
Research Article
Shape and Boundary Similarity Features for Accurate HCC
Image Recognition

Xiaoyu Duan, Huiyan Jiang, and Siqi Li

Software College, Northeastern University, Shenyang 110819, China

Correspondence should be addressed to Huiyan Jiang; hyjiang@mail.neu.edu.cn

Received 26 July 2017; Accepted 28 September 2017; Published 7 November 2017

Academic Editor: Marlene Benchimol

Copyright © 2017 Xiaoyu Duan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nucleus morphology is of great importance in conventional cancer pathological diagnosis, which could provide information
difference between normal and abnormal nuclei visually.Therefore, this paper proposes two novel kinds of features for normal and
hepatocellular carcinoma (HCC) nucleus recognition, including shape and boundary similarity. First, each individual nucleus patch
with the fixed size is obtained using center-proliferation segmentation (CPS) method. Then, nucleus shape library is constructed
based on manual selection by pathologists, which is utilized to measure nucleus shape similarity via Dice, Jaccard, precision, and
recall coefficients. Meanwhile, boundary similarity is evaluated through triangles composed of some boundary feature points for
each nucleus. Finally, the conventional random forest (RF) is used to train and test the classification model for HCC nucleus
recognition. Extensive cross-validation tests could facilitate the selection of the optimal feature set and the experiment comparison
results demonstrate that our proposedmorphological features aremore beneficial for classification compared with other traditional
characteristics.

1. Introduction

Cancer is a leading cause of death in the world. In particular,
in less developed countries, liver cancer is the second most
common cancer compared to other cancers, in which the
majority of primary liver cancer arises from liver cells and
is called hepatocellular carcinoma (HCC). Throughout the
treatment of liver cancer, probability of success cure will be
hugely increased in the early stages. However, symptoms of
early liver cancer are not obvious for patients and doctors
to discover. Thus, early detection and diagnosis are of great
significance for decreasing the mortality of HCC effectively.

Generally, a commonmethod to confirm the diagnosis of
HCC is through needle biopsy, which extracts some cells or
a small piece of tissue from the affected area of the liver for
analysis under a microscope. However, this diagnosis process
is subjective, laborious, and time-consuming for operators.
As is well-known, diagnosis from pathology images remains
the “gold standard” for most cancers [1]. Therefore, the
computer-aided diagnosis (CAD) for pathology image anal-
ysis has become a research hotspot in which the recogni-
tion of nucleus is regarded as a prerequisite. The accurate

classification results could provide objective quantitative
evaluations and facilitate the final diagnosis.

With the development of machine learning, several
CAD models have been developed for pathology image
process, which mainly include three parts, nucleus seg-
mentation, feature extraction, and cell classification. For
nucleus segmentation, Jung et al. [2] addressed the over-
lapped nuclei with an unsupervised Bayesian classification
scheme. Distance transform, topographic surface, and the
expectation-maximization (EM) algorithm were employed
and the regular shape of clumped nuclei was viewed as a
priori knowledge. Vink et al. [3] proposed an efficient nucleus
detectorwhichwasmerged by a large feature set andmodified
AdaBoost using a globally optimal active contour algorithm.
The method improved the computational efficiency and also
refined the border of the detected nuclei. In feature extraction
stage, Huang and Lai [4] used a dial morphological grayscale
reconstruction to achieve the accuracy of nuclear shapes.
Fourteen features were extracted and a SVM-based decision-
graph classifier was proposed for HCC classification. Liu
et al. [5] regarded moment, Daubechies wavelets, and
Gabor wavelets as three features of vital importance for the
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classification of cells. As for cell classification, Lorenzo-
Ginori et al. [6] proved that cell classification just in the
characteristics of nucleus could come into effect as well.
A combination between morphological characteristics and
Haralick texture features was obtained from the nucleus’
gray-level cooccurrence matrix. A new heuristic search algo-
rithm, Maximum Minimum Backward Selection (MMBS)
was proposed in [7]. The Weighted Discernibility of Feature
Subsets (WDFS) evaluation criteria were defined as the eval-
uation strategy of MMBS to solve the unbalanced samples,
which contributed to a better feature subset. The experiment
results showed a good classification performance for liver
pathological image.

Recently, Gautam and Bhadauria [8] used four features
of white blood nuclei and then some values of each feature,
which were maximum and minimum, extracted for every
class of white blood class. If the value of features for particular
nucleus lays between the maximum and the minimum
value of features values stored for particular class, then
the segmented nucleus belonged to that class. Qi et al. [9]
extracted 128-dimensional SIFT features from thousands of
large patches which were densely sampled in multiple scales
and were called RootSIFT. PCA was applied to the RootSIFT
and IFV encoding was applied to the PCA-after features with
prelearned GMMparameters for a better classification result.
Xia et al. [10] defined three atypia features and provided
some shape features, fractal dimension features, several gray
features, and Tamura features. By using a HCC image classi-
fication model based on random forests and combined with
VRRF, the method showed a good performance. Gallegos
et al. [11] proposed an alternative method called feature
subset selection (FSS). Feature subset selection (FSS) helped
to decrease the cost of acquiring data and also made the
classification model easier to understand by using the set of
typical testors, taking out irrelevant or redundant features,
reducing the number of features.

However, accurate recognition for normal and HCC
nuclei still remains a significant challenge because of two
main reasons. One is that since hematoxylin and eosin (H&E)
pathology images vary distinctly in color, this may reduce the
effectiveness of most texture features. The other one is that
precise morphological measurements of each nucleus require
accurate nucleus segmentation as an important prerequisite.
To address these issues, this paper proposes two novel
kinds of features for the recognition between normal and
hepatocellular carcinoma (HCC) nuclei. In contrast to other
methods that used features of different image channels, our
goal is to classify normal and HCC nuclei based only on
binary results of nuclei. Besides, for nucleus segmentation
accurately, center-proliferation segmentation (CPS) method
[10] is utilized to segment each individual nucleus. The main
contributions of this paper are as follows. First, nucleus
shape library is constructed based on manual selection by
pathologists, which contains normal and HCC nuclei. Then,
all nuclei are adjusted into a uniform standard space with
same center, area, and orientation. Dice, Jaccard, precision,
and recall coefficients are calculated for measuring the shape
similarity among nuclei. Second, 12 boundary feature points
are determined according to the same interval angle, 220
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Figure 1: The flowchart of RF.

different triangles are thus formed via every three points.
The calculation of boundary similarity is implemented by
considering the similarity of triangles. The final experiment
results show that the two kinds of features combined with
conventional random forest (RF) classifier could achieve
satisfactory effect in terms of accuracy (ACC), sensibility
(SEN), and specificity (SPE).

2. Related Basic Knowledge

2.1. Features. Cell image features are one of the most obvious
attributes for classification. Good features can not only
influence the performance of classification but also improve
the accuracy. Three kinds of characteristics are presented in
Table 1. Intensity features are mainly obtained by computing
the pixel value of the whole image [14]. Morphology features
express the spatial relative position of each pixel [15]. Texture
is the most important group of features for classification [16–
18].

2.2. Random Forest Classifier. Random forest (RF) [19] is a
joint prediction model composed of multiple decision tree,
which can be used as an efficient and effective classification
model. The principle of the classifier is to build a forest
consisting of multiple decision tree with no association
randomly. When a new sample comes, data utilize bootstrap
method to extract in row and column and judge by every
decision tree in the forest to seewhether it belongs to this class
or not. Final predict result generates by voting. As shown in
Figure 1, the flowchart of RF is described.

RF increases the diversity between two classification
models by constructing different training sets and holds the
advantages of handling overfitting and resisting noise. After
training, every decision tree model has its voting rights to
choose the classification result as shown in the following
formula:

𝐻(𝑥) = max
𝑌

𝑘∑
𝑖=1

𝐼 (ℎ𝑖 (𝑥) = 𝑌) , (1)

where 𝐻(𝑥) indicates the final classification result, ℎ𝑖(𝑥) is
the classification results of each decision tree, 𝑌 is the output
target, and 𝐼(⋅) is indicative function.
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Table 1: Three kinds of characteristics.

Category Features
Intensity Density, mean, median, variance, kurtosis, skewness, and so forth

Morphology Area, perimeter, diameter, area overlap ratio, center of mass, minor axis, major axis, smoothness, symmetry,
concavo-convex, and so forth

Texture Gray level cooccurrence matrix, local binary pattern, scale-invariant feature transform Tamura, fractal, Markov
random field, wavelets, Haar-like features, Gabor, run-length, and so forth

(a) (b)

Figure 2: The H&E pathology images. (a) A normal pathology image. (b) A HCC pathology image.

3. Material and Method

3.1. Dataset Description and Nucleus Segmentation. Experi-
mental data coming from a renowned hospital in Shenyang,
China. A hundred and twenty-seven (127) liver pathology
cases and labels consisting of the images are given under
the supervision of the professional pathologists. Throughout
the discussions with the pathologists, the concrete processes
of obtaining the experimental data are as follows. Firstly,
tissue slices are acquired through paraffin-embedding. Then,
the H&E slides are cut at 4 𝜇m thickness by a microtome
and stained using hematoxylin and eosin for 7.5min. Finally,
fast slide scanners are used to generate digital images for
image capture at 20x magnification. In addition, each image’s
resolution is 0.35mm/pixel. Figure 2 shows the normal and
HCC pathology images. Figure 2(a) is a normal image and
Figure 2(b) is a HCC image.

Our intention of this paper is to extract the morpholog-
ical features which include shape and boundary similarity
features; we thus employ center-proliferation segmentation
(CPS) to obtain the segmentation result of each nucleus. The
specific steps are introduced as follows.

Step 1. Choose a suitable threshold to get the binary nucleus
coarse segmentation results and receive the connected region
according to coarse segmentation results.

Step 2. Select the connected region by computing the circu-
larity and set the threshold to a value larger than 0.85.

Step 3. Locate and acquire the center of each nucleus through
the selected connected region and map the centers’ coordi-
nates into the corresponding H&E pathology images.

Step 4. Acquire 𝑛 × 𝑛 pixel nucleus patches from each center
to the four directions.

Following this method, the segmentation result of each
nucleus is acquired. For the reason of guaranteeing every
nucleus in the well-distributed scale position of the images,
we resize each image to 100 × 100 pixels in the experiments.
Figure 3 shows the examples of nucleus image patches. The
first row is the segmented patches of H&E image and the
second row represents the corresponding binary segmenta-
tion results. To alleviate the influence of color difference, our
experiments only utilize the binary patches to extract the
morphological features.

3.2. Methods. The diagram of our proposed nucleus recog-
nition framework is shown in Figure 4. It first decom-
poses an H&E pathology image into some patches with
the fixed size using the CPS method, which satisfy that
one patch contains one nucleus. Then, the corresponding
binary masks are accordingly obtained via morphological
operations. Next, two novel kinds of features, shape simi-
larity feature (Section 3.2.2) and boundary similarity feature
(Section 3.2.3), are extracted to construct the feature vectors.
Finally, conventional random forest (RF) is used to recognize
normal nucleus or HCC nucleus.

3.2.1. Classification Steps. As shown in Figure 5, the proposed
classification model is described, which composed of the fol-
lowing steps. Note that the red rectangular frames represent
the innovation work of this paper.

Step 1. For each liver pathology image, the center-prolifer-
ation segmentation (CPS) method [10] is utilized to obtain
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Figure 3: The H&E nucleus and the corresponding binary patches. The first row shows four H&E nuclei. The second row indicates the
corresponding binary patches.
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Figure 4: General overview of our nucleus recognition framework.

the segmentation result (binary result) of each individual
nucleus. For the sake of effective image processing, each
segmented nucleus is located at the same size of patch with100 × 100 pixels.

Step 2. 160 segmented nuclei are manually selected to con-
struct the nucleus shape library under the guidance of the
pathologists, which contain 80 normal nuclei and 80 HCC
nuclei, respectively. Then, a shape alignment method is
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Figure 5: The flowchart of the proposed HE pathological image classification method.

employed to adjust these nuclei into a uniform standard
space.

Step 3. In order to calculate shape similarity accurately, the
remaining nuclei are also adjusted into the uniform standard
space with the same center, area, and orientation. Dice,
Jaccard, precision, and recall indexes are calculated between
each nucleus and all nuclei of shape library. Based on these
indexes, shape similarity features for each nucleus are formed
with 640 dimensions in total.

Step 4. According to the major axis and minor axis’ lengths
of each original segmented nucleus, the corresponding ellipse
is obtained and we select 12 boundary points with the same
interval (𝜋/6). The initial point is defined at the positive
direction of the horizontal axis and the rotational direction
is anticlockwise. Following these 12 points of each ellipse, 12
boundary feature points of each corresponding nucleus are
determined using the minimum value of Euclidean distance
between each boundary point and 12 ellipse points. Every 12

boundary points could construct 220 different triangles and
we use the similarity between triangles to measure boundary
similarity features. Notice that boundary similarity features
for each nucleus are 220 dimensions in total.

Step 5. Finally, the conventional RF classifier is used to train
and test all nucleus images. In order to remove the redun-
dancy of the features, 10-fold cross-validation experiments
show that combining the selected boundary similarity fea-
tures (56-dimension) with Jaccard shape similarity features
(80-dimension) into the classifier could achieve the best
results in terms of ACC, SEN, and SPE.

3.2.2. Shape Similarity Feature. Generally, nuclei with the
same label (normal andHCC) are similar in shape, boundary,
and appearance. A basic approach is to use normal and
HCC nuclei to establish statistical shape models and then
measure the difference to classify a nucleus as normal or
HCC. However, the statistical shape model for each class
is unreliable. To improve this issue, we select 160 nuclei
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to construct a nucleus shape library under the guidance of
the pathologists, which include 80 normal nuclei and 80
HCC nuclei, respectively. Our intention in this section is
to extract the shape similarity features using the similarity
measurement between each nucleus and all nuclei of the
shape library. Further, in order to reduce the influence of
shape difference caused by translation, rotation, and scale, a
simple registration method is performed on each segmented
individual nucleus into a uniform standard space. A new
point 𝑎 is located using the transformation:

𝑎 = 𝜎𝑅𝑎 + 𝑇, (2)

where 𝑎 and 𝑎 are an original point and the corresponding
transformation point, respectively. 𝜎 is the scaling factor, 𝑅
is the rotation matrix, and 𝑇 denotes the translation vector.
In our experiments, each nucleus needs to be adjusted to the
uniform standard space defined as follows.

Translation 𝑇. Align each nucleus centroid to patch center
and calculate coordinate translation vector:

(Δ𝑥𝑖, Δ𝑦𝑖) = (𝑥𝑐, 𝑦𝑐) − (𝑥𝑖, 𝑦𝑖) , (3)

where (Δ𝑥𝑖, Δ𝑦𝑖) represents the corresponding coordinate
translation vector between patch center (𝑥𝑐, 𝑦𝑐) and each
nucleus centroid (𝑥𝑖, 𝑦𝑖).
Scaling Factor 𝜎. Zoom or shrink all nucleus areas to 1000
pixels approximately:

𝜎𝑖 = 1000area𝑖
, (4)

where 𝜎𝑖 is the scaling factor and area𝑖 is each nucleus area
represented by the number of pixels.

Rotation Matrix 𝑅. Adjust the principal axes of all nuclei into
the horizontal axis:

𝑅 (𝜃) = [cos (𝜃) − sin (𝜃)
sin (𝜃) cos (𝜃) ] , (5)

where 𝜃 denotes an angle between the principal axe of each
nucleus and the positive direction of horizontal axis.

Following this method, all segmented individual nuclei
are adjusted into the uniform standard space of the same
center, area, and direction. Some examples illustrating this
alignment method are shown in Figure 6. Figures 6(a), 6(b),
and 6(c) are the segmented nuclei. Figures 6(d), 6(e), and 6(f)
present the corresponding registration results.

Next, four commonly used similarity metrics are consid-
ered:

DI (SR,TR) = 2 ×Num (pixelSR ∩ pixelTR)
Num (pixelSR) +Num (pixelTR) (6)

JI (SR,TR) = Num (pixelSR ∩ pixelTR)
Num (pixelSR ∪ pixelTR) (7)

P (SR,TR) = Num (pixelSR ∩ pixelTR)
Num (pixelSR) (8)

R (SR,TR) = Num (pixelSR ∩ pixelTR)
Num (pixelTR) , (9)

where Num(⋅) represents the number of all pixels in the
nucleus regions. pixelSR and pixelTR are the pixels in the
segmentation regions (SR) and ground truth regions (TR),
respectively. DI(SR,TR) is Dice index which describes the
similarity degree directly. JI(SR,TR) denotes Jaccard index
that measures the difference between the segmentation
results and ground truth. P(SR,TR) and R(SR,TR) represent
precision and recall, respectively.

Finally, the shape similarity features for each nucleus are
formed by calculating (6), (7), (8), and (9) with all nuclei of
shape library. Obviously, the number of features is the same
as the number of nuclei of the shape library. In this paper,
we denote DI, JI, P, and R shape similarity features as DI
feature, JI feature, P feature, and R feature, respectively. It can
be seen that these four kinds of shape similarity features are
160 dimensions, respectively.

3.2.3. Boundary Similarity Feature. It is our understand-
ing that there is a wealth of geometric information with
regard to the boundary of an object. Many classification
tasks using boundary information could achieve remarkable
achievements, such as the average value or standard deviation
between the distances of all boundary points and the center
point, and this can be regarded as a kind of statistical
characteristics. The other distinguished boundary feature is
concave-convex, which has demonstrated significant superi-
ority via measuring monotonicity variation of the boundary
curve. However, it is cumbersome to express the curve
analytically due to its irregularity. To address this issue,
we propose a novel boundary similarity feature using the
triangles formed by the boundary points. The concrete steps
are as follows.

Step 1. TheCanny operator is utilized to extract the boundary
for each nucleus. Note that, for the sake of accurate calcula-
tion, all nuclei used for boundary similarity feature need to
be adjusted into the same center and direction using (3) and
(5).

Step 2. For each nucleus, the corresponding ellipse is delin-
eated via the nucleus’ major axis and minor axis. 12 points
of ellipse boundary are determined through different polar
angles with the same interval. Hence, the points’ coordinates
could be calculated as follows:

𝑥 = 𝑎 cos (𝜃)
𝑦 = 𝑏 sin (𝜃) , (10)

where 𝑎 and 𝑏 represent the major axis and minor axis’
lengths of each nucleus, respectively. (𝑥, 𝑦) is the Cartesian
coordinates. 𝜃 denotes the polar angles and we define that the
initial angle’s value is from 0 to 𝜋/6.The angle interval is fixed
as 𝜋/6.
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(a) (b) (c)

(d) (e) (f)

Figure 6: The examples of nucleus alignments. (a), (b), and (c) Three segmented nuclei. (d), (e), and (f) The corresponding registration
results.

Step 3. Then, we calculate the Euclidean distance between
each nucleus boundary point and the corresponding 12 points
of ellipse boundary. 12 boundary feature points of each
nucleus are determined according to the minimum values of
Euclidean distance.

Step 4. Based on these 12 boundary feature points for each
nucleus, we could construct 220 different triangles. This sec-
tion proposes to represent the boundary similarity features
of a nucleus by measuring the angles of the 220 triangles.
Specifically, given a triangle containing three control points𝑖, 𝑗, and 𝑘, the shape of the triangle could be represented by
storing just two of its angles (e.g.,∠𝑖𝑗𝑘 and∠𝑖𝑘𝑗) since the sum
of three sides of a triangle is equal to 𝜋. Finally, the boundary
similarity feature could be calculated in the following:

BF = cos (∠𝑖𝑗𝑘)
cos (∠𝑖𝑘𝑗) , (11)

where BF represent the boundary similarity feature and we
can see that the number of this feature is 220 dimensions.

Following this approach, the boundary similarity features
for each nucleus are obtained and two examples are shown in

Figure 7. Figure 7(a) are two segmented nuclei. Figure 7(b)
are the registration nuclei with the same center and direc-
tion. Figure 7(c) are the corresponding ellipse templates.
Figure 7(d) show the 12 boundary points of the ellipses.
Figure 7(e) are the determined boundary feature points for
each nucleus. Figure 7(f) presents a triangle formed by three
corresponding different control points named 𝑖, 𝑗, and 𝑘
respectively.

So far we have considered the complete feature set
for each nucleus as only combining shape and boundary
similarity features. In our case, the conventional support
vector machine (SVM), extreme learning machine (ELM),
and RF are utilized to train and test all feature data.

4. Results and Comparisons

4.1. Experimental Data and Platform. Experimental data
containing 9720 image patches are obtained using themethod
described in Section 3.1. The number of training patches
and testing patches is shown in Table 2. The experimental
platform is Intel(R) Core(TM) i7-4790 CPU@3.60GHz, 8G
RAM, 930G hard disk,Windows 7OS, andMATLABR2016a
simulation environment.
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Table 2: The number of training images and testing images used in our experiment.

Patch type Training patches Testing patches Total patches
Normal patches 2600 2260 4860
HCC patches 2600 2260 4860
Total patches 5200 4520 9720

(a) (b) (c) (d) (e)
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(f)

Figure 7: The process of extracting the boundary similarity features for each nucleus. (a) Two segmented nuclei. (b) The registration nuclei
with the same center and direction. (c) The corresponding ellipse templates. (d) 12 boundary points of the ellipses. (e) The determined
boundary feature points for each nucleus. (f) A triangle formed by three corresponding different control points named 𝑖, 𝑗, and 𝑘, respectively.

4.2. Experimental Evaluative Criteria. In order to verify
the proposed method for HCC image classification, three
commonly used evaluative criteria are considered as

ACC = TP + TN
TP + FN + TN + FP

SEN = TP
TP + FN

SPE = TN
TN + FP ,

(12)

where TP and FN are the number of HCC image patches
which are correctly classified and incorrectly classified,
respectively. TN and FP are the number of normal image
patches which are correctly classified and incorrectly classi-
fied, respectively. ACC is the overall classification accuracy.
Sensitivity (SEN) indicates the proportion of HCC image
patches that are correctly classified and specificity (SPE)
indicates the proportion of normal image patches that are
correctly classified.

4.3. Results. Performance results of shape and boundary
similarity features are presented in this section. Note that we
test our method 10 times and randomly select the training
and testing data according to Table 2 every time. Figure 8
shows average HCC or normal classification ACC, SEN, and
SPE using all shape and boundary similarity features (860
dimensions for each nucleus) when three types of classifier
are used, including RF, SVM, and ELM. It is seen that these
features with RF classifier perform best. Further, 5 features
(DI, JI, P, R, and BF features) are utilized to train and test
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Figure 8: Average ACC, SEN, and SPE results using all shape and
boundary similarity features with ELM, SVM, and RF.

RF classifier. Figure 9 presents the corresponding average
classification ACC, SEN, and SPE. We can see that the BF
feature could achieve the best effect. In addition, to find the
best feature combination for accurate classification, we also
combine different shape and boundary similarity features to
train and test RF classification. Figures 10, 11, and 12 show
the corresponding ACC, SEN, and SPE results. In conclusion,
Figures 8, 9, 10, 11, and 12 demonstrate that JI + BF with
RF classifier is much better than other features or feature
combinations.
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4.4. Feature Selection Results. Generally, the number of nuclei
in shape library and the number of boundary feature points
are determined by experience. However, this may generate
some redundancy and reduce the classification accuracy. To
address this issue, 10-fold cross-validation and grid-search
technology are adopted in our experiments to select the
number of shape library’s nuclei and boundary feature points.
We first test the performance of each nucleus of shape library
separately. The ACC results of each nucleus ranking from
high to low are shown in Figure 13. Next, we integrate the first
30 nuclei as the new shape library and add 10 nuclei into the
shape library for training and testing successively. Finally, the
corresponding average ACC results for different number of
shape library’s nuclei are presented in Figure 14. Obviously,
the shape library composed of the first 80 nuclei is the most
beneficial for HCC nucleus recognition. For the boundary
similarity feature, 12 boundary feature points constitute 220
different triangles and we also test the performance of each
triangle separately. According to the individual test results,
the importance of 12 boundary feature points ranking from
high to low is determined through the occurrence number
of each feature point in the triangles. Figure 15 shows average
ACC results, which includes the different boundary similarity
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Table 3: The ACC, SEN, and SPE effects for different shape libraries.

Group number ACC SEN SPE
1 93.94% 96.23% 91.65%
2 96.09% 95.46% 96.72%
3 93.89% 96.07% 91.71%
4 92.93% 94.33% 91.53%
5 92.94% 95.17% 90.71%
6 93.77% 96.89% 90.65%
7 91.75% 97.23% 86.27%
8 91.88% 96.78% 86.98%
9 94.95% 94.78% 92.42%
10 93.88% 95.06% 92.80%
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Figure 14: The average ACC results for different number of shape
library’s nuclei.
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Figure 15: The average ACC results for different number of
boundary feature points.

feature sets formed by corresponding 5, 6, 7, 8, 9, 10, 11,
and 12 boundary feature points. It is seen that 8 boundary
feature points could achieve the best performancewith regard
to boundary similarity feature. To sum up, 136-dimension
features, constructed via 80 shape similarity features (80
nuclei in shape library) and 56 (𝐶3

8
) boundary similarity

features (8 boundary feature points), are considered as the
optimal feature set for our recognition task.

4.5. Comparisons. In order to further evaluate the proposed
method with other related work, three methods in [10, 12, 13]
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Figure 16: Average ACC, SEN, and SPE results with different
literatures [10, 12, 13] and our method.

are performed on our data for fair comparison.The intention
of [10] is to propose some atypia features (auxiliary circularity,
amendment circularity, and cell symmetry) and a voting
ranking random forest to establish the classification model.
The core of [12] is to utilize the concave-convex variations
of nucleus boundaries to improve the performance of each
classifier. Finally, the intention of [13] is to propose a simple
but robust local descriptor without any quantization for local
patch representation. Figure 16 presents the averaging ACC,
SEN, and SPE results using 10-fold cross-validation. Note that
comparison experiments utilize the optimal 136-dimension
feature set and we can see that ourmethod is slightly superior
to [10, 12, 13].

4.6. Shape Library Selection. As previously mentioned, the
nucleus shape library is composed of 160 nuclei including
80 normal nuclei and 80 HCC nuclei, which are selected
by the pathologists. To further reduce manual process, we
randomly select 10 groups of nuclei as the shape library and
the remaining nucleus patches are used to examine the effect
of different nucleus shape library. Similarly, each group of
nuclei contains 80 normal nuclei and 80 HCC nuclei. The
results for different shape libraries are presented in Table 3
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and an interesting finding is that random selection of nucleus
shape library influences little final classification results.

5. Discussions

For our shape similarity feature, different similarity measures
are utilized to establish the feature set. According to Figure 9,
Jaccard index is regarded as the JI features, which could
achieve more effective classification results than other simi-
larity measurements. This shape similarity feature measures
the similarity and difference between each nucleus and all
nuclei of shape library. The shape registration method is
utilized to adjust all nuclei into the same center, scale, and
direction and then we can obtain more accurate shape simi-
larity features. Besides, Table 3 presents the effects of different
shape libraries. It is our understanding that random selection
for different shape libraries influence little final classification
results and this feature could thus be considered as a robust
feature. In regard to our boundary similarity feature, Figure 9
shows that BF feature could achieve relatively ideal results. BF
feature is calculated via the similarity of triangles constructed
by boundary feature points and the boundary feature points
are determined by corresponding ellipse template. Different
from other similaritymeasurement of curves, this calculation
method is simple and effective. In addition, Figure 10 demon-
strates that JI + BF feature combination with RF classifier
perform best and this paper treats JI + BF as the optimal
feature combination. Further, we determine the optimal
number of JI + BF features using 10-fold cross-validation
(see Figures 13, 14, and 15). Finally, Figure 16 shows that
our proposed method overcomes other related methods in
terms of ACC, SEN, and SPE, demonstrably the performance
superiority of our proposed two morphological features.

6. Conclusions

In this paper, we propose two novel kinds of features for
normal and hepatocellular carcinoma (HCC) nucleus recog-
nition, including shape and boundary similarity. First, the
shape similarity feature is extracted via the Jaccard index’s
calculation between each nucleus and all nuclei of the shape
library. Then, the boundary similarity feature is computed
through the similarity of triangles constructed by boundary
feature points. Next, combining JI and BF features (136-
dimension) is regarded as the feature set for image patches.
Finally, the conventional RF classifier is used for obtaining
the best classification results. Experiments with 9720 patches
demonstrate that our proposed morphological features (JI +
BF) with RF classifier are beneficial and robust to achieve the
satisfactory results in terms of ACC, SPE, and SEN.
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