organic compounds

Z = 2

Mo $K\alpha$ radiation

 $0.28 \times 0.17 \times 0.10 \; \mathrm{mm}$

 $\mu = 0.31 \text{ mm}^{-1}$

T = 100 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-4-methylpyridinium 3-chlorobenzoate

Madhukar Hemamalini and Hoong-Kun Fun*‡

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 18 June 2010; accepted 23 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.117; data-to-parameter ratio = 25.7.

In the title salt, $C_6H_9N_2^+ \cdot C_7H_4ClO_2^-$, the 2-amino-4-methylpyridinium cation is almost planar, with a maximum deviation of 0.010 (1) Å. In the crystal, the protonated N atom and the 2amino group of the cation are hydrogen bonded to the carboxylate O atoms of the anion *via* a pair of N-H···O hydrogen bonds, forming an $R_2^2(8)$ ring motif. The ion pairs are further connected *via* N-H···O and C-H···O hydrogen bonds, forming a two-dimensional network parallel to the *bc* plane.

Related literature

For details of non-covalent interactions, see: Remenar *et al.* (2003); Aakeroÿ *et al.* (2001); Sokolov *et al.* (2006). For related structures, see: Kvick & Noordik (1977); Shen *et al.* (2008); Hemamalini & Fun (2010*a,b*). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data C₆H₉N₂⁺·C₇H₄ClO₂⁻

 $M_r = 264.70$

‡ Thomson Reuters ResearcherID: A-3561-2009.

Monoclinic, $P2_1$	
a = 7.9930 (6) Å	
b = 6.8608(5) Å	
c = 11.2148 (9) Å	
$\beta = 93.526 \ (2)^{\circ}$	
V = 613.84 (8) Å ³	

Data collection

Bruker APEXII DUO CCD	9325 measured reflections
diffractometer	4207 independent reflections
Absorption correction: multi-scan	4076 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.019$
$T_{\min} = 0.919, \ T_{\max} = 0.971$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.117$	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.22	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$
4207 reflections	Absolute structure: Flack (1983),
164 parameters	1860 Friedel pairs
1 restraint	Flack parameter: -0.01 (4)

Table 1			
Hvdrogen-bond	geometry	(Å.	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O1^{i}$	0.86	1.83	2.6921 (16)	175
$N2 - H2B \cdot \cdot \cdot O2^{i}$	0.86	1.93	2.786 (2)	177
$N2-H2C \cdot \cdot \cdot O2^{ii}$	0.86	1.96	2.8146 (14)	173
$C5-H5A\cdots O1^{iii}$	0.93	2.50	3.1707 (13)	129

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + 2$; (iii) $-x + 1, y + \frac{1}{2}, -z + 1$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5503).

References

- Aakeroÿ, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240–3242.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, 0335.
- Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, 0781-0782.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.

Kvick, Å. & Noordik, J. (1977). Acta Cryst. B33, 2862-2866.

- Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., GuzmaÅ, H. R. & Almarsson, O. È. (2003). J. Am. Chem. Soc. 125, 8456– 8457.
- Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shen, H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, 01129.
- Sokolov, A. N., FrisïcïcÅ, T. & MacGillivray, L. R. (2006). J. Am. Chem. Soc. 128, 2806–2807.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, o1843-o1844 [doi:10.1107/S160053681002444X]

2-Amino-4-methylpyridinium 3-chlorobenzoate

M. Hemamalini and H.-K. Fun

Comment

Recently, much attention has been devoted to the design and synthesis of supramolecular architectures assembled via various weak noncovalent interactions, such as hydrogen bonds, π ··· π stacking and C—H··· π interactions (Remenar *et al.*, 2003; Aakeroÿ *et al.*, 2001; Sokolov *et al.*, 2006). 2-Aminopyridine and its derivatives are used in the manufacture of pharmaceuticals, hair dyes and other dyes. They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-4-methyl pyridine (Kvick & Noordik, 1977) and 2-amino-4-methylpyridinium 4-aminobenzoate (Shen *et al.*, 2008) have been reported. We have recently reported the crystal structures of 2-amino-4-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010*a*) and 2-Amino-4-methylpyridinium trifluoro-acetate (Hemamalini & Fun, 2010*b*) from our laboratory. In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title salt has been undertaken.

The asymmetric unit of the title compound, (Fig 1), contains a protonated 2-amino-4-methylpyridinium cation and a 3-chlorobenzoate anion. The 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.010 (1) Å for atom C1. The protonated N1 atom has lead to a slight increase in the C1—N1—C5 angle to 121.66 (11)°, compared to the corresponding angle of 117.3 (1)° in neutral 2-amino-4-methylpyridine (Kvick & Noordik, 1977). The bond lengths (Allen *et al.*, 1987) and angles are normal.

In the crystal packing, (Fig. 2), the protonated N atom and 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds leading to the formation of a $R^2_2(8)$ ring (Bernstein *et al.*, 1995). Furthermore, these motifs are connected via N2—H2C···O2 and C5—H5A···O1 hydrogen bonds to form two-dimensional networks parallel to the *bc*-plane.

Experimental

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (54 mg, Aldrich) and 3-chlorobenzoic acid (78 mg, Merck) were mixed and warmed over a heating magnetic-stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of (I) appeared after a few days.

Refinement

All hydrogen atoms were positioned geometrically [C-H = 0.93 or 0.96 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 \text{ or } 1.5 U_{eq}(C)$. A rotating group model was used for the methyl group. 1860 Friedel pairs were used to determine the absolute configuration.

Figures

Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) 2D networks parallel to the *bc*-plane.

2-Amino-4-methylpyridinium 3-chlorobenzoate

Crystal data

$C_6H_9N_2^+ \cdot C_7H_4CIO_2^-$	F(000) = 276
$M_r = 264.70$	$D_{\rm x} = 1.432 \ {\rm Mg \ m}^{-3}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 6601 reflections
a = 7.9930 (6) Å	$\theta = 3.9 - 35.1^{\circ}$
b = 6.8608 (5) Å	$\mu = 0.31 \text{ mm}^{-1}$
c = 11.2148 (9) Å	T = 100 K
$\beta = 93.526 \ (2)^{\circ}$	Needle, colourless
$V = 613.84 (8) \text{ Å}^3$	$0.28\times0.17\times0.10~mm$

Data collection

Bruker APEXII DUO CCD diffractometer	4207 independent reflections
Radiation source: fine-focus sealed tube	4076 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.019$
ϕ and ω scans	$\theta_{\text{max}} = 32.5^{\circ}, \ \theta_{\text{min}} = 3.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -12 \rightarrow 12$
$T_{\min} = 0.919, \ T_{\max} = 0.971$	$k = -10 \rightarrow 10$
9325 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.117$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0801P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.22	$(\Delta/\sigma)_{\rm max} < 0.001$
4207 reflections	$\Delta \rho_{max} = 0.64 \text{ e } \text{\AA}^{-3}$
164 parameters	$\Delta \rho_{min} = -0.54 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 1860 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.01 (4)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.03584 (4)	1.13218 (6)	0.91629 (3)	0.02460 (10)
01	0.36548 (12)	0.41445 (16)	0.66474 (7)	0.01744 (18)
O2	0.36855 (12)	0.47553 (16)	0.86099 (7)	0.01876 (19)
C7	0.18473 (15)	0.7570 (2)	0.61091 (10)	0.0158 (2)
H7A	0.2131	0.6782	0.5478	0.019*
C8	0.09543 (15)	0.9288 (2)	0.58796 (11)	0.0197 (2)
H8A	0.0654	0.9648	0.5096	0.024*
C9	0.05103 (16)	1.0466 (2)	0.68188 (12)	0.0195 (2)
H9A	-0.0078	1.1618	0.6671	0.023*
C10	0.09626 (15)	0.9890 (2)	0.79852 (10)	0.0159 (2)
C11	0.18604 (14)	0.8195 (2)	0.82290 (10)	0.0148 (2)
H11A	0.2155	0.7838	0.9014	0.018*
C12	0.23182 (14)	0.70259 (19)	0.72825 (10)	0.01258 (19)
C13	0.32902 (14)	0.51628 (19)	0.75345 (10)	0.0131 (2)
N1	0.53373 (13)	1.07928 (17)	0.70756 (8)	0.01350 (18)

supplementary materials

H1A	0.4786	1.1863	0.6979	0.016*
N2	0.53701 (13)	1.1268 (3)	0.91147 (8)	0.0185 (2)
H2B	0.4837	1.2344	0.8986	0.022*
H2C	0.5638	1.0902	0.9835	0.022*
C1	0.57797 (14)	1.01721 (19)	0.82012 (10)	0.0133 (2)
C2	0.66378 (14)	0.8378 (2)	0.83484 (10)	0.0144 (2)
H2A	0.6936	0.7919	0.9112	0.017*
C3	0.70348 (14)	0.73057 (19)	0.73661 (10)	0.0141 (2)
C4	0.65921 (14)	0.8046 (2)	0.62099 (10)	0.0152 (2)
H4A	0.6878	0.7364	0.5535	0.018*
C5	0.57458 (14)	0.9762 (2)	0.60956 (9)	0.0143 (2)
H5A	0.5441	1.0239	0.5337	0.017*
C6	0.79035 (16)	0.5371 (2)	0.75110 (12)	0.0195 (2)
H6A	0.9016	0.5472	0.7239	0.029*
H6B	0.7286	0.4404	0.7048	0.029*
H6C	0.7964	0.5002	0.8338	0.029*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02597 (15)	0.02386 (18)	0.02371 (15)	0.00755 (12)	-0.00058 (10)	-0.00950 (12)
01	0.0271 (4)	0.0139 (4)	0.0114 (3)	0.0054 (3)	0.0016 (3)	-0.0014 (3)
O2	0.0299 (4)	0.0157 (5)	0.0104 (3)	0.0044 (4)	-0.0002 (3)	0.0000 (3)
C7	0.0166 (4)	0.0184 (6)	0.0123 (4)	0.0012 (4)	0.0013 (3)	0.0016 (4)
C8	0.0203 (5)	0.0227 (7)	0.0160 (5)	0.0047 (5)	0.0006 (4)	0.0050 (5)
C9	0.0189 (5)	0.0184 (7)	0.0213 (5)	0.0041 (4)	0.0007 (4)	0.0019 (5)
C10	0.0147 (4)	0.0158 (6)	0.0173 (4)	0.0005 (4)	0.0016 (3)	-0.0023 (4)
C11	0.0159 (4)	0.0148 (6)	0.0135 (4)	0.0000 (4)	0.0007 (3)	-0.0009 (4)
C12	0.0131 (4)	0.0126 (5)	0.0121 (4)	-0.0009 (4)	0.0013 (3)	0.0007 (4)
C13	0.0175 (4)	0.0108 (5)	0.0109 (4)	-0.0016 (4)	0.0013 (3)	0.0000 (4)
N1	0.0177 (4)	0.0123 (5)	0.0106 (4)	-0.0005 (3)	0.0009 (3)	0.0017 (3)
N2	0.0292 (5)	0.0162 (5)	0.0100 (4)	0.0049 (4)	0.0009 (3)	-0.0003 (4)
C1	0.0164 (4)	0.0130 (5)	0.0104 (4)	-0.0015 (4)	0.0017 (3)	0.0018 (4)
C2	0.0175 (4)	0.0135 (6)	0.0123 (4)	0.0005 (4)	0.0012 (3)	0.0027 (4)
C3	0.0138 (4)	0.0133 (6)	0.0152 (4)	-0.0010 (4)	0.0016 (3)	0.0007 (4)
C4	0.0161 (4)	0.0164 (6)	0.0130 (4)	-0.0008 (4)	0.0012 (3)	-0.0014 (4)
C5	0.0169 (4)	0.0161 (6)	0.0099 (4)	-0.0021 (4)	0.0012 (3)	0.0001 (4)
C6	0.0199 (5)	0.0158 (6)	0.0228 (5)	0.0032 (4)	0.0024 (4)	0.0010 (4)

Geometric parameters (Å, °)

Cl1—C10	1.7383 (13)	N1—H1A	0.8600
O1—C13	1.2643 (14)	N2—C1	1.3280 (18)
O2—C13	1.2593 (14)	N2—H2B	0.8600
С7—С8	1.3934 (19)	N2—H2C	0.8600
C7—C12	1.3972 (16)	C1—C2	1.4138 (18)
С7—Н7А	0.9300	C2—C3	1.3779 (16)
C8—C9	1.3909 (19)	C2—H2A	0.9300
C8—H8A	0.9300	C3—C4	1.4170 (16)

C9—C10	1.3927 (17)	С3—С6		1.5019 (19)
С9—Н9А	0.9300	C4—C5		1.3599 (18)
C10—C11	1.3849 (19)	C4—H4A		0.9300
C11—C12	1.3968 (17)	С5—Н5А		0.9300
C11—H11A	0.9300	С6—Н6А		0.9600
C12—C13	1.5134 (18)	С6—Н6В		0.9600
N1—C1	1.3582 (14)	С6—Н6С		0.9600
N1—C5	1.3636 (15)			
C8—C7—C12	120.35 (12)	C1—N2—H2B		120.0
С8—С7—Н7А	119.8	C1—N2—H2C		120.0
С12—С7—Н7А	119.8	H2B—N2—H2C		120.0
C9—C8—C7	120.21 (11)	N2-C1-N1		118.49 (12)
C9—C8—H8A	119.9	N2-C1-C2		122.93 (11)
С7—С8—Н8А	119.9	N1-C1-C2		118.57 (11)
C8—C9—C10	118.87 (12)	C3—C2—C1		120.36 (10)
С8—С9—Н9А	120.6	С3—С2—Н2А		119.8
С10—С9—Н9А	120.6	C1—C2—H2A		119.8
С11—С10—С9	121.68 (12)	C2—C3—C4		118.91 (11)
C11—C10—Cl1	119.30 (9)	C2—C3—C6		120.86 (11)
C9—C10—Cl1	119.01 (10)	C4—C3—C6		120.22 (11)
C10-C11-C12	119.26 (11)	C5—C4—C3		119.42 (11)
C10-C11-H11A	120.4	C5—C4—H4A		120.3
C12—C11—H11A	120.4	C3—C4—H4A		120.3
C11—C12—C7	119.63 (12)	C4—C5—N1		121.04 (11)
C11—C12—C13	119.90 (10)	C4—C5—H5A		119.5
C7—C12—C13	120.47 (11)	N1—C5—H5A		119.5
O2—C13—O1	125.07 (12)	С3—С6—Н6А		109.5
O2—C13—C12	117.52 (10)	С3—С6—Н6В		109.5
O1—C13—C12	117.41 (10)	H6A—C6—H6B		109.5
C1—N1—C5	121.66 (11)	С3—С6—Н6С		109.5
C1—N1—H1A	119.2	H6A—C6—H6C		109.5
C5—N1—H1A	119.2	Н6В—С6—Н6С		109.5
C12—C7—C8—C9	-0.62 (19)	C11—C12—C13—O1		179.10 (11)
C7—C8—C9—C10	-0.5 (2)	C7—C12—C13—O1		0.27 (16)
C8—C9—C10—C11	0.9 (2)	C5-N1-C1-N2		178.68 (11)
C8—C9—C10—Cl1	-178.18 (10)	C5—N1—C1—C2		-2.06 (17)
C9—C10—C11—C12	-0.32 (18)	N2-C1-C2-C3		-179.79 (12)
Cl1—C10—C11—C12	178.81 (9)	N1-C1-C2-C3		0.98 (17)
C10-C11-C12-C7	-0.79 (17)	C1—C2—C3—C4		0.97 (17)
C10-C11-C12-C13	-179.62 (10)	C1—C2—C3—C6		-178.29 (10)
C8—C7—C12—C11	1.26 (18)	C2—C3—C4—C5		-1.91 (17)
C8—C7—C12—C13	-179.91 (11)	C6—C3—C4—C5		177.35 (11)
C11—C12—C13—O2	-1.50 (17)	C3—C4—C5—N1		0.90 (17)
C7—C12—C13—O2	179.67 (11)	C1—N1—C5—C4		1.13 (17)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A

supplementary materials

N1—H1A····O1 ⁱ	0.86	1.83	2.6921 (16)	175		
N2—H2B···O2 ⁱ	0.86	1.93	2.786 (2)	177		
N2—H2C···O2 ⁱⁱ	0.86	1.96	2.8146 (14)	173		
C5—H5A···O1 ⁱⁱⁱ	0.93	2.50	3.1707 (13)	129		
Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1, y+1/2, -z+2$; (iii) $-x+1, y+1/2, -z+1$.						

