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As one of the most studied Apicomplexan parasite Cryptosporidium, Cryptosporidium parvum (C. parvum)
causes worldwide serious diarrhea disease cryptosporidiosis, which can be deadly to immunodeficiency
individuals, newly born children, and animals. Proteome-wide identification of protein–protein interac-
tions (PPIs) has proven valuable in the systematic understanding of the genome-phenome relationship.
However, the PPIs of C. parvum are largely unknown because of the limited experimental studies carried
out. Therefore, we took full advantage of three bioinformatics methods, i.e., interolog mapping (IM),
domain-domain interaction (DDI)-based inference, and machine learning (ML) method, to jointly predict
PPIs of C. parvum. Due to the lack of experimental PPIs of C. parvum, we used the PPI data of Plasmodium
falciparum (P. falciparum), which owned the largest number of PPIs in Apicomplexa, to train an ML model
to infer C. parvum PPIs. We utilized consistent results of these three methods as the predicted high-
confidence PPI network, which contains 4,578 PPIs covering 554 proteins. To further explore the biolog-
ical significance of the constructed PPI network, we also conducted essential network and protein func-
tional analysis, mainly focusing on hub proteins and functional modules. We anticipate the constructed
PPI network can become an important data resource to accelerate the functional genomics studies of C.
parvum as well as offer new hints to the target discovery in developing drugs/vaccines.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cryptosporidium spp. are zoonotic Apicomplexan parasites lead-
ing to serious diarrheal disease, i.e., cryptosporidiosis, which is the
second leading cause of moderate-to-severe diarrheal disease in
children. In 2016, cryptosporidiosis caused approximately 4.2 mil-
lion infections and 57,000 deaths worldwide [1–3]. There are cur-
rently more than 40 accepted Cryptosporidium species with
different host preferences [4,5]. Among them, Cryptosporidium par-
vum (C. parvum) is the most studied species reported in both
humans and livestock [6]. In humans, malnourished children under
the age of five and HIV/AIDS patients are more susceptible to C.
parvum [7]. C. parvum infection is usually accompanied by clinical
symptoms such as abdominal pain and moderate to severe diar-
rhea, which can easily lead to some sequelae, including weight
loss, fatigue, and post-infection irritable bowel syndrome [8,9].
Except for the non-fatal diseases, in 2017, a study in Lebanon has
also shown a strong association between human colon cancer
and C. parvum [10]. Livestock, especially neonatal calves and lambs,
can be infected by C. parvum and get diarrhea and impair gain of
body weight, causing losses in meat and milk production
[11–13]. Besides, some wild animals and fishes can also be infected
[14,15]. Currently, there are only two drugs, nitazoxanide and
paromomycin, developed for cryptosporidiosis treatment, but
these two drugs are not fully effective in severely immunocompro-
mised individuals and generate toxicity in dehydrated animals
[16,17]. Thus, an immense need still exists for the development
of more effective drugs/vaccines to treat cryptosporidiosis.

Proteins perform their molecular functions by interacting with
each other. For instance, numerous fundamental biological
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processes such as transcription, translation, and protein trafficking
are mediated by protein–protein interactions (PPIs) [18]. Thus, sys-
tematic identification of the PPI network of C. parvumwill be extre-
mely valuable to understand the genome-phenome relationship as
well as provide new hints to seek out reliable drug targets and
develop effective vaccines rapidly for treating the cryptosporidio-
sis. Generally, scientific researchers always make full use of exper-
imental techniques to identify PPIs, such as yeast two-hybrid (Y2H)
[19,20], protein complementation assay (PCA) [21], affinity purifi-
cation coupled with mass spectrometry (AP-MS) [22], surface plas-
mon resonance (SPR) [23], and isothermal titration calorimetry
(ITA) [24]. Nonetheless, the wet-lab experimental methods to val-
idate PPIs are costly, time-consuming, and labor-intensive. More-
over, researches on C. parvum have been hampered by the long-
time unavailable culture for its full lifecycle in vitro as well as
the poorly annotated reference genome [25]. Therefore, only a very
limited number of C. parvum PPIs have been identified [26].

In this context, bioinformatics methods could contribute to the
identification of C. parvum PPIs without the limitations mentioned
above [27]. A plethora of PPI prediction methods have been devel-
oped, such as interolog mapping (IM) [28], domain-domain inter-
action (DDI)-based inference [29], domain-motif interaction
(DMI)-based inference [30], and increasingly popular artificial
intelligence (AI) technique. Machine learning (ML) [31], as the core
of AI technique, has been widely used in the field of PPI identifica-
tion and has shown its powerful predictive potential [32]. Briefly,
ML methods train a binary classification model by using experi-
mentally known PPIs and selecting potential non-PPIs to learn
the differences between them. In this way, we can further accu-
rately identify protein interactions from the query protein pairs.
To construct an ML model, the key step is to employ effective fea-
ture encoding schemes, which convert protein sequences (i.e., the
most commonly used input information) to fixed-dimensional fea-
ture vectors. Several common sequence-based feature encoding
schemes such as Di-peptide Composition (DPC) [33], Auto Covari-
ance (AC) [34], and Local Descriptor (LD) [35] are widely used, in
which amino acid composition/physicochemical properties or resi-
due interaction effects in sequences have been taken into account.
Recently, an embedding technique (i.e., Doc2Vec) derived from
natural language processing has been applied to encode protein
sequences to further predict PPIs and has been evaluated to
improve the PPI prediction performance significantly [32].

In this work, we combined traditional prediction methods (i.e.,
IM and DDI inference) and the ML method [i.e., Random Forest
(RF)] to predict proteome-scale C. parvum PPIs (Fig. 1). Two
Fig. 1. Workflow of the proposed computational pipeline to predict C. parvum PPIs. In the
falciparum PPI data from BioGRID as well as the Swiss-Prot database and divided the da
extracted protein features using the Doc2Vec encoding scheme and DPC encoding sc
sequences from Swiss-Prot, P. falciparum PPI dataset, and proteomes of P. falciparum and
further trained the ML classification model using the RF algorithm and assessed the mod
PPIs and combined two other traditional methods (i.e., IM and DDI inference) to obtain

2323
sequence encoding schemes (i.e., DPC and Doc2Vec) were adopted
to capture protein composition and semantic information, respec-
tively. Although few experimental PPI data of C. parvum can be
used, we developed the ML model based on the largest number
of Plasmodium falciparum (P. falciparum) PPI data in Apicomplexa
[36]. Then, the learned knowledge was transferred to predict C.
parvum PPIs. By means of a 5-fold cross-validation and indepen-
dent test, we extensively compared the prediction performance
of our prediction framework with other popular sequence
encodings-based RF methods, suggesting that our pipeline outper-
forms other approaches. Finally, we predicted proteome-scale C.
parvum PPIs based on our proposed computational framework
and achieved the C. parvum PPI network. Unlike the traditional pre-
diction method, we yielded an interaction probability score [37] in
each protein pair. According to the network topology of the con-
structed PPI network, we inferred several hub proteins and sub-
networks that can potentially help explore the pathogenesis of
cryptosporidiosis and speed up the discovery of effective
drugs/vaccines.

2. Materials and methods

2.1. Data collection and dataset construction

2.1.1. C. parvum and P. falciparum proteins
We downloaded the proteomes of the C. parvum and P. falci-

parum (isolate 3D7) from the UniProt database (https://www.uni-

prot.org/) [38], which contained 3,805 and 5,387 proteins,
respectively.

2.1.2. The PPIs of P. falciparum (isolate 3D7)
There are limited C. parvum PPIs experimentally determined in

previous studies. However, the C. parvum belongs to the Apicom-
plexa [36]. By investigating PPI data of Apicomplexa in BioGRID
[39], we discovered only P. falciparum (isolate 3D7) evolutionarily
close to C. parvum has a relatively large number of interaction data
available to train a PPI prediction model which can be further
transferred to predict C. parvum PPIs. Therefore, we downloaded
P. falciparum (isolate 3D7) PPIs from BioGRID [39]. To obtain a rea-
sonable P. falciparum (isolate 3D7) protein interaction dataset, we
excluded non-physical interactions, redundant interactions, and
interactions containing too short/long sequences (i.e.,
length � 30 or � 5,000 amino acids). As a result, we obtained
1,968 experimentally verified P. falciparum (isolate 3D7) PPIs,
which were regarded as the positive samples. Regarding the sam-
dataset preparation step, we constructed positive and negative samples based on P.
taset into a training set (80%) and an independent test set (20%). Furthermore, we
heme. The Doc2Vec model was trained on the compiled protein corpus covering
C. parvum. Based on the encoded feature vectors of the P. falciparum PPI dataset, we
el’s performance. Finally, we transferred the trained ML model to predict C. parvum
the high-confidence C. parvum PPI network.

https://www.uniprot.org/
https://www.uniprot.org/
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pling of the negative samples, we randomly selected protein pairs
from the P. falciparum (isolate 3D7) interaction dataset and its pro-
teome, ensuring the selected protein pairs will not occur in the
positive samples. Here, an unbalanced ratio of 1:10 positives to
negatives was set. In other words, the number of negative samples
is 19,680. Moreover, we randomly divided the samples into a train-
ing set (80%) and an independent test set (20%) for model training
and assessment separately (Supplementary Table S1). C. parvum
and P. falciparum belong to different parasite species. To confirm
the transferable generalization ability of the ML model trained on
P. falciparum dataset to predict C. parvum PPIs, we also used
another P. falciparum dataset partition, in which we divided sam-
ples into a training set and an independent test set including
800/8,000 and 200/2,000 positive/negative samples, respectively
(Supplementary Table S1). Briefly, in this novel P. falciparum data-
set partition, proteins in the independent test set will not occur in
the training set, i.e., each protein being tested is equivalent to a
novel protein unseen in the trained model. Therefore, the perfor-
mance on the novel dataset partition can indirectly reflect the
transferable generalization ability of the model testing on a novel
parasite species.
2.2. Document to vector (Doc2Vec) model

Doc2Vec adopts an unsupervised embedding learning frame-
work and trains the model based on the hypothesis that a series
of protein sequences constitute a ‘document’ (also called a corpus).
Thus, each sequence represents a sentence in a certain biological
language suggesting its biological functions can be semantically
interpreted [32]. In our previous study regarding the human-
virus PPI prediction issue [32], we employed Doc2Vec to convert
protein sequences into fixed-dimensional feature vectors for RF
classifier training. The results showed that the Doc2Vec encoding
improved model prediction performance and outperformed some
traditional sequence-based encoding schemes (e.g., AC and LD)
[32]. To implement the Doc2Vec encoding, here we first used the
protein sequences from the Swiss-Prot database [40] with a length
between 30 and 5,000 amino acids to establish a complete corpus
(i.e., training data). Then, we removed the redundancy of the above
database by using CD-HIT [41] (sequence identity � 0.5). In addi-
tion, we also added the protein sequences from our positive/nega-
tive samples and the proteomes of C. parvum and P. falciparum
(isolate 3D7). When finishing the above steps, the non-redundant
protein sequences were compiled as a corpus for the Doc2Vec
model training. Specifically, we split each protein sequence into
several small k-mer residue segments regarded as biological
words. Next, these completed protein sequences (sentences) and
k-mer residue segments (words) were utilized to train the Doc2Vec
model. The model made full use of the distributed-memory (DM)
model architecture to let us describe each residue segment
through the sentence vector and context words. Iteratively, we uti-
lized stochastic gradient descent (SGD) [42] and backpropagation
to update model parameters. Finally, we considered the output
sentence vectors as the protein sequence features.

We used the Python library Gensim [43] to train the Doc2Vec
model. The hyperparameters (e.g., k-mers and the dimensionality
of output vectors) were optimized by the 5-fold cross-validation
[44]. In particular, we trained multiple RF classifiers based on fea-
ture vectors extracted from different Doc2Vec models that were
trained on different lengths of k-mers (2 to 7) and different dimen-
sions of output vectors (16, 32, 64, 128, 256) to obtain optimal
parameters of the Doc2Vec model. The final dimension of the
Doc2Vec encoding for a protein pair is 128 (64 � 2) after parameter
optimization.
2324
2.3. Random Forest algorithm and parameter optimization

Random Forest (RF) is a popular decision tree-based ensemble
ML algorithm [45]. In general, the RF model always has a compar-
atively more robust and perfect performance than other
frequently-used ML methods in the issue of PPI prediction [32].
Therefore, based on the P. falciparum PPI dataset, we utilized the
RF algorithm to train the model. We used a variety of bootstrap
samples of the raw data (‘bagging’) to construct the classification
trees. Then, when the classification trees are constructed by isolat-
ing each node and using the best among a predictor subnet ran-
domly chosen at that node (‘boosting’), RF will change
accordingly. We mainly optimized three parameters for RF model
training, including ‘n_estimators’ (the number of trees in the for-
est), ‘max_depth’ (the maximum depth of the decision trees), and
‘criterion’ (feature selection method). The optimal range of these
parameters is [100, 500, 1,000, 1,500], [10, 50, 100, 200] and [‘en-
tropy’, ‘gini’], respectively. The above RF algorithm is implemented
by a Python library called Scikit-learn [46]. We used 5-fold cross-
validation and regarded the ‘neg_log_loss’ scoring function as an
assessment criterion for various sequence encoding schemes-
based RF algorithms. Besides, we took advantage of the ‘Grid-
SearchCV’ function to optimize all parameters [47].

2.4. Other traditional sequence-based encoding schemes

In addition to the Doc2Vec, we also utilized three other
sequence-based encoding schemes to train the RF model.

2.4.1. Di-peptide composition (DPC)
DPC represents the ratio of two continuous amino acids compo-

sition in the whole protein sequence. The concrete formula is:

SDPC AiAj
� � ¼ NAiAj

L�1 ; i; j 2 1;2; :::;20ð Þ, where Ai and Aj represents 20
standard amino acids separately, NAiAj

is the number of specific
di-peptide in a protein sequence, and L is the length of the corre-
sponding protein sequence. Therefore, the final dimension of DPC
encoding for a protein pair is 800 (20 � 20 � 2).

2.4.2. Local Descriptor (LD)
We divided the protein sequence into several subdomains by

utilizing the LD encoding scheme and extracted each subdomain’s
traits, which mainly captures the local feature of the protein [48].
First, we divided the 20 standard amino acids into seven classes
(AGV, DE, FILP, HNQW, KR, MSTY, and C) based on the physico-
chemical properties of the amino acids’ side chains. In addition,
the protein sequence was separated into ten different regions,
and each of them was expressed by three traits [i.e., Composition
(C), Transition (T), and Distribution (D)]. Among them, C represents
the composition of each class of amino acids, and its dimensional-
ity is 7. T reflects the composition of any two classes of amino
acids, and its dimensionality is 21 (6 � 7/2). D represents the dis-
tribution (i.e., the first, 25%, 50%, 75%, and 100%) of each class of
amino acids, and its dimensionality is 35 (5 � 7). As a consequence,
the LD encoding transforms a protein pair into a 1,260-dimensional
[(7 + 21 + 35) � 10 � 2] vector.

2.4.3. Auto covariance (AC)
AC encoding takes into account the interaction effect of amino

acids spaced at a certain distance. Herein, we employed seven
physicochemical properties i.e., hydrophobicity (H1), hydrophilic-
ity (H2), net charge index of side chains (NCI), polarity (P1), polar-
izability (P2), solvent accessible surface area (SASA), and volume of
side chains (V) to represent the protein feature [34]. For each pro-
tein sequence, corresponding AC features can be inferred by:



P. Ren, X. Yang, T. Wang et al. Computational and Structural Biotechnology Journal 20 (2022) 2322–2331
SACðlag; jÞ ¼ 1
L� lag

XL�lag

i¼1
ðRi;j � 1

L

XL

k¼1
Rk;jÞ � ðRðiþlagÞ;j

� 1
L

XL

k¼1
Rk;jÞ; j 2 ð1;2; :::;7Þ

In the above formula, i and k represent the ith and kth residue in
the protein sequence separately, j stands for one of the seven
physicochemical features, Ri,j and Rk,j represent the jth physico-
chemical feature of the ith and kth residue, and lag is the distance
between the ith residue and its adjacent residue, ranging from 1
to 30. Finally, the dimensionality of AC encoding scheme is 420
(30 � 7 � 2).

2.4.4. Combination of encoding schemes
In addition to solely using Doc2Vec, DPC, LD, and AC encoding

schemes, we also used the different combinations among them
by concatenating their sequence encodings. Firstly, we tried two
encoding schemes (i.e., Doc2Vec + LD, Doc2Vec + AC,
Doc2Vec + DPC, LD + AC, LD + DPC, AC + DPC). Secondly, we utilized
three encoding schemes (i.e., Doc2Vec + LD + AC, Doc2Vec + LD +
DPC, Doc2Vec + AC + DPC). Finally, we used all four encoding
schemes (i.e., Doc2Vec + LD + AC + DPC).

2.5. Performance evaluation

We conducted a 5-fold cross-validation and an independent test
to evaluate the performance of various models. We adopted two
metrics to comprehensively assess the models, including the areas
under Receiver Operating Characteristic (ROC) curve and Precision-
Recall (PR) curve (i.e., AUC and AUPRC, respectively). PR curve and
AUPRC have been proved to be more suitable for assessing the pre-
diction model when the ratio of positive-to-negative samples is
imbalanced. Generally, the closer the value of AUC/AUPRC is to 1,
the better the performance of the PPI prediction model is. We used
the R package ROCR to plot ROC and PR curves [49].

2.6. Other traditional prediction methods

2.6.1. The IM method
The IM method predicts interactions based on the homology

between protein sequences of known PPIs and unknown protein
pairs. Firstly, we downloaded all PPIs of various organisms from
five public protein interaction databases including IntAct [50], Bio-
GRID [39], MINT [51], DIP [52] and HPIDB [53] to obtain an inter-
action template library. Subsequently, we used the scoring
strategy of HIPPIE [54] to compute the quality scores of the tem-
plate interactions according to experimental detection techniques,
the number of involved species, and the number of references
reporting the template interaction. Furthermore, we used BLAST
to align sequences of C. parvum proteome against all the sequences
in the PPI template library to obtain homologs. Specifically, we
used the homology thresholds: sequence identity � 30% and align-
ment coverage of query protein � 40%. Thirdly, according to our
previous study, we calculated the IM probability scores for
proteome-scale C. parvum protein pairs [37].

2.6.2. The DDI inference method
The DDI inference method predicts PPIs based on the detected

interacting domain pairs. First of all, we obtained the Pfam
domains for interacting proteins by domain scanning using
HMMER [55] (E-value � 10–5). Next, we identified co-occurrence
domain pairs of known protein interactions to construct a DDI
library. Domains of C. parvum protein pairs were also retrieved
by domain scanning based on the Pfam database using the same
E-value cut-off. Similar to the IM method, each domain pair in
the DDI template library was assigned a confidence score through
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the expectation maximization (EM) algorithm. Finally, we also
retrieved DDI probability scores for proteome-scale C. parvum pro-
tein pairs [37].

2.7. Network analysis

The enrichment of Gene Ontology (GO) terms [56] and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways [57] were
performed using DAVID 6.8 (https://david.ncifcrf.gov/). When a
PPI network performs its function, some densely-connected sub-
networks, also termed as functional modules, play important bio-
logical roles [58]. We utilized one plug-in called MCODE [59] in
the Cytoscape software [60] to identify the potential functional
modules, and the default parameters were set. All of them are clus-
tered in GO terms and KEGG pathways by using ClueGO [61].
3. Results and discussion

3.1. The performance of Doc2Vec-based RF model

According to the previous work [32], the ML algorithm RF has a
better performance in PPI prediction, and a new sequence embed-
ding technique Doc2Vec has a robust performance in interspecies
PPI prediction. Thus, we employed Doc2Vec to encode protein
sequences and further trained the RF classifier based on P. falci-
parum (isolate 3D7) PPI dataset. We utilized a 5-fold cross-
validation to optimize the parameters (i.e., k-mers, window size,
epoch, and vector size) of the Doc2Vec model by cmparing corre-
sponding RF models for P. falciparum (isolate 3D7) PPI prediction.
In particular, we set the optimization baseline for k, window size,
vector size, and epoch are 5, 3, 32, and 70, respectively, which were
used and shown relatively superior performance in our previous
work [32]. Subsequently, we optimized one of them while keeping
other parameters unchanged and obtained the best one to replace.
The order and optimization range of the parameters are shown in
Supplementary Table S2. For instance, the performance of RF mod-
els under different k-mers can be seen in Supplementary Table S3.
As a result, the combination of Doc2Vec with 3-mers, window size
5, vector size 64 and 70 epochs, and RF (Doc2Vec + RF) provided
the best performance where the corresponding AUC and AUPRC
values were 0.961 and 0.770 in the 5-fold cross-validation. More-
over, we applied an independent test set to assess the RF model
in which Doc2Vec + RF achieved an AUC = 0.957 and an
AUPRC = 0.762.

3.2. Comparison with other popular sequence encoding schemes

We also compared Doc2Vec with three other traditional
sequence-based encoding schemes (i.e., DPC, LD, and AC) under
the computational framework of RF. To ensure a fair comparison,
all the RF classifiers based on different encoding schemes were
trained on the same datasets and evaluated on the same indepen-
dent test sets. In this study, we mainly assessed the performance of
various models depending on the AUPRC values since the ratio of
positive-to-negative samples of training sets is highly unbalanced
(i.e., 1:10). Firstly, we randomly chose a training set and an inde-
pendent test set, which means these two sets may have the same
proteins (see Materials and methods for details). Among the indi-
vidual sequence encodings, we found Doc2Vec (AUPRC = 0.762)
outperformed DPC (AUPRC = 0.745), LD (AUPRC = 0.710) and AC
(AUPRC = 0.687) (Fig. 2A and Table 1). To seek the best combina-
tion of different encoding schemes, moreover, we applied various
encoding combinations, and we observed that Doc2Vec + DPC
showed the best performance (AUPRC = 0.768) which outper-
formed the corresponding performance of both individual encod-

https://david.ncifcrf.gov/


Fig. 2. (A) Performance of different individual sequence encoding schemes-based Random Forest (RF) classifiers in predicting P. falciparum PPIs. Areas under the Precision-
Recall curves (AUPRC) indicate that Document to Vector (Doc2Vec) outperformed Di-peptide composition (DPC), Local Descriptor (LD), and Auto Covariance (AC) applying an
independent test set. (B) Performance of two best individual sequence encoding schemes (i.e., Doc2Vec and DPC)-based RF classifiers and their sequence encoding
combination (Doc2Vec + DPC)-based RF classifier in predicting P. falciparum PPIs. AUPRC indicates that the combination sequence encoding scheme slightly outperformed
each individual sequence encoding scheme.

Table 1
Performance of individual or combined encoding schemes-based RF classifiers.

Method AUC AUPRC

Individual encoding scheme Doc2Vec 0.957 0.762
DPC 0.955 0.745
LD 0.950 0.710
AC 0.928 0.687

Combined encoding schemes Doc2Vec + DPC 0.963 0.768
Doc2Vec + LD 0.958 0.742
Doc2Vec + AC 0.957 0.752
DPC + LD 0.954 0.732
DPC + AC 0.953 0.741
LD + AC 0.951 0.712
Doc2Vec + DPC + LD 0.959 0.752
Doc2Vec + DPC + AC 0.956 0.755
Doc2Vec + LD + AC 0.958 0.742
DPC + LD + AC 0.954 0.731
Doc2Vec + DPC + LD + AC 0.959 0.749
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ing schemes and other combined encoding schemes (Fig. 2B and
Table 1). To investigate the robustness of the models, we further
added another two repeats by random sampling. Corresponding
average values and standard deviations of performance of models
are listed in Supplementary Table S4, which suggests a robust per-
formance of Doc2Vec + DPC in comparison to others.

While both P. falciparum (isolate 3D7) and C. parvum belong to
Apicomplexa, they are not from the same species. Therefore, to
assess the transfer-ability of the trained model based on the P. fal-
ciparum PPI dataset to predict C. parvum PPIs, we adopted a more
rigorous method to divide another training set and independent
test set. In this new dataset partition, each protein in the test set
was unseen in the training set. As expected, the performance of
RF models based on both individual and combined sequence
encodings decreased during this assessment. Specifically, among
the individual encodings, AUPRC values of Doc2Vec + RF and
DPC + RF decreased around 15 and 12 percentiles but were still
higher than that of RF models based on other individual encoding
schemes (Fig. 3A and Table 2). In particular, the best RF model
based on combined encodings, i.e., RF-based on Doc2Vec + DPC
(AUPRC = 0.742), only slightly decreased compared to the previous
model (AUPRC = 0.768), and it maintained the best combination of
2326
different encoding schemes (Fig. 3B and Table 2). The results sug-
gest the two sequence encodings are highly complementary in
which Doc2Vec and DPC can effectively capture context semantic
information and amino acid composition information of protein
sequences, respectively. We also added another two repeats of this
sample partition approach, and the corresponding performance of
different models is available in Supplementary Table S5.

The best combination of the encoding schemes is
Doc2Vec + DPC. However, the performance dropped a little when
utilizing the stricter dataset, implying that Doc2Vec + DPC-based
RF model has a good generalization ability. Thus, we employed
the RF model based on the combined sequence encoding, i.e.,
Doc2Vec + DPC, to predict proteome-scale C. parvum PPIs in the
end. The training set and test set of the model are displayed in Sup-
plementary Table S6. In addition, due to the lack of experimental
PPIs of C. parvum, we used PPIs of P. falciparum as substitutes for
training the prediction model since they both belong to Apicom-
plexan parasites. But it should be noted that this strategy of model
training may inevitably introduce some biases since it heavily
learned protein features of P. falciparum.
3.3. A high-confidence proteome-scale C. Parvum PPI network

To obtain highly reliable prediction data, we also employed
another two traditional prediction methods (i.e., IM and DDI-
inference), which can reduce the bias of the ML method introduced
by P. falciparum training data. Therefore, a comprehensive compu-
tational framework was established by three computational biol-
ogy methods (IM, DDI-inference, and ML). After utilizing these
three methods, we obtained a high-confidence C. parvum PPI net-
work under a false positive rate control of 5% (Fig. 4). The number
of PPIs from these three methods is 119,803, 148,143, and 487,048,
separately. A high-confidence C. parvum PPI network consisted of
554 proteins with 4,578 PPIs jointly existing in these three meth-
ods. In this constructed PPI network (see Supplementary Table S7
for the full list), the average network degree for each protein is
16.5. Generally, the proteins ranked as top high-degree in the net-
work are defined as hub proteins, which may perform important
cellular functions involved in different biological processes. There-
fore, we focus on hub proteins with a high-degree in our predicted



Fig. 3. (A) Performance of different individual sequence encoding schemes-based Random Forest (RF) classifiers in predicting P. falciparum PPIs based on the novel partition of
the dataset (i.e., non-overlapped proteins between the training set and test set). Areas under the Precision-Recall curves (AUPRC) indicate that Di-peptide composition (DPC)
outperformed Document to Vector (Doc2Vec), Local Descriptor (LD), and Auto Covariance (AC) applying an independent test set. (B) Performance of two best individual
sequence encoding schemes (i.e., DPC and Doc2Vec)-based RF classifiers and their combination (Doc2Vec + DPC)-based RF classifier in predicting P. falciparum PPIs. AUPRC
indicates that the sequence encoding scheme combination significantly improves the performance compared to each sequence encoding scheme.

Table 2
Performance of each individual or combined encoding schemes-based RF classifiers
by using the novel dataset partition (i.e., non-overlapped proteins between training
set and test set).

Method AUC AUPRC

Individual encoding scheme Doc2Vec 0.936 0.613
DPC 0.930 0.631
LD 0.919 0.509
AC 0.813 0.340

Combined encoding schemes Doc2Vec + DPC 0.960 0.742
Doc2Vec + LD 0.942 0.635
Doc2Vec + AC 0.949 0.700
DPC + LD 0.928 0.558
DPC + AC 0.929 0.615
LD + AC 0.918 0.527
Doc2Vec + DPC + LD 0.944 0.650
Doc2Vec + DPC + AC 0.958 0.732
Doc2Vec + LD + AC 0.942 0.644
DPC + LD + AC 0.927 0.572
Doc2Vec + DPC + LD + AC 0.945 0.656
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high-confidence C. parvum PPI network. In particular, all of the top
three high-degree hub proteins are the heat shock proteins, includ-
ing 70 kDa heat shock proteins (HSP70s, encoded by cgd7_360 and
cgd2_20) and 105 kDa heat shock protein (encoded by cgd4_3270),
suggesting potential important functional roles in the lifecycle of
the C. parvum. Specifically, HSP70s play important roles in various
cellular protein folding and remodeling processes, and it has been
widely used as the molecular marker in cryptosporidiosis epidemi-
ology [4,62]. Simultaneously, HSPs in the P. falciparum are poten-
tially functionally associated with human proteins to facilitate
parasite survival and pathogenicity [63].

A total of 383 interactions with cgd7_360, 360 interactions with
cgd2_20, 292 interactions with cgd4_3270, were predicted, and GO
and KEGG enrichments for these protein sets indicated the poten-
tial function in the development, reproduction, and alimentation of
C. parvum (Fig. 5). In biological process (BP) terms, protein folding,
DNA replication initiation, and protein catabolic process were all
significantly enriched in three protein sets. In cellular component
(CC) terms, cytoplasm, proteasome complex, MCM complex were
significantly enriched. In molecular function (MF) terms, ATP bind-
ing, helicase activity, GTP binding were significantly enriched. In
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KEGG pathways, Aminoacyl-tRNA biosynthesis is significantly
enriched. In addition, these three genes are highly expressed at
the intracellular stage (24 h post-infection) according to CryptoDB
[64,65]. Combined with the enrichment analysis, these three hub
genes in our predicted interaction network probably play crucial
roles related to C. parvum development and infection.
3.4. Functional module analysis of C. parvum PPIs

In total, six modules were identified through MCODE [59], and
the full list of PPIs involved in these modules is available in Supple-
mentary Table S8. To explore the biological significance of the
identified modules, we conducted further analysis on one module
with the highest score, which consists of 26 proteins and 254 inter-
actions (Fig. 6). Functional enrichment analysis indicated this mod-
ule shares possible functions related to C. parvum proliferation
(Fig. 6). In this module, three genes (cgd7_2920, cgd4_970, and
cgd2_1600) encoding MCM proteins were enriched not only for
the biological process DNA replication initiation (GO:0006261)
(Fig. 6A) but also for the DNA replication KEGG pathway
(KEGG:03030) (Fig. 6D). We also found evidence at the transcrip-
tion level that those three genes were highly expressed in 24 h cul-
tures [66]. C. parvum completes its lifecycle in a single host, and the
observation of trophozoites after 24 h means the ongoing process
of mitosis. Besides, six genes encoding proteasome subunits
(cgd2_1350, cgd4_1170, cgd4_2540, cgd4_3950, cgd6_920 and
cgd8_840) were enriched at the proteasome pathway
(KEGG:03050) (Fig. 6D). The proteasome was reported to be
responsible for the regulated degradation of intracellular proteins
[67]. Several related GO terms were also enriched in part of these
proteins, such as positive regulation of protein catabolic process
(GO:0045732) (Fig. 6A) in biological process, peptidase complex
(GO:1905368) (Fig. 6B) in cellular component and ATPase activity
(GO:0016887) (Fig. 6C) in molecular function. Moreover, several
proteins, including two encoding HSP90 proteins (cgd3_3770 and
cgd7_3670), were annotated with unfolded protein binding
(GO:0051082) (Fig. 6C). Collectively, we inferred this module
might play important roles in C. parvum development, especially
in the DNA replication stage. Similarly, the enrichment analysis



Fig. 4. Overlaps of predicted C. parvum PPIs among three computational prediction methods.

Fig. 5. Enriched GO terms and KEGG pathways of the predicted interactors of the hub proteins.
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of the other five modules also indicates module functions related
to C. parvum development (Supplementary Table S9).

Due to limited experimental progress, researches on drug tar-
gets need clues from diverse development-related pathways [68].
Several attempts have been focused on the minimalistic metabolic
capacities of Cryptosporidium, aiming at suppressing parasite
development. For instance, DNA replication is indispensable when
the parasite resides in the small intestinal epithelium of different
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hosts. Inosine 50-monophosphate dehydrogenase (IMPDH) is
required for the biosynthesis of guanine nucleotides in Cryp-
tosporidium as the inability to de novo synthesize nucleotides,
making it as a promising drug target [69,70]. However, Pawlowic
et al. proposed the existence of possible alternative pathway(s)
to salvage nucleotides, leading to more challenges for drug devel-
opment [71]. By testing the influence of C. parvum on host cellular
metabolic signatures, Velez et al. have reported that glycolysis can



Fig. 6. GO term/KEGG pathway enrichment analysis of the DNA replication module in the categories of biological process (A), cellular component (B), molecular function (C),
and KEGG pathway (D).
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be taken as the anti-cryptosporidial target, and also proved glu-
taminolysis and lactate release as necessities of the parasite repli-
cation [72]. Moreover, gene silencing of the nucleoside-
diphosphate kinase (NDK) markedly inhibited parasite develop-
ment [73]. Although our network cannot directly map modules
to those pathways, the modules we identified could be a good sup-
plement as they show a high relevance to the parasite
development.

4. Conclusions

C. parvum is the leading cause of waterborne and foodborne
diarrhea with limited vaccine or medicine. In this study, we pre-
dicted proteome-wide C. parvum PPIs for the first time to fill the
gap in a few experimentally validated PPIs in Cryptosporidium.
We utilized traditional PPI prediction methods (IM and DDI infer-
ence) and the ML-based method to predict PPIs and employed
the overlapping interactions as the final high-confidence PPIs
(4,578 PPIs covering 554 proteins). It is worth mentioning that
the ML-based method (i.e., the usage of RF and Doc2Vec encoding
scheme) plays a key role in our final prediction model. To explore
the value of the constructed PPI network, some essential network
and functional analyses were carried out. We discovered three
important hub genes (cgd2_20, cgd7_360, and cgd4_3270) encod-
ing HSPs, which may play important roles in the cell cycle or life
cycle of C. parvum. Thus, we suppose that an in-depth investigation
on hub genes may provide new hints for the prevention of cryp-
tosporidiosis [74]. We also found one functional module that could
potentially contribute to the development of C. parvum. Given the
lack of effective drugs in treating the cryptosporidiosis, our identi-
fied functional modules can provide clues for experimental scien-
tists to further analyze the pathogenesis of cryptosporidiosis so
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as to discover drug targets. Regarding future development, we will
pay more attention to another important research direction, i.e.,
the identification of PPIs between C. parvum and host cells, which
can directly help to accelerate the discovery of therapeutic targets.
Taken together, we hope the constructed high-confidence PPI net-
work will become an important data resource to understand the
genome-phenome relationship of C. parvum as well as speed up
target discovery for the exploration of effective drugs/vaccines.
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