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INTRODUCTION

Rhomboid protease was initially discovered in Drosophila 
(Sturtevant et al., 1993; Freeman, 1994). Drosophila rhomboid 
protease cuts epidermal growth factor receptor (EGFR) ligand 
Spitz and a homologue for mammalian tumor growth factor 
(TGF)-a, triggering the secretion of the factors (Rutledge et 
al., 1992; Schweitzer et al., 1995). Homologs of the fly rhom-
boid proteases have been identified in most prokaryotic and 
eukaryotic organisms (Lemberg and Freeman, 2007). Rhom-
boid proteases comprise a superfamily of proteins consisting 
of intra-membrane serine proteases and their inactive homo-
logs (Freeman, 2014). The common ancestor of all members 
of the family is probably an active intra-membrane protease, 
although the majority of existing members are not active pro-
teases (Freeman, 2014). 

The rhomboid protease family members have been shown 
to have a common structure, six or seven transmembrane 
domains (Ha et al., 2013) as seen in Table 1. Rhomboid pro-
teases have conserved transmembrane segments of their 
polytopic rhomboid core domain, in which there are a catalytic 
motif in forth transmembrane domain, and an Engelman helix 
dimerization motif in sixth transmembrane domain (Urban et 
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Table 1. Mammalian rhomboid family proteins

Rhomboids
Number of 

TM domains
Catalase 
activity

Localization

PARL 7 Yes Mitochondrial 
  inner membrane

RHBDL1 7 Yes (predicted) Golgi
RHBDL2 7 Yes Plasma membrane
RHBDL3 7 Yes (predicted) Endosomes
RHBDL4 
  (RHBDD1)

6 Yes ER

iRhom1 7 No ER-Golgi
iRhom2 7 No ER-Golgi
Derlin1 6 No ER
Derlin2 6 No ER
Derlin3 6 No ER
UBAC2 6 No ER
TMEM115 6 No ?
RHBDD2 6 No Golgi
RHBDD3 6 No ?

Reference:  Bergbold and Lemberg et al., 2013.
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al., 2001; Urban et al., 2002; Lemberg et al., 2005; Urban and 
Wolfe, 2005). A tryptophan-arginine motif in loop 1 present be-
tween first and second transmembrane domains is also an 
invariant structure observed in rhomboid proteases. 

Although the first mammalian rhomboid protease was 
cloned and named RHBDL1 for rhomboid-like protein1 as 
early as before Drosophila Rhomboid-1 was recognized as in-
tra-membrane protease (Pascall and Brown, 1998), the func-
tion is remained elusive yet. RHBDL2, however, was shown 
to share the catalytic activity of Drosophila Rhomboid-1. The 
localization of the known five mammalian rhomboid proteases 
is diversely scattered; golgi for RHBDL1, plasma membrane 
for RHBDL2, endosomes for RHBDL3, endoplasmic reticulum 
(ER) for RHBDL4 and mitochondrial inner membrane for PARL 
(Bergbold and Lemberg, 2013), suggesting their distinct and 
diverse functions (Table 1). Actually only RHBDL2 can cleave 
and activate the mammalian proEGF (Adrain et al., 2011). And 
EGFR signaling is negatively modulated by RHBDL2-mediat-
ed lysosomal degradation of EGFR (Haglund and Dikic, 2012) 
or EGFR cleavage (Liao and Carpenter, 2012). On the other 
hand, RHBDL4 localizing to the ER can induce degradation of 
various substrates (Bergbold and Lemberg, 2013), as a part 
of ER-associated protein degradation (ERAD) machinery as 
shown in Fig. 1 (Fleig et al., 2012).

There are, however, other subgroups of rhomboid family 
members, calling iRhoms, with high sequence similarities. 
These rhomboid family members, iRhom1 and iRhom2, have 
no the key catalytic motif observed in rhomboid proteases, 
meaning inactive rhomboid (Lemberg and Freeman, 2007; Ha 
et al., 2013). iRhom1 and iRhom2 have lost their protease ac-
tivity during their evolution but retained the key non-protease 
functions, which have been implicated in the regulation of 
EGF signaling pathway (Adrain et al., 2011) and TNF-α sig-
naling pathway (Adrain et al., 2012).

As more distant rhomboid family members, many other 
genes without the key catalytic motif, such as derins, UBAC2, 
RHBDDs and TMEM115, have also been annotated as 
rhomboid-like proteins by bioinformatics search based on 
their sequence similarities (Koonin et al., 2003; Lemberg and 
Freeman, 2007; Finn et al., 2010). The structural relations for 
these proteins remain to be investigated because of their lim-
ited overall sequence conservation (Bergbold and Lemberg, 
2013). Currently, there are 14 rhomboid family members, five 
rhomboid proteases and nine catalytically inactive homo-
logues (Bergbold and Lemberg, 2013). Among these rhom-
boids, iRhoms comprise a unique family; not only with the key 
catalytic motif and the highly conserved sequences between 
species, but also with the unique iRhom homology domain 
and cytosolic N-terminal cytosolic domain, suggesting an im-
portant biological role for these proteins, despite their lack of 
protease activity (Koonin et al., 2003; Lemberg and Freeman, 
2007; Freeman, 2014). This review focuses on our current un-
derstanding of iRhoms and their roles in cellular processes 
and diseases.

IRHOMS IN DROSOPHILA AND MAMMALS 

In Drosophila, active rhomboids are cardinal regulators of 
EGFR signaling pathway, and their activity is conserved in 
mammals (Lui et al., 2003; Zettl et al., 2011). The principal 
ligand of Drosophila EGFR is Spitz, which is homologous to 
mammalian TGF-α. Spitz must be proteolytically released as 
a soluble extracellular fragment to be functional, and Rhom-
boid-1 is directly involved in the proteolytic cleavage of Spitz 
(Zou et al., 2009). Until now, genetic approaches have been 
used to investigate iRhom function in both Drosophila and 
mammals. Losses of function in mutated flies and mice have 
revealed the role of iRhoms in both ER-associated degrada-
tion and trafficking of TACE which is known to be responsible 
for the releases of active TNF and EGF family ligands (Siggs 
et al., 2014). EGF ligands in Drosophila are activated by its 
cleavage by Rhomboids. This is distinct from the metalloprote-
ase-induced activation of mammalian EGF-like ligands (Siggs 
et al., 2014).

In mammals, iRhoms are known to regulate trafficking of 
TACE which is the protease that cleaves membrane-bound 
substrates including inflammatory cytokine TNF- as indicated 
in Fig. 2. Both in Drosophila and mammals, losses of function 
mutations in Drosophila and mice have revealed the role of 
iRhoms in both ER associated degradation, and the control 
of trafficking of the metalloprotease TACE, the enzyme that 
releases active TNF-α and ligands of the EGF family (Zettl 
et al., 2011; Adrain et al., 2012; McIlwain et al., 2012). Espe-
cially, it became clear that iRhoms in human are associated 
with inheritable diseases and cancers (Etheridge et al., 2013). 
Understanding on the underlying mechanisms would be an 
important task for using the related pathways as therapeutic 
targets. 

ESSENTIAL ROLE OF IRHOMS ON TACE REGULATION 

TNF-α converting enzyme (TACE) (also known as ADAM17) 
is a membrane-anchored metalloproteinase that controls two 
major pathways, the EGF receptor pathway and proinflamma-
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Fig. 1. Rhomboid protein iRhoms regulate the RGFR ligands in 
the ER. iRhoms binds to various EGFR ligands in the ER and fa-
cilitate their forward trafficking or ERAD pathway. The mechanism 
with which the fate determination of the EGFR ligands is not clear 
yet.
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tory TNF-α pathway, with important roles in development and 
disease (Black et al., 1997; Peschon et al., 1998; Sahin et al., 
2004). TACE is essential for release of EGFR ligands (Sa-
hin et al., 2004; Sahin and Blobel, 2007) and TNF-α (Black 
et al., 1997; Issuree et al., 2013), which is the primary trigger 
of inflammation (Adrain et al., 2012). Like many extracellular 
signaling proteins, TNF-α is synthesized as a transmembrane 
protein, and the active signal of its ectodomain is shed from 
cells after cleavage by a metalloprotease, TACE (Black et 
al., 1997; Siggs et al., 2012). TNF-α is considered as a ‘fire 
alarm’ of the body, as it helps body fight against infections. 
But TNF-α can also cause diseases such as inflammatory 
arthritis (Haxaire and Blobel, 2014). TACE and its regulator, 
iRhom2, can be rapidly activated by small amounts of cyto-
kines, growth factors, and pro-inflammatory mediators present 
in the blood (Hall and Blobel, 2012), substantiating rapid alarm 
through TNF-α. iRhoms are co-expressed with TACE and are 
essential for specific regulation of TACE activity as shown in 
Fig. 2 (Christova et al., 2013). 

iRhom1 and iRhom2 are both essential for regulation of 
TACE (Zou et al., 2009). iRhom2 is highly expressed in mac-
rophages but not in skin or other tissues (Christova et al., 
2013) and is a key regulator in myeloid TACE (Lichtenthaler, 
2013). Loss of iRhom2 blocks maturation of TACE in mac-
rophages, resulting in defective shedding of TNF-α (Li et al., 
2015). iRhom2 binds to TACE and promotes its transfer from 
the ER. Therefore, without iRhom2, TACE is unable to exit 
the ER and be trafficked to the Golgi apparatus where its in-
hibitory prodomain is removed by furin (Christova et al., 2013). 
Therefore, inactivation of iRhom2 in mice prevented matura-
tion of TACE in hematopoietic cells but not other cells and tis-
sues (Issuree et al., 2013), and targeting of iRhom2 effectively 
inactivated TACE in immune cells without affecting its function 
in other tissues (Wasserman et al., 2000; Lemberg, 2013). Its 
protective role in relation to TNF-α has been demonstrated 

in mouse models with shock induction by lipopoloysaccharide 
(Adrain et al., 2012) or with Listeria monocytogenes infection 
(McIlwain et al., 2012). Inactivation of iRhom2 in human mac-
rophages also prevents maturation of TACE and release of 
TNF-α from cells, suggesting that the iRhom2/TACE/TNF-α 
pathway has been conserved in both mice and humans (Pu-
ente et al., 2003; Issuree et al., 2013). Therefore, iRhoms are 
considered as attractive novel targets for treatment of TACE/ 
TNF-α-dependent pathologies (Issuree et al., 2013). 

IRHOM-MEDIATED REGULATION OF EGFR SIGNALING

EGFRs are a family of receptor tyrosine kinases essen-
tial for the control of many cellular processes, including pro-
liferation, survival, and differentiation (Lui et al., 2003). The 
EGFR ligand family includes EGF, TGF-α, amphiregulin (AR), 
heparin-binding EGF-like growth factor (HB-EGF), betacellulin 
(BTC), epiregulin, and epigen (Bassik et al., 2013; Hosur et 
al., 2014). EGFR plays a major role in cancers as an activated 
oncogene (Lui et al., 2003). Activation of EGFR is frequently 
detected in a wide variety of carcinomas, including breast, 
lung, head and neck, and cervical cancers, and has been cor-
related with their poor prognosis (Zou et al., 2009). Several 
lines of evidence have implicated iRhoms in the regulation 
of EGFR signaling pathway. In Drosophila, active rhomboid 
proteins are cardinal regulators of EGFR signaling pathway 
which is activated throughout growth and development of 
wings (Lui et al., 2003). Clear involvement of rhomboid pro-
tein in EGFR activity was demonstrated using the sensitive 
developing wing primordium of Drosophila to reveal ectopic 
EGFR activity (Sturtevant et al., 1993; Nakagawa et al., 2005). 
Co-expression of iRhom1 with HB-EGF in Drosophila resulted 
in the severe wing phenotypes (Nakagawa et al., 2005). Dro-
sophila iRhom deficiency induced sleep-like phenotype (Zettl 
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Fig. 2. Rhomboid protein iRhoms regulate the trafficking and maturation of TNF-a converting enzyme (TACE). iRhoms bind to TACE, 
which promotes its exit from ER to Golgi. Within the Golgi, TACE is processed by furin into its mature form. At the plasma membrane, TACE 
cleaves the membrane-bound form of TNF-α to generate soluble TNF-α, which binds to TNFR.
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et al., 2011), similar to the phenotype observed in increased 
activation of the EGFR pathway (Foltenyi et al., 2007). These 
results indicate Drosophila iRhoms are involved with inhibitory 
regulation of EGFR signaling pathway (Zettl et al., 2011; Free-
man, 2014). 

TACE can release not only membrane bound TNF-α but 
also various ligands of the EGFR. Therefore TACE can con-
trol a wide range of physiologically and medically important 
EGFR signaling (Blobel, 2005). An identification of iRhom1 
and iRhom2 as key regulators of TACE-dependent EGFR sig-
naling in mice highlighted an important role of iRhoms in the 
EGFR signaling pathway (Freeman, 2014; Siggs et al., 2014; 
Li et al., 2015). Coexpression of human iRhom1 or mouse 
iRhom2 with EGF family ligands in COS7 cells downregulated 
all the EGFR ligands (Zettl et al., 2011). On the other hand, in 
the response of rapid stimulation for release of some TACE 
substrates in iRhom2 mutant embryonic fibroblasts, shedding 
of HB-EGF, amphiregulin and epiregulin was downregulated, 
whereas the shedding of TGF-α was not changed. In the 
condition, there was no change in the mature TACE levels, 
suggesting that iRhom2 itself may be involved in determining 
substrate selectivity of TACE-dependent shedding (Maretzky 
et al., 2013; Freeman, 2014). 

siRNA-mediated RHBDF1 gene silencing in cancer cell 
lines reduced the levels of cell migration and proliferation and 
induced apoptosis or autophagy in cancer cells (Zou et al., 
2009). Moreover, iRhom1 is necessary for the survival of epi-
thelial cancer cells in humans and may be linked to G protein-
coupled receptor (GPCR)-mediated EGFR transactivation 
(Zettl et al., 2011). Collectively, these results indicate that 
iRhoms are not only promote forward trafficking of EGFR li-
gands from ER to Golgi, but also block ER export of the EGFR 
ligands by ERAD via the proteasome (Zettl et al., 2011; Berg-
bold and Lemberg, 2013) and that iRhoms may be attractive 
targets for treatment of TACE/EFGR-dependent pathologies 
(Li et al., 2015).

Different to an initial hypothesis that the iRhoms directly 
blocks active rhomboid proteases (Koonin et al., 2003), it re-
duces the level of growth factor substrates by triggering their 
degradation (Zettl et al., 2011). iRhom in Drosophila geneti-
cally interacts with the E3 ubiquitin ligase Hrd1 and the ERAD 
substrate receptor EDEM (Zettl et al., 2011). In addition, hu-
man iRhom1 and mouse iRhom2 have been demonstrated 
to mediate the down-regulation of EGF signaling pathway by 
binding to EGF ligands in the ER and targeting them for ERAD, 
which is induced as a result of ER quality control mechanisms 
(Etheridge et al., 2013). Therefore, both Drosophila and mam-
mals share iRhom-mediated ERAD of EGF family ligands 
in regulation of EGF signaling pathway (Urban and Dickey, 
2011), although there is no solid evidence for physiological 
role of iRhoms in regulating ERAD in mammals (Siggs et al., 
2014). The exact mechanism whether EGFR ligands are ex-
ported or degraded is not clear yet. 

POTENTIAL ROLE OF IRHOMS IN HUMAN DISEASE

Although iRhoms have no protease activity, they regulate 
the secretion of several ligands of EGFR and proinflammatory 
cytokine TNF-α. Therefore, iRhoms can activate the EGFR 
signaling pathway and inflammation process, which regulate 
cell survival, proliferation, migration and inflammation, result-

ing in modifications of disease condition. Two recent studies 
reported a strong association between Alzheimer’s disease 
and changes in iRhom2 methylation in the brain (De Jager et 
al., 2014; Lunnon et al., 2014). They showed that the methyla-
tion level in the RHBDF2 gene was changed in Alzheimer’s 
disease and the RHBDF2 expression was increased in the 
context of Alzheimer’s disease. In their connectivity analysis, 
RHBDF2 was connected to PTK2B that is a key element gene 
of signaling cascade involved in modulating the activation of 
microglia and infiltrating macrophages. Therefore, changes in 
methylation in iRhom2 gene and its increased expression may 
be associated with the role of microglia and infiltrating macro-
phages in Alzheimer’s disease (De Jager et al., 2014).

Missense mutations in RHBDF2, iRhom2 encoding gene, 
were shown to cause tylosis esophageal cancer (TOC), the 
autosomal dominant condition, in four families from the UK, 
US, Germany and Finland (Blaydon et al., 2012; Saarinen et 
al., 2012). TOC is an inherited condition characterized by pal-
moplantar keratoderma and esophageal cancer (Abbruzzese 
et al., 2012; Rugg et al., 2002). Palmoplantar keratoderma 
usually begins around age 10, and esophageal cancer may 
form after age 20. The mutations occurred in the N-terminal 
domain of iRhom2, which has a highly conserved region in 
different species as well as between iRhom1 and iRhom2 
(Blaydon et al., 2012). These reports indicate that the N-ter-
minal domain may have some important functions, but little is 
known yet. On the other hand, unusual distribution of iRhom2 
is reported in normal skin. The iRhom2 expression is detected 
primarily at the plasma membrane in the normal epidermis 
and is much more diffuse in cells from TOC patients (Blaydon 
et al., 2012), instead of ER and Golgi localization in macro-
phages. Alteration of iRhom2 localization was also observed 
in tylotic and esophageal squamous cell carcinomas (Blaydon 
et al., 2012). Moreover, there is recent evidence that these 
TOC-associated mutations in iRhom2 induce TACE activa-
tion in epidermal keratinocytes, resulting in increased shed-
ding of TACE substrates including EGF-family growth factors 
and pro-inflammatory cytokines (Brooke et al., 2014). These 
results may explain the high proliferative activity of TOC cells 
and the predisposed esophageal cancer development in TOC 
patients. The mutations of iRhom2 in TOC patients may also 
regulate the EFGR signal pathways by altering proEGF tar-
geting of iRhom2 for ERAD (Zettl et al., 2011), instead of ac-
tivation by EFGR cleavage by RHBDL2 (Adrain et al., 2011). 
These mutations in iRhom2 are also associated with ovarian 
cancer (Wojnarowicz et al., 2012). iRhom2 expressions were 
much lower in a subset of benign and malignant ovarian tu-
mors compared with primary cultured cells from normal ovar-
ian epithelium. 

Altered iRhom1 may cause squamous epithelial cancer and 
breast cancer (Yan et al., 2008; Zou et al., 2009). iRhom1 ex-
pression is elevated in breast cancer samples and knockdown 
of iRhom1 by siRNA has led diminished EGFR transactivation 
in tissue culture cells (Zou et al., 2009). 

CONCLUSION

iRhoms are unique members in Rhomboid family with 
unique domains as well as no catalytic active motif, suggest-
ing an important biological role for these proteins, despite 
their lack of protease activity (Koonin et al., 2003; Lemberg 
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and Freeman, 2007; Freeman, 2014). In facts, recent studies 
started to reveal their diverse roles in TACE maturation and in 
EGFR signaling pathways. It appears that iRhomes are asso-
ciated with development of several human diseases including 
cancers. The fact that iRhomes interact with TACE provides 
novel therapeutic opportunities for selective and simultaneous 
inactivation of the major signaling pathways which are closely 
associated with the disease development (Lisi et al., 2014). 
Hyperactivity of EGFR is implicated in many tumors with sev-
eral molecular mechanisms, including the autocrine activation 
of EGFR by unregulated release of ligands (Buckland, 2013). 
Recent research data provide genetic, cellular, and biochemi-
cal evidence that the principal function of iRhoms1/2 is regu-
lated by TACE-dependent TNF-α or EGFR signaling pathway, 
suggesting that iRhoms1/2 could emerge as novel targets for 
treatment of TACE/TNF-α and TACE/EGFR- dependent pa-
thologies.
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