS, 4�
Denhardts solution [0.08% (w/v) BSA, 0.08% (w/v) poly-
vinylpyrrolidone and 0.08% (w/v) ficoll] followed by
washes in 3� SSC/2� SSC, 0.1% SDS. For detection,
membranes were exposed to a phosphor imager screen
and scanned with a Typhoon 8600 scanner.

Prediction and mapping of modified nucleotides and RNA
50-ends by primer extension

Targets of the identified box C/D snoRNAs were pre-
dicted using the SnoScan web service (http://lowelab
.ucsc.edu/snoscan/) (33) against a local database of
Tetrahymena rRNA, tRNA, snRNA, telomerase and,
SRP RNA species. Targets for box H/ACA snoRNAs
were predicted by local implementation of snoGPS (34)
and searching against the above mentioned local database.
For further specification on the search parameters, output
filtering and database use, see Supplementary Tables S2
and S3. The 20-OH-ribose methylations were detected with
primer extension analysis by limiting the dNTP concen-
tration from 1 to 0.04 and 0.004mM in the reaction
mixture (35). The �’s were modified by n-cyclohexyl-N0-
b-(4-methylmorpholinium) ethylcarbodiimeide p-tosylate

(CMC) and subsequently detected by primer extension
(36). Additionally, primer extension reactions were used
to confirm expression of cloned ncRNAs and determine
their 50-ends. Primer extension was carried out on 1–5 mg
whole cell or nuclear RNA at 42�C in 10 ml reactions with
1 pmol of the appropriate 50–end-labeled primer and
M-MuLV H� reverse transcriptase (Fermentas). The re-
sulting DNA was analyzed on a (6, 8 or 10%) denaturing
(50% urea) polyacrylamide gel next to the appropriate
direct RNA sequencing reaction primed by 1 pmol of the
oligo used for detection of the modification. For 50-end
determination, the primer extension reaction was
electrophoresed next to a known but unrelated sequencing
reaction.

RESULTS

Library construction and classification of ncRNAs

We generated a cDNA library of small RNAs prepared
from the transcriptionally active macronucleus of exponen-
tially growing Tetrahymena cells. The smallest ncRNAs have
already been addressed in Tetrahymena (22,23) so we
concentrated on medium-sized ncRNAs in the range of
40–500 nt which excludes miRNA-sized RNAs, most
mRNAs and the larger rRNA species. Further, since the
macronucleus can be efficiently separated from the re-
mainder of the Tetrahymena cell, we simultaneously en-
riched against cytoplasmic mature rRNA, tRNA and
mRNAs species. Thus, we did not need, as seen in
related studies, any experimental elimination step or pre-
sequencing screen to avoid massive representation of these
highly abundant RNAs in the cDNA library.
We searched the 600 obtained cDNA sequences against

the Tetrahymena genome database (http://www.ciliate
.org/) to verify the sequence, determine the genomic local-
ization and detect overlaps with known ncRNAs or open
reading frames. Of a total of 92 compiled non-overlapping
putative ncRNAs, 82 mapped to the assembled macro-
nuclear genome and 10 to the unassembled ‘trace se-
quences’ (Figure 1). By searching against GenBank, all
but one of the trace sequences in the cDNA library could
be identified as rRNA or EST/cDNA derivatives. None of
the trace sequence matches were included in the following
analysis. Similarly, six sequences mapped to already
known snRNAs and were not analyzed further.
In order to further classify the macronuclear matching

sequences, they were scanned for known snoRNA sequence
motifs [C (RUGAUGA), D (CUGA), H (ANANNA) and
ACA] and their secondary structure was determined by use
of the mfold webserver (31). Some sequences containing
box D, D0, C0, H or ACA sequence motifs were suspected
to be 50 truncated and were extended manually by using
genomic sequence to include canonical box C/D and H/
ACA structures (32) when applicable. A subset of the
RNAs was analyzed by primer extension to give informa-
tion on mature ncRNA 50-ends and verify the added 50

sequence extensions and/or by northern blotting (see
below) to obtain information on the full-length size of the
RNAs. Based on the above, we concluded that the library
include 80 ncRNAs, of which 64 are newly described RNAs
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and 16 (rRNA, snRNAs and some snoRNAs) were previ-
ously known. The majority of the RNAs could be assigned
to one of the two classes of snoRNAs namely 38 box C/D
and 28 box H/ACA (TtnuCDs and TtnuHACAs, respect-
ively) (Figure 1 and Supplementary Tables S2 and S3).
The remaining seven sequences could not be assigned to

any known class of RNAs. They were all searched against
several ncRNA databases, Rfam (http://rfam.sanger.ac
.uk/), Non-coding RNA database (http://biobases.ibch
.poznan.pl/ncRNA/) and Functional RNA database
(http://www.ncrna.org/frnadb/) but returned no signifi-
cant matches. These were all classified as unknowns
(TtnuUkn’s) and could potentially be novel ncRNAs.
However, three of these mapped to the Tetrahymena
genome in introns or exons of protein-coding genes in
the mRNA sense direction and could be degradation
products of mRNAs rather than functional transcripts
(Figure 1, Supplementary Table S4 and Supplementary
Figure S1).

Structure of Tetrahymena ncRNAs

When folded by mfold, most box H/ACA snoRNA can-
didates with typical lengths ranging from 124 to 136 nt
adopted the characteristic two stem structures as known
from, e.g. vertebrate box H/ACA snoRNAs. The two
stems contain each an internal loop, the pseudouridylation
pocket and are separated by a single stranded region con-
taining the box H (ANANNA) motif (29,32). However,
some of the TtnuHACAs deviated from the canonical box
H/ACA snoRNA in having AUA (6 in total), UAA (1),
UCA (1) and AAA (1) as alternative sequence in place of
ACA sequence box towards the 30-end (Supplementary
Table S3).

The Tetrahymena box C/D snoRNA candidates also
correspond to the canonical vertebrate box C/D structure
containing the hallmark 30 box D (CUGA) and a 50 box C
(RUGAUGA), albeit, without the preference for a purine
at the 50 position. In nearly all TtnuCDs, additional

Figure 1. New RNAs and their genomic organization. (A) Distribution of cDNA library sequences into RNA classes. The number of RNAs in each
class is given in parentheses. (B) Schematic outline of genomic localization and organization of ncRNAs in Tetrahymena. NcRNAs are shown as red
boxes, protein-coding gene exons as blue boxes connected by broken lines representing introns. Orientation of ncRNA and protein-coding genes, as
well as transcription starts are indicated with arrows. The largest cluster of snoRNAs is shown at the bottom. Names of snoRNAs and distances
between genes are given. (C) Frequency logo of the upstream sequence element (USE) found 54–179 bp upstream of intergenic snoRNAs. (D)
Frequency logo of 35 nt downstream of intergenic monocistronic snoRNAs, clustered snoRNAs and snoRNA U3 genes. The frequency logos were
created using WebLogo (http://weblogo.berkeley.edu/) (64).

1270 Nucleic Acids Research, 2012, Vol. 40, No. 3

http://nar.oxfordjournals.org/cgi/content/full/gkr792/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr792/DC1
http://rfam.sanger.ac.uk/
http://rfam.sanger.ac.uk/
http://biobases.ibch.poznan.pl/ncRNA/
http://biobases.ibch.poznan.pl/ncRNA/
http://www.ncrna.org/frnadb/
http://nar.oxfordjournals.org/cgi/content/full/gkr792/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr792/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr792/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr792/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr792/DC1
http://weblogo.berkeley.edu/


internal boxes C0 and D0 could be identified with a slight
deviation from the box C and D sequence motif as typic-
ally seen (32). However, the canonical 4–6 bp terminal stem
that is joining the 50- and the 30-end of box C/D snoRNAs,
was often very short or not present at all in TtnuCDs. For
several box C/D snoRNAs a potential for an alternative,
longer stem of 5–25 bp was present just adjacent to or a
few nucleotides away from the 50- and 30-ends of the ma-
ture transcript (Supplementary Figure S2). In addition,
some of the TtnuCDs had a potential for forming exten-
sive internal base-pairing (data not shown).

Genomic organization of ncRNA in Tetrahymena

The alignment of the identified ncRNAs to the assembled
Tetrahymena genome allowed for an analysis of the gen-
omic organization of ncRNAs in Tetrahymena. NcRNAs
were found in different genomic contexts, mostly in
intergenic regions, but also within protein-coding genes
overlapping exons, introns or borders between these
(Figure 1B). It should be noted that some of the annotated
protein-coding genes hosting ncRNA genes are unrealis-
tically small and in some cases occupy only slightly more
sequence than the ncRNA. We suspect that the higher
GC-content of ncRNAs relative to surrounding sequence
has given rise to several false protein-coding gene predic-
tions. Nevertheless, ncRNAs was found in introns of bona
fide protein-coding genes, as well as in hypothetical
protein-coding genes with attributes indicating a reliable
gene prediction. The two examples of bona fide protein-
coding genes hosting the intronic snoRNAs TtnuCD30
and TtnuHACA17 were not proteins involved in riboso-
mal functions as typical for vertebrate genes hosting
snoRNAs. Instead, they were alternative housekeeping
genes, namely a dynein chain encoding gene and a pre-
protein translocase encoding gene, respectively
(Supplementary Table S4).

SnoRNAs mapping to intergenic regions were found
both as independent units and as part of clusters. We
identified five regions where snoRNA genes were clustered
and separated by 169–421 nt. In Figure 1B, the largest
cluster is schematically outlined with snoRNA genes and
gene space distances noted. Curiously, all but one of the
snoRNAs found in clusters could be assigned to the box
C/D subgroup.

Upstream and downstream sequence elements

We next compared 200 bp of upstream and downstream
sequences in clustered and isolated, intergenic snoRNAs.
The genome of Tetrahymena is very A/T rich (78%) so a
stretch of three consecutive C’s upstream of most in-
tergenic snoRNAs was readily identified. When these
were aligned, a putative promoter upstream sequence
element (USE) with the consensus sequence 50-AAACCC
ATAA was noted. A frequency plot of the conserved USE
is depicted in Figure 1C. The USE was identified for 22 of
27 intergenic snoRNAs and was situated at a distance of
53–125 bp upstream from the 50-end of the mature box
C/D snoRNAs and 53–179 bp upstream from box
H/ACA snoRNAs. The rather large difference in the
position of the putative promoter element could indicate

that some snoRNAs are initially synthesized as precur-
sors. The USE was found less frequently upstream of clus-
tered snoRNAs and also showed a tendency towards
deviating from the consensus sequence (e.g. 50-TAAGCC
ATAA in TtnuCD35 and 50-TTTCCCAATA in
TtnuCD12). Nevertheless, for 11 out of 19 clustered
snoRNAs we could identify a putative USE and these
included snoRNAs that were not first in a cluster. The
USE was not found in the TtnuUkn genes except for
TtnuUkn4 that had a somewhat deviating USE
upstream of both the mature 50-ends deduced from expres-
sion analysis.
Alignment of 35 bp downstream of intergenic

monocistronic snoRNAs revealed stretches of 3–13 con-
secutive T’s (Figure 1D). In contrast, the 30 flanking se-
quence in clustered snoRNAs had no sequence feature and
reflected the general high AT-richness of the genome. A
distinct downstream element was previously found in
Tetrahymena snoRNA U3 genes (26) and is included in
Figure 1D for comparison.

Candidates for the first U8 outside metazoans and an
unusual U14

The typical TtnuCD snoRNA is 55–77 nt long. However,
five TtnuCDs are considerably longer: TtnuCD7 (108 nt),
TtnuCD10 (117 nt), TtnuCD25 (89 nt), TtnuCD26 (98)
and TtnuCD32 (98 nt). By comparing them with the
Rfam database using Infernal, we suggest that four of
the long TtnuCDs belong to the snoZ7/snoR77
(TtnuCD7), U15 (TtnuCD10), U14 (TtnuCD25) and U8
(TtnuCD26) families, respectively. Using this analysis
TtnuCD32 could not be assigned to a specific snoRNA
family. The affiliations of TtnuCD7 and TtnuCD10 to
the snoZ7 and U15 families were further supported by
conservation of their respective predicted targets at 17S
rRNA U572 (plant snoR77Y targeting U580) and 26S
rRNA A2274 (human U15 targeting A3764) (Rfam:
http://rfam.sanger.ac.uk/).
The sequence and secondary structure of TtnuCD26

supported its placement in the U8 family (Figure 2A).
Also, the 50-end of TtnuCD26 was complementary to the
50-end of 26S rRNA similar to an interaction known from
Drosophila,Xenopus and human (Figure 2A). Interestingly, a
hairpin (hp2 in the human U8) conserved from Cnidarian to
human U8 was absent in the Tetrahymena sequence
(Figure 2A). Furthermore, although the stem in hp3 in
TtnuCD26 was conserved in comparison with human
U8 hp4, the LSm binding motif in the loop of this hairpin
(37) was not conserved. In contrast, the loop sequence of
human U8 hp5 shared with Caenorhabditis elegans and
Xenopus laevis (38) is conserved in Tetrahymena
TtnuCD26 but was localized in a small hairpin (hp5)
toward the very 30-end of TtnuCD26 (Figure 2A).
U14 is an unusual box C/D snoRNA in yeast and

humans since it displays a dual function and both guides
methylation, as well as being involved in rRNA processing
events. U14 has a conserved A-domain that was shown to
be essential for U14-mediated rRNA processing function
and cell survival in yeast (39). An A-domain sequence
could also be identified in TtnuCD25 (Figure 2B) and its

Nucleic Acids Research, 2012, Vol. 40, No. 3 1271

http://nar.oxfordjournals.org/cgi/content/full/gkr792/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr792/DC1
http://rfam.sanger.ac.uk/


interaction with 17S rRNA corresponding to the inter-
action found between human and Saccharomyces
cerevisiae U14 with 18S rRNA could also be formed in
Tetrahymena (Figure 2C). However, the other canonical
U14 element, the B-domain just upstream of the box D
motif that is directing a modification of 18S rRNA in
humans and yeast (human C462, Tetrahymena C404)

could not be confirmed in TtnuCD25 (Figure 2C).
This resembles the situation in Drosophila where the
B-element was absent in the identified U14. Instead,
another box C/D snoRNA was found to guide methyla-
tion of the corresponding nucleotide in flies thus decoupl-
ing the U14-guided modification and processing (40).
Contrary to the study in flies we did not identify another

Figure 2. Candidates for Tetrahymena U8 and U14 snoRNAs. (A) Comparison of the secondary structure of Tetrahymena U8 candidate TtnuCD26
with human U8 snoRNA. Both RNAs are base-paired to the very 50-end of the large ribosomal RNA (26S and 28S rRNA, respectively). Nucleotides
of the box C and D are underlined. Hairpins are numbered hp1–5 in each structure. Alternative hairpin structure (hp1/hp2 in TtnuCD26 and hp1/
hp3 in human U8) are indicated by lines and shown above in boxes. (B) A secondary structure model of Tetrahymena TtnuCD25 (U14 candidate).
Box C, box D and the U14 specific A-domain sequences are framed and the Y-domain indicated. A predicted external stem-structure, primarily
consisting of nucleotides not included in the mature snoRNA, is included in the structure in lower case letters. (C) Comparison of the base-pairing
between the 17S/18S rRNA with the A-domains of human U14A, yeast U14 and the putative A-domain of TtnuCD25. The B-domain interactions of
human and yeast U14 with 18S rRNA and the corresponding sequences of Tetrahymena RNAs are also shown. Modifications guided by U14 are
indicated above the B-domain base-pairing and the corresponding position in Tetrahymena 17S rRNA is also highlighted. (D) Primer extension
expression analysis of TtnuCD25 and TtnuCD26 in comparison with a canonical modification guide snoRNA TtnuCD12. Tetrahymena snoRNA U3
is used as an internal control in all lanes. The position of the 50-end of the various RNA species and and sizes of molecular marker DNA oligos are
given at the sides.
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box C/D snoRNA that could complement U14, but such a
snoRNA could be absent from the library due to lack of
coverage. A hairpin structure, the Y-domain, localized
between the A-domain and B-domain is found in yeasts
and plants but is not conserved in vertebrate U14. A
Y-domain structure is also found in TtnuCD25 at the cor-
responding position (Figure 2B). The length of the
Y-domain stem (8 bp) is conserved between yeast and
plant, but the loop sequence in the two groups show no
obvious relationship (yeast consensus AMGAACCY-AU
versus plant consensus CC - - YGCCRGGCU, where M:
A/C and R: U/C) (41). The putative Y-domain in
TtnuCD25 can likewise be drawn with a stem of 8 bp
though with a single nucleotide bulge, and the loop se-
quence of CCGAAAGGC resembles the consensus sequence
in plants (bolded nucleotides in text and Figure 2B). Similar
to many Tetrahymena box C/D snoRNAs TtnuCD25 did
not exhibit a canonical box C/D snoRNA terminal stem,
but had the potential to form a long stem of the adjacent
50 and 30 external sequences (Figure 2B).

Primer extension analysis of TtnuCD25 and TtnuCD26
in comparison with TtnuCD12, a snoRNA expected to be
involved in guiding modifications of rRNA showed the
U8 and U14 candidates to be as abundant as U3 and con-
siderably more abundant than TtnuCD12 (Figure 2D).
Since the expression level of snoRNAs involved in
rRNA cleavage is expected to be higher than for modifi-
cation guide snoRNAs, the results supported a role for
TtnuCD25 and TtnuCD26 in pre-rRNA processing.
Finally, northern blot analysis showed these RNAs to be
present at all tested cellular conditions (Figure 3). U8
appears to decrease during starvation and to be less abun-
dant in stationary phase, two conditions where ribosome
synthesis is slowed down. However, these observations
need to be confirmed by additional approaches.

Expression of ncRNAs

Primer extension was used to confirm expression of a
subset of ncRNAs in the cDNA library (Figure 3A–C)
and to verify the expression of the few snoRNAs that
were found by inspection of genomic sequence in the vicin-
ity of experimentally identified snoRNAs (Figure 3B;
TtnuCD7, TtnuCD12 and TtnuCD15). The analysis con-
firmed the expression of all tested box C/D and H/ACA
snoRNAs. In a few cases two or more strong signals were
detected (Figure 3A and B; TtnuHACA11, TtnuHACA23
and TtnuCD25). This could be due to premature primer
extension stops caused by structural features but could
also indicate that the snoRNA genes were transcribed or
processed into two different length variants. To determine
this, we analyzed the candidates by northern blot analysis
using RNA isolated from different cellular conditions and
in one case we found evidence of two variants of different
length (Figure 3D; TtnuHACA11). For several snoRNAs,
faint primer extension signals that represented prod-
ucts longer than the main signal could be discerned
(Figure 3A and B; TtnuHACA23 and TtnuCD10).
These signals could originate from processing intermedi-
ates of precursors, so we tested if the presence or absence
of these signals was correlated to the genomic

organization of the snoRNA gene. No such correlation
was found and the origin of these signals remains
unknown.
TtnuCD10 which was identified as a Tetrahymena U15

was also analyzed by northern blot analysis. It resided as
the fourth RNA in the largest snoRNA cluster identified
and was the longest of the box C/D-like snoRNAs found
in Tetrahymena (117 nt compared with the general 55–
77 nt). The northern blot showed this to be abundant
but did not reveal dramatic differences in its expression
(Figure 3D).
We also analyzed the expression of unassigned ncRNAs

by primer extension (Figure 3C). Primer extension analysis
with TtnuUkn1, 3 and 5 primers gave a single clear signal.
The TtnuUkn4 results indicated two different length
variants. This observation was paralleled by northern
blotting that showed one RNA (230 nt) found equally
expressed at all cellular conditions, and one (285 nt) that
was differentially expressed (Figure 3D). It should be
noted that the TtnuUnk4 cDNA clone matched the
Tetrahymena genome at three different locations each of
which could give rise to different RNAs. Primer extension
analysis showed several signals for TtnuUkn2 and
TtnuUkn6 and no signal for TtnuUkn7 (Figure 3C).
TtnuUkn2 was detected by northern blotting as a single
RNA of a size consistent with the longest product in the
primer extension analysis (Figure 3D).

Prediction of snoRNA targets and their
conservation in rRNA

Most snoRNAs guide nucleotide modification of other
cellular RNAs, in particular rRNA. They function through
base-pairing of a snoRNA guide sequence to the target
molecule that direct associated proteins to methylate
(box C/D) or pseudouridylate (box H/ACA), a single nu-
cleotide. Each snoRNA have the potential to target one
nucleotide per box D/D0 in box C/D snoRNAs and at
least one per pseudouridylation pocket in box H/ACA
snoRNAs, respectively (32). We used the search algo-
rithms SnoScan and SnoGPS to predict the targets of
the identified snoRNAs. A detailed description of the
approach and the results are presented in Supplementary
Tables S2 and S3. Not surprisingly, the majority of
snoRNAs were predicted to target rRNA. In total, we
predicted 46 Nms and 31 �s in rRNA. When compared
to snoRNA-guided rRNA modifications in yeast, plant
and human, 20 Nm and 20 � modifications were conserved
between Tetrahymena and one or more of the other model
organisms. This implies that almost half of the predicted
modifications namely 26 Nms and 11 �s were specific for
Tetrahymena in this comparison. The modifications and
their conservation in yeast, plant and humans were super-
imposed onto the secondary structure of Tetrahymena
rRNA large (LSU) and small subunit (SSU) (Figure 4
and Supplementary Figure S3). This is most likely a
non-exhaustive dataset limited by the relative low depth
of the sequencing approach and more snoRNAs and thus,
modifications are expected to be found by future efforts.
The distribution of modifications in rRNA is not random
and modified nucleotides are generally clustered in
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functionally important domains (42). The predicted modi-
fications, including the species-specific Tetrahymena
modifications, followed this pattern. Thus, very few modi-
fications were observed in domain I and the upper part of

domain II of the LSU (Supplementary Figure S3).
Likewise, LSU domain III was apparently unmodified, as
observed in yeast. Conversely, the LSU domains IV and V
that are heavily modified in the yeast, plant and human

Figure 3. Expression studies of selected ncRNAs. (A) Primer extension analysis of nuclear RNA with primers targeted against various box H/ACA
snoRNAs (TtnuHACAs) as marked above the lanes. Primer extension reactions were run next to a known but unrelated sequencing reaction. Signals
corresponding to 50-ends are marked with an asterisk. Below the lanes are indicated whether a faint signal from a putative precursor molecule was
observed when the signals were overexposed (+) or if no precursor signal was observed (�). (B) Similar analysis of box C/D snoRNAs (TtnuCDs).
(C) Similar analysis of unknown ncRNAs (TtnuUkn’s). (D) Northern blot analysis of RNA isolated from cells at different conditions with probes
representing selected ncRNAs. The lowest panel, serving as loading control, shows 5.8S rRNA visualized by SYBR Gold staining. The arrow
indicates a low abundant, differentially expressed RNA.
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Figure 4. Map of predicted and experimentally determined nucleotide modifications on the secondary structure of the 30 half of 26S rRNA (similar
results for 26S 50 half and 17S rRNA are depicted in Supplementary Figure S3). Putative and verified target nucleotides of the identified snoRNAs
are framed and labeled according to their conservation in Tetrahymena (T), plant (Arabidopsis thaliana; P), yeast (S. cerevisiae; Y) and human (H).
Pseudouridylations are marked by � and experimentally verified modifications by an asterisk. The rRNA secondary structures were adopted from
www.rna.ccbb.utexas.edu (65) and information regarding modifications from plant, yeast and human was extracted from the 3D ribosomal modi-
fication map website http://people.biochem.umass.edu/fournierlab/3dmodmap/main.php (66). Note that the data presented in the figure is a
non-exhaustive compilation of modifications and that modifications in plant, yeast and human are included only at sites of modification in
Tetrahymena or if modifications are found in all three reference organisms.
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rRNA were also predicted to be heavily modified in
Tetrahymena (Figure 4). Interestingly, several predicted
Tetrahymena-specific modifications were located in the
peripheral 50 half of LSU domain IV where no modifica-
tions have been observed in yeast, plant or humans. LSU
domain VI has no modifications in yeast and plant rRNA,
but has both methylated and pseudouridylated residues in
humans. This domain was likewise predicted to contain
modifications in Tetrahymena rRNA.
In addition to the prediction of targets in rRNA, we

found a surprisingly large number of snoRNAs that
seem to target RNAs other than the mature rRNA
species. A total of 18 targets in tRNA (9), snRNA (6)
and pre-rRNA (3) were predicted for box C/D RNAs
and 15 targets in pre-rRNA (8), tRNA (5), snRNA (1)
and SRP-RNA (1) for box H/ACA RNAs
(Supplementary Tables S2 and S3). Finally, 5 box D/D’s
in 4 box C/D snoRNAs and 8 pseudouridylation pockets
in 5 box H/ACA snoRNAs could not be associated with a
target (Supplementary Tables S2 and S3).

Experimental mapping of Nm and ) in rRNA and other
cellular RNAs

The modification repertoire of the identified snoRNAs
included a surprisingly large number of Tetrahymena-
specific modifications in both rRNA and other cellular
RNAs. To investigate if this was an artifact of the predic-
tion method, or if Tetrahymena exhibits an alternative
modification pattern, some of the predicted modifications
were tested experimentally. To map Nms we applied
primer extension analysis with varying dNTP concentra-
tions. At lower dNTP concentrations, reverse transcript-
ase pauses at methylated residues, which results in a signal
1 nt before the position of the modified residue as read on
a sequencing ladder run in parallel. Pseudouridines were
experimentally mapped by CMC-treatment followed by
detection by primer extension. The results from the
primer extension analysis with four different oligos are
presented in Figure 5A–D and experimentally detected
modifications are marked with an asterisk in Figure 4
and Supplementary Figure S3. In total, we verified seven

Figure 5. Experimental verification of nucleotide modifications by primer extension analysis. (A) 20-O-methylations in 26S rRNA. (B) 20-O-methy-
lations in 17 S rRNA. (C) Pseudouridylations in 26S rRNA. (D) 20-O-methylations in snRNA U6-1–4. The primer extension reactions were run next
to the appropriate sequence obtained by dideoxy RNA sequencing. The oligo applied in the primer extension analysis in (D) could base-pair with an
identical sequence in all four U6 (1–4) RNAs, but U6-2 has a single nucleotide deletion. Thus, the Um23 is equal to Um22 in U6-2. (E) Sequence
alignment of the 50-ends of Tetrahymena U6 snRNA genes and secondary structures of the 50 stem-loop of U6 snRNA from Tetrahymena, human
and yeast. Methylated nucleotides are indicated by bold in the alignment and boxed in the secondary structures. Nucleotide differences between U6
variants are indicated with arrows and the relevant snRNAs are given in parentheses.
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predicted Tetrahymena-specific rRNA methylations and
two pseudouridylations. Further, we verified eight methy-
lations and twelve pseudouridylations conserved between
Tetrahymena and at least one of the other model organ-
isms. In the process, an additional nine Tetrahymena-
specific rRNA methylations, for which we did not identify
an associated snoRNA guide, were detected. Finally, four
methylated and one pseudouridylated nucleotide con-
served between yeast, plant and humans, but not predicted
in our analysis, was experimentally shown to be present
also in Tetrahymena.

TtnuCD21 and TtnuCD30 were predicted to target
Um23 in U6-1, U6-3 and U6-4 snRNA (Um22 in U6-2)
and Cm18 in U6-2 snRNA, respectively. When U6 snRNA
was analyzed experimentally two modifications were de-
tected (Figure 5D and E). One was at Um22/t Um23 as
predicted by Ttnu21 box D0. The other modification at
Gm14 was not predicted. In contrast to the U6 snRNA
modifications, we were unable to analyze the predicted
modifications in tRNA by primer extension because of
technical limitations.

DISCUSSION

Since the detection of most classes of ncRNAs constitutes
a specific challenge due to their diversity and relative poor
sequence conservation many genome projects are
underrepresented in ncRNA annotation. However, sys-
tematic searches for smaller ncRNAs by bioinformatics
and experimental ‘RNomics’ have been carried out for
several model organisms, e.g. mouse, Drosophila and
C. elegans and have expanded the number of known
ncRNAs greatly (30,40,43). In this study, we have experi-
mentally identified ncRNAs from the macronucleus of the
ciliate T. thermophila in the size range of 40–500 nt. Not
surprisingly, the majority of our findings could be classi-
fied to highly expressed classes of ncRNAs such as
snRNAs and snoRNAs.

Tetrahymena snoRNAs

We identified 66 ncRNAs that could be classified as box
H/ACA and box C/D snoRNAs based on the presence of
canonical sequence signatures and the secondary structure
(Figure 1). The box H/ACA snoRNAs were in general
similar to the two stem box H/ACA snoRNAs found in
vertebrates. No single stem H/ACA-like snoRNAs, as
seen in some other protists, e.g. Euglena and
Trypanosoma (44), was observed. Nine of the identified
box H/ACA snoRNAs deviated from the hallmark
30-terminal box ACA in having an alternative sequence
AUA, UAA, UCA or AAA. However, since several of
these were predicted to guide modifications of rRNA
conserved between Tetrahymena, yeast, plant and
humans we expect them to be functional
pseudouridylation guide snoRNAs (Supplementary
Table S3). Occasional deviations from the ACA consensus
sequence have been known from the first report of these
RNAs (29,45) and an AGA motif in place of ACA is the
general rule in Trypanosomes (44,46).

The box C/D snoRNAs showed a more systematic de-
viation, some from the canonical structure. Although har-
boring the terminal boxes C and D as well as the internal
boxes C0 and D0, most Tetrahymena box C/D snoRNAs
did not have the potential to form the canonical short 50-,
30-terminal stem. Instead, several Tetrahymena box C/D
snoRNAs could form a 5–25 bp stem between the flanking
50- and 30-sequences (Supplementary Figure S2). In
addition, several TtnuCDs also had the potential to
form extensive internal base-pairing. The short 50-,
30-terminal stem has been shown to be essential for mat-
uration and accumulation of vertebrate intron encoded, as
well as yeast polycistronic box C/D snoRNAs (47).
However, some mammalian, several yeast and
Trypanosomatids box C/D snoRNAs have also been
reported to lack the 50-, 30-terminal stem. Instead many
of them show, similar to the Tetrahymena box C/D
snoRNAs, a potential for forming a stem between se-
quences flanking the mature box C/D snoRNA (48–51).
Notably, existence of an external stem structure was
shown to support accumulation or correct processing of
the snoRNAs with an unusual short or absent canonical
terminal stem (49–51). Thus, it seems that the occasional
strategy of an external stem in mammals is a more general
principle for Tetrahymena box C/D snoRNAs. In support
of this, it was noted that mammalian box C/D snoRNAs
with the external stem featured just two unpaired
30-terminal nucleotides following the box D, whereas the
typical box C/D snoRNA, containing the internal 50-,
30-terminal stem, had 5 or 6 nt 30 of box D (50).
Concordantly, in Tetrahymena the vast majority of box
C/D snoRNAs had just 2 nt 30 of box D (Supplementary
Table S2). It remains to be elucidated how box C/D
snoRNAs that apparently lack both the 50-, 30 terminal
stem and the potential to form an external stem are pro-
cessed accurately and accumulate.

SnoRNA genomic organization

SnoRNA genes are known to exhibit a large degree of
flexibility in genomic organization between and within
species. In humans, worms and flies they are mainly indi-
vidual units confined to introns and co-transcribed with
the host protein gene, whereas in plants and in the protist
Trypanosoma they are clustered either in introns or in in-
tergenic regions (13,44). Based on the snoRNAs analyzed
in this article, the genomic organization in Tetrahymena
resembles the situation in yeast in which the majority of
snoRNA genes are found in intergenic regions as inde-
pendent units with a fraction organized in clusters. In
addition, a few are located within introns of protein-coding
genes (Figure 1B). Curiously, the clustered snoRNAs in
yeast are all of the box C/D snoRNA subclass, and this
tendency was also observed in Tetrahymena, albeit with a
single box H/ACA snoRNA exception.
The snoRNA USE (50-AAACCCATAA) (Figure 1C)

identified in this study was identical to the one identified
previously upstream of Tetrahymena snRNA genes and in
ncRNA genes of Paramecium (26,52). It was found
upstream of 22 out of 27 intergenic monocistronic
snoRNAs. The distance from the USE to the mature
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gene product was generally longer in Tetrahymena snoRNA
genes compared with the snRNA genes and showed more
variation. This could reflect that intergenic snoRNAs are
produced as precursors of varying length before they are
processed to the mature RNA. This is consistent with the
formation of the external stem structure in Tetrahymena
box C/D precursors to ensure correct snoRNP assembly
and processing. In agreement with this, primer extension
products longer than corresponding to the mature
snoRNA were demonstrated for several snoRNAs of
both the box C/D and the box H/ACA subgroup
(Figure 3A and B). Among the clustered snoRNAs,
fewer (11 out of 19) had an identifiable USE and the
sequence tended to deviate from the consensus suggesting
that at least some of these are co-transcribed.
The sequences downstream of clustered and intergenic

individual snoRNAs were clearly different and both
differed considerably from snRNA genes and the genes
encoding snoRNAs U3-1–4 (Figure 1D) previously
analyzed in Tetrahymena (26). The T-tracts following
monocistronic snoRNA genes could indicate that RNA
polymerase III is involved in the transcription of this
group in Tetrahymena although no experimental evidence
(e.g. a-amanitin sensitivity experiments) exist to support
this. SnoRNA genes are in general, believed to be
transcribed by RNA polymerase II but RNA polymerase
III has previously been implicated in transcription of in-
tergenic monocistronic snoRNA genes in C. elegans and
clustered snoRNAs in Paramecium (13,52). The absence of
T-tracts downstream of clustered snoRNAs suggests that
they are transcribed by RNA polymerase II or as
polycistronic transcripts. However, a polycistronic tran-
script is in disagreement with the presence of an USE in
several clustered snoRNAs. One explanation could be that
transcription of a snoRNA cluster can be initiated at
several locations within the cluster. In a preliminary study,
it was shown that the genomic organization of some of the
snoRNA genes within the largest cluster was not con-
served among Tetrahymena species (unpublished results).
Given this evolutionary dynamic situation, it is possible
that some of the observed USE-like elements are degener-
ate and no longer involved in transcription initiation. It
seems that the trend, going from unicellular organisms to
plants and metazoans, is a reduction in the number of
individual promoters driving snoRNA expression. This
is obtained through evolution by snoRNA gene clustering
and colonization of introns (13). Our observations suggest
that Tetrahymena has adopted an intermediary position in
this spectrum.

SnoRNA guided modification pattern in Tetrahymena

Targets of the snoRNAs were predicted based on the
guide sequences in box C/D snoRNAs and the internal
loop in stems of box H/ACA snoRNAs. The majority of
snoRNAs target rRNA and most of the sites were con-
served in one or more of yeast, plant and human (Figure 4
and Supplementary Figure S3). In addition, we predicted a
surprisingly large number of modifications that were
Tetrahymena-specific in this comparison. In order to de-
termine if this was correctly predicted, we verified a subset

of the Tetrahymena-specific and inter-species conserved,
20-O-methylations and pseudouridylations experimentally
(Figures 4 and 5 and Supplementary Figure S3). In doing
this, we experimentally mapped additional modifications
which were not accounted for by the predictions based on
snoRNAs in our cDNA library. This indicates that several
snoRNAs remain to be identified. Alternatively, these
modifications could be introduced in a
snoRNA-independent pathway. Nucleotide modifications
in rRNA are generally clustered in conserved and func-
tionally important domains (42) and many modification
sites are highly conserved among distantly related species.
A high number of species-specific predicted or experimen-
tally determined modifications have also been found in the
protozoan Trypanosoma brucei (44). However, there was
little overlap (three modifications) between Tetrahymena
and Trypanosoma modification patterns, beside highly
conserved modifications also seen in other model organ-
isms (20 modifications). One possibility for these differ-
ences could be that the species-specific modifications
accommodate differences in sequence and secondary
structure of variable domains in the rRNA. Both the
Tetrahymena-specific modifications and the conserved
modifications concur with the clustering in functional im-
portant regions of the rRNA. As an example, the lower
part of domain II in LSU 50 half is rich in modifications,
whereas modified residues are absent in the upper part.
Similarly, domain V and the conserved 30 half of domain
IV are heavily modified. In the yeast ribosomal model, the
modifications of these three domains are defining a shell
around the A- and P-site tRNAs (42). Modifications in the
rRNA of Tetrahymena were also predicted in the 50 half of
domain IV including the variable region (D8). Although
the D8 region is not evolutionary conserved in primary
sequence, it has been shown to be essential for rRNA
stabilization and/or processing (53). Historically, the
function of the Nms and �s has been somewhat enigmatic
and mainly believed to be a fine-tuning of the ribosome
structure. However, recent work has shown significant
growth deficiencies in cells with individual box C/D
snoRNA deletions, and severe ribosomal performance
decrease in response to H/ACA snoRNA depletion. In
addition, ribosomal modifications were shown to be sig-
nificant for translation accuracy and rRNA biogenesis
(54–57). These findings, together with new knowledge on
ribosome structure (58,59), increase the importance of
determining rRNA modification patterns and the factors
involved therein in the effort toward a complete under-
standing of ribosome biology.

In addition to rRNA modifications, we predicted
snoRNA guided modification of nucleotides in snRNAs,
tRNAs and SRP RNA. Some of these are consistent with
a previous analysis of the nucleotide composition of
several snRNAs and snoRNAs that revealed many
examples of ribose methylations and pseudouridylations
(60). SnoRNA guided modifications of snRNAs have been
verified in several cases and modifications of nucleotides in
snRNA U2 are required for snRNP assembly and
pre-mRNA splicing (61). Some modifications of snRNAs
are guided by particular box C/D-H/ACA chimeric
snoRNAs termed small Cajal body RNAs (scaRNAs).
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Other snRNA modifications are guided by regular
snoRNAs (62). We did not identify any scaRNAs in the
Tetrahymena macronuclear cDNA library, but predicted
that regular Tetrahymena snoRNAs guide modifications
of U2, U4, U5 and U6 snRNAs as well as snoRNA U3
(Supplementary Tables S2 and S3). In the case of snRNA
U6, we verified the predicted modification of Um23/Um22.
Additionally, we mapped an unpredicted modification at
Gm14 (Figure 5D). These modifications may be of interest
because Tetrahymena U6 deviates from most other
U6 snRNAs in the secondary structure of the 50-end
(Figure 5E). Most of the 200 sequences in the Rfam seed
alignment folds into a 50-UUCG capped single hairpin at
the 50-end. In contrast, Tetrahymena U6 snRNA folds into
a two-hairpin structure supported by the sequence vari-
ation among the four U6 genes. Furthermore, the 50

terminal stem is the only of the Rfam seed sequences
capped by a 50-GAAA tetraloop, a loop sequence often
involved in tertiary interactions with protein or RNA
partners. In addition to having a structurally different 50

stem-loop structure, the methylations in this domain also
sets Tetrahymena apart from other organisms, e.g. human
and yeast that apparently are unmodified in their 50

stem-loops. It will be of interest to see if these structural
differences are important for splicing of Tetrahymena
introns that are highly AU-rich. All of the snoRNAs pre-
dicted to guide snRNA modification were also predicted
to guide modifications of rRNA. This could imply that
they are active in two distinct nuclear compartments
namely the Cajal body, where most snRNAs are
believed to be modified and the nucleolus where rRNA
modification takes place (14). SnoRNA guided modifica-
tion of tRNAs has so far been demonstrated only in
Archaea, and although predicted in Eukarya (43) they
remain to be verified.

The cDNA library also included one box C/D snoRNA
and four box H/ACA snoRNAs where a target could not
be assigned in the rRNA, snRNA, SRP RNA and tRNAs
included in our target library, as well as five snoRNAs
with two guide sequences but only one predicted target.
SnoRNAs with just one target are not uncommon.
SnoRNAs with no apparent target in rRNA or snRNAs
are highly interesting. In humans some ‘orphan’ snoRNAs
have been shown to target mRNA and control alternative
splicing and to be involved in the human disorder Prader–
Willi syndrome (10,63).

New ncRNAs in Tetrahymena

Our study uncovered two groups of Tetrahymena RNAs
that may be functionally distinct RNAs: the long box C/D
RNAs and the TtnUkn’s. Due to limited conservation at
the primary sequence level of these RNAs, we compared
the five long box C/D Tetrahymena RNAs with the Rfam
database using a structure-based search algorithm. Based
on this analysis, we propose that TtnuCD26 is
Tetrahymena U8 and that TtnuCD25 is Tetrahymena
U14. U14 is required for early steps in processing of the
ribosomal RNA precursor and is essential for cell survival.
U8 is involved in the maturation of 5.8S and 28S rRNA in
the large ribosomal subunit. U14 is widespread but

relatively few examples have been described. In contrast,
many U8 sequences are known, but it has previously not
been found outside metazoans. Both TtnuCD26 and
TtnuCD25 were supported as Tetrahymena U8 and U14
by the presence of conserved sequence elements and
conserved complementarity to rRNA (Figure 2A, B and
C). Also, their abundances were similar to U3 [previously
estimated at 4� 105 molecules/cell (60)] and higher than a
typical modification guide snoRNA (Figure 2D).
However, TtnuCD26 deviated from human U8 with re-
spect to some secondary structure elements and was miss-
ing the sequence motif reported to bind LSm proteins
(Figure 2A). TtnuCD25 contained the A-domain and a
Y-domain, however, similar to a reported fly U14 (40) it
could not form the B-element interaction with 17S rRNA
described in most model organisms (Figure 2B and C).
This should be viewed in relation to other deviations in
Tetrahymena, e.g. the apparent absence of a conventional
TMG (trimethyl guanosine) cap on several snoRNAs
[(60), unpublished results] and suggests some unique char-
acteristics of Tetrahymena rRNA processing that remains
to be elucidated. Along the same lines, TtnuCD32 could
be a new player in ribosomal processing. This RNA is
abundant, highly structured and has a long sequence
stretch with complementarity to rRNA. Yet, we were
unable to identify any homologue in the most studied
model organisms. Genetic knock-down strains of this
RNA have demonstrated it to be essential in
Tetrahymena (unpublished results). Further characteriza-
tion of the molecular defects in these knock-down strains
and the possible role of TtnuCD32 in ribosomal RNA
processing is underway.
The cDNA library presented in this work included seven

sequences that we suggest represent new Tetrahymena
ncRNAs (TtnuUkn’s). We were unable to identify homo-
logues of any of these by searches of Genbank and several
ncRNA databases. All but one (TtnuUkn7) appeared to
be expressed as evidenced by primer extension although
only four (TtnuUkn1, 3, 4 and 5) had well-defined 50-ends
(Figure 3C). Two were detected in northern blot analysis
(Figure 3D). TtnuUkn2 was expressed equally at all con-
ditions tested and the size determined by northern blotting
analysis (�220 nt) of whole cell RNA corresponded well to
the size determined by primer extension analysis (211 nt)
of nuclear RNA. Two bands could be recognized by
northern blot analysis of TtnuUkn4. One was expressed
at equal levels at all conditions tested, but a faint band
above the major band was differentially expressed and
could be discerned in RNA from exponentially growing
cells, in heat shock and cold shock RNA but not in
starved or stationary phase RNA. The single clone repre-
senting TtnuUnk4 was one of the few clones that mapped
to more than one locus in the Tetrahymena genome. Thus,
it is possible that the two bands represent transcripts from
two different loci. However, the existence of a USE
upstream of both the two 50-ends determined by primer
extension suggests that the two length variants observed
by primer extension could originate from the same locus.
The excision of �10–20% of the MIC genome, primar-

ily repetitive sequences, in the formation of the transcrip-
tional active MAC leaves Tetrahymena as an attractive
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model for deeper ncRNA sequencing projects. The
RNomics approach used here identifies primarily the
highly abundant snRNAs and snoRNAs. It is possible
that the elimination of MIC genomic sequence, presum-
ably diminishing transcripts from, e.g. transposable
elements would make detection of novel low and
medium expressed bona fide small ncRNAs by deep
sequencing approaches more feasible in this organism
compared to other model organisms.
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