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Recent research on Parkinson’s disease (PD) has demonstrated the topological

abnormalities of structural covariance networks (SCNs) using various morphometric

features from structural magnetic resonance images (sMRI). However, the sulcal depth

(SD)-based SCNs have not been investigated. In this study, we used SD to investigate

the topological alterations of SCNs in 60 PD patients and 56 age- and gender-matched

healthy controls (HC). SCNs were constructed by thresholding SD correlation matrices

of 68 regions and analyzed using graph theoretical approaches. Compared with HC,

PD patients showed increased normalized clustering coefficient and normalized path

length, as well as a reorganization of degree-based and betweenness-based hubs (i.e.,

less frontal hubs). Moreover, the degree distribution analysis showed more high-degree

nodes in PD patients. In addition, we also found the increased assortativity and reduced

robustness under a random attack in PD patients compared to HC. Taken together,

these findings indicated an abnormal topological organization of SD-based SCNs in

PD patients, which may contribute in understanding the pathophysiology of PD at the

network level.

Keywords: magnetic resonanc imaging, graph theoretical analysis, sulcal depth, structural covariance networks,

Parkinson’s disease

INTRODUCTION

Parkinson’s disease is a chronic neurodegenerative disease, characterized by a diverse array of
motor and non-motor symptoms (Sveinbjornsdottir, 2016). The main pathological feature of PD
is the progressive apoptosis of dopaminergic neurons in the substantia nigra pars compacta due to
the abnormal intracellular accumulation of α-synuclein known as Lewy pathology. As the disease
progresses, Lewy pathology gradually spreads from mid-brain nucleus to widespread cortical
regions leading to structural abnormalities (Braak et al., 2003; McCann et al., 2016). Currently,
many sMRI studies have found significant abnormalities in a wide range of brain regions in PD
patients using different morphometric features such as gray matter volume (Camicioli et al., 2009;
Pan et al., 2012), cortical thickness (Ibarretxe-Bilbao et al., 2012; Uribe et al., 2018), local gyrification
index (LGI) (Zhang et al., 2014; Sterling et al., 2016), and local fractional dimension (Li et al., 2020).
However, these studies can only reflect the localized changes, and the interrelationship of the altered
brain regions remains largely unknown.
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The brain regions are highly interconnected by axonal
connectivity and would covary in the morphological features
as a result of sharing trophic, genetic, and neurodevelopmental
influences (Alexander-Bloch et al., 2013). Based on this key
foundation, graph theoretical analysis has been successfully used
to study the topological abnormalities of structural covariance
networks (SCNs) in various neurological conditions, such as
schizophrenia (Zhang et al., 2012; Palaniyappan et al., 2015,
2019), Alzheimer’s disease (He et al., 2008; Friston et al.,
2010; Pereira et al., 2016), and amyotrophic lateral sclerosis
(Zhang et al., 2019). This methodology provides a powerful tool
for investigating the neurobiological network mechanisms of
different diseases by using a series of quantitative parameters
(e.g., small-world property, modularity, hub analysis, degree
distribution, and robustness analysis) (Rubinov and Sporns,
2010; Hosseini et al., 2012). So far, using different morphometric
features, some studies have applied this methodology to
investigate the alterations of SCNs in PD patients, but the
results are inconsistent. For example, some studies have found
a significantly increased clustering coefficient and path length in
PD patients compared to healthy controls (HC) (Pereira et al.,
2015; Zhang et al., 2015; Xu et al., 2017; Wu et al., 2018), while
others found no changes at all (Guo et al., 2018; Xu et al.,
2018). Brain network analyses using diffusion tensor imaging
(DTI) have also reportedmixed results with some reporting lower
global efficiency (the inverse of path length) and lower clustering
coefficient in PD patients compared to HC (Kamagata et al., 2018;
Vriend et al., 2018; Koirala et al., 2019; Hu et al., 2020), while
others found no differences (Tinaz et al., 2017; Kok et al., 2020).

Sulcal depth (SD) is a gyrification feature defined as the
Euclidean distance between the central surface and its convex
hull (Yun et al., 2013). Distinct from gray matter volume and
cortical thickness, SD can provide the information about the
shape of cortical surface. SD gradually decreased with aging
(Jin et al., 2018) and has been used as a sensitive and reliable
indicator in Alzheimer’s disease (Im et al., 2008; Yun et al.,
2013), schizophrenia (Lyu et al., 2018; Yan et al., 2019), Williams
Syndrome (Kippenhan et al., 2005), and anorexia nervosa (Nickel
et al., 2019). It has been shown that shallower SD was associated
with the combined effects of decreased cortical thickness and
gyral white matter volume (Im et al., 2008). On the other hand,
abnormal SD changes may also result from altered corticortical
connections according to the tension-based theory of cortical
folding (Van Essen, 1997). Hence, we speculate that SD may be
a suitable and sensitive morphometric feature for SCNs studies,
especially in PD patients with obvious gray and white matter
pathology (Braak et al., 2003; McCann et al., 2016). To the best of
our knowledge, the SD-based SCNs have not been investigated in
PD patients. In addition, although there have been some studies
investigating the topological properties of SCNs in PD patients,
little is known about the degree distribution and assortativity of
PD networks.

Therefore, in the present study, we used SD and graph
theoretical analysis to explore topological abnormalities of SCNs
in 60 PD patients compared with 56 age- and gender-matched
HC. A series of global network parameters, regional network
parameters, hub analysis, degree distribution and network

TABLE 1 | Demographic and clinical details for each group.

HC (n = 56) PD (n = 60) P

Age (years) 63.07 ± 5.543 61.60 ± 6.9 0.211

Gender(male/female) (31/25) (30/30) 0.564

Education (years) 8.55 ± 3.94 7.88 ± 3.76 0.351

Duration of illness (years) 3.73 ± 2.05

UPDRS III score 22.55 ± 12.52

HandY 1.91 ± 0.63

MMSE score 28.36 ± 0.98 28.17 ± 1.21 0.355

LEED (mg) 394.37 ± 137.25

PD, Parkinson’s disease; HC, healthy control; UPDRS-III, Unified Parkinson’s Disease

Rating Scale (motor section); H&Y, Hoehn and Yahr staging; MMSE, Mini-Mental State

Examination; LEED, levodopa equivalent daily dose.

robustness were computed and compared between the two
groups. Based on previous findings, we hypothesized that PD
patients would show increased clustering coefficient and path
length, as well as a reorganization of regional network parameters
and hubs.

MATERIALS AND METHODS

Participants
The present study was approved by the Medical Research
Ethical Committee of The Second Affiliated Hospital of Soochow
University. Written informed consent was obtained from all
participants before evaluation. All participants were right-
handed. A total of 60 PD patients were recruited by an
experienced neurologist according to the UK Brain Bank criteria
(Hughes et al., 1992). The patient exclusion criteria included
atypical parkinsonian disease, severe neurological or psychiatric
comorbidity, history of alcohol or substance abuse, Mini-
Mental State Examination (MMSE) score ≤25 and any MRI
contraindications. The Unified Parkinson’s Disease Rating Scale
motor section (UPDRS-III), Hoehn and Yahr (H&Y) staging
scale and MMSE score were used to assess the motor symptom,
the severity of the disease and the global cognitive function,
respectively. All PD patients were assessed and MRI scanned
in the ON medication state. Levodopa equivalent daily dose
for each patient was calculated following established guidelines
(Tomlinson et al., 2010).

An age- and gender-matched group of 56 healthy controls
(HC) with no history of neurological or psychiatric diseases was
enrolled in the study. None of theHC showed gross abnormalities
in structural MRI. The demographic and clinical indices of all
participants are shown in Table 1.

MRI Data Acquisition
Anatomical 3D T1-weighted fast field echo (FFE) MRI images
were acquired on a 3T Philips Achieva scanner (Philips, Best, The
Netherlands) using a 32-channel receive coil in the Department
of Medical Imaging, The Second Affiliated Hospital of Soochow
University. A memory foam padding was used to minimize head
motion, and earplugs were used to reduce scanner noise. The
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MRI parameters were as follows: 155 sagittal slices, repetition
time (TR) = 7.1ms, echo time (TE) = 3.5ms, thickness =

1.0mm, no gap, flip angle 8◦, matrix size 220× 199 reconstructed
to 352× 352 over a 220-mm field of view, and voxel size= 0.625
× 0.625× 1 mm3.

Data Processing
The MRI data preprocessing was conducted using the
Computational Anatomy Toolbox 12 (CAT12, http://dbm.
neuro.uni-jena.de/cat12/, version r1434) in a standard manner.
All images saved as DICOMs were converted to Nifti-format,
and then were inspected visually for motion or other artifacts
using the MRIcron software (http://people.cas.sc.edu/rorden/
mricron/index.html). Image preprocessing included correction
for bias-field inhomogeneities; tissue segmentation into gray
matter, white matter, and cerebrospinal fluid; and normalization
using DARTEL algorithm. After the preprocessing was finished,
only participants receiving a weighted average score of B+ or
higher were included for further analysis by viewing the quality
reports obtained by CAT12.

The SD was computed according to the manual established by
Gaser and Kurth (http://dbm.neuro.uni-jena.de/cat12/CAT12-
Manual.pdf). Firstly, using projection-based thickness (PBT)
method (Dahnke et al., 2013), the central surface of cortex was
reconstructed, which was used as input for calculating SD. Then,
we respectively extracted the SD of both hemispheres using the
“Extract Additional Surface Parameters” provided in CAT12.
SD was estimated based on the Euclidean distance between the
central surface and its convex hull (Yun et al., 2013). Finally,
according to the Desikan–Killiany (DK40) atlas, 68 parcellated
brain regions were extracted as the average SD of all vertices
belonging to the region with the “ROI Tools” implemented in
CAT12 (Table 2).

Constructing Structural Covariance
Networks
Graph Analysis Toolbox (GAT) was used to construct the
SD-based SCNs (Hosseini et al., 2012). For each group, a
68×68 correlation matrix was established by calculating Pearson
correlation coefficients between SD values of each brain region
adjusted for age and gender. Thereafter, the correlation matrix
was converted into a binary adjacency matrix by thresholding
correlation coefficients into values of 1 or 0 (Figure 1). Here,
these thresholds were defined as a range of network densities
varying from 0.26 to 0.5 (increments of 0.02), which ensured
that PD and HC networks had the same number of nodes
and edges at each density. The minimum density (0.26) was
determined to ensure that the networks were not fragmented
for both groups. For density above 0.5 the networks approached
random configuration (Humphries et al., 2006; Singh et al., 2013).

Network Parameters
A series of global and regional network parameters was
employed to characterize the topological properties of the SD-
based SCNs. The definitions of these parameters are the same
as previous studies (He et al., 2008; Rubinov and Sporns,
2010; Zhang et al., 2019). Global network parameters include

TABLE 2 | Cortical regions of the Desikan–Killiany atlas.

Region Abbreviations Index (left) Index (right)

Banks of the superior

temporal sulcus

bSTS 1 35

Caudal anterior cingulate CAR 2 36

Caudal middle frontal gyrus cMFG 3 37

Cuneus CUN 4 38

Entorhinal cortex EC 5 39

Fusiform gyrus FG 6 40

Inferior parietal gyrus IPG 7 41

Inferior temporal gyrus ITG 8 42

Isthmus cingulate IC 9 43

Lateral occipital gyrus LOG 10 44

Lateral orbitofrontal gyrus LFGor 11 45

Lingual gyrus LG 12 46

Medial orbitofrontal gyrus MFGor 13 47

Middle temporal gyrus MTG 14 48

Parahippocampal gyrus ParaHIPP 15 49

Paracentral gyrus ParaCG 16 50

Pars opercularis pOPER 17 51

Pars orbitalis pORB 18 52

Pars triangularis pTRI 19 53

Pericalcarine cortex PeriCAL 20 54

Postcentral gyrus PostCG 21 55

Posterior cingulate PCC 22 56

Precentral gyrus PreCG 23 57

Precuneus PreCUN 24 58

Rostral anterior cingulate RAC 25 59

Rostral middle frontal gyrus rMFG 26 60

Superior frontal gyrus SFG 27 61

Superior parietal gyrus SPG 28 62

Superior temporal gyrus STG 29 63

Supramarginal gyrus SupraMG 30 64

Frontal pole Fpole 31 65

Temporal pole Tpole 32 66

Transverse temporal gyrus TTG 33 67

Insula INS 34 68

normalized clustering coefficient, normalized path length, and
small-world index. Briefly, the clustering coefficient (Cp) of a
node pertains the number of existing connections linking the
neighbors of the node divided by all their possible connections.
The Cp of a network is the average of clustering coefficients
across all nodes in a network, which represents network
segregation. The shortest path length (Lp) is equal to the
minimum number of edges that connect two nodes. The Lp
of a network pertains to the average shortest path length
involving all node pairs in the network, which represents
network integration.

Small-world index is characterized by a high Cp (>1) and
a similar Lp (≈1) compared with the random networks, which
represents an optimal balance between network segregation and
integration (Watts and Strogatz, 1998). The Cp and Lp of real
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FIGURE 1 | Correlation matrices and adjacency matrices with 68×68 for healthy controls (HC) and PD patients. Correlation matrices for HC (A) and PD patients (B),

and binary adjacency matrices at the minimum density (0.26) for HC (C), and PD patients (D). Correlation matrices show the Pearson correlation coefficient between

any two regions of the network and the color bar denotes the absolute value of the Pearson correlation coefficient and represents the strength of the connections.

networks (HC and PD) were normalized to the mean values
of 20 random networks constructed with the same number of
nodes, edges, and degree distribution as the real networks. Small-
world index was calculated by the ratio of normalized clustering
coefficient to normalized path length (>1) (Humphries et al.,
2006).

Regional network parameters include clustering coefficient,
degree, and betweenness. Degree, a measure of a node’ s
interaction within the network, is the number of connections that
the node has with all other nodes in the network. Betweenness is
the fraction of all shortest paths in the network that run through
a given node.

Hub Analysis
Hubs are the most globally interconnected regions in a network
and were defined as a region whose nodal degree or betweenness
value was at least one and a half standard deviation larger than
the mean value (He et al., 2008).

Degree Distribution
Degree distribution reveals specific characteristics of the network
in terms of possibility of having high-degree regions and
robustness to network damage (Albert et al., 2000; He et al.,
2007). It has been shown that human SCNs follow an
exponentially truncated power-law distribution (He et al., 2007),
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FIGURE 2 | Changes and between-group differences of normalized clustering coefficient (A,B), normalized path length (C,D), and small-world index (E,F) as a

function of network density in HC and PD groups. Between-group differences (Dot markers) lying outside the 95% confidence intervals (dashed lines) indicate the

densities where the difference is significant at P < 0.05. Positive values indicate densities where values for PD patients are greater than for HC and negative values

indicate the opposite. All abbreviations were listed in Table 2.

suggesting a network that is comprised of most nodes with a
degree value close to the mean and also some high-degree nodes
with many connections. Such degree distribution is formulated
as: P(d)∼[d(k/1) ∗ exp(–d/dc)], where P(d) is the probability of
network regional degree (d), k is the power exponent and dc is
the cut-off degree above which there is an exponential decay in
probability of high-degree nodes (Hosseini et al., 2016).

Network Robustness
Assortativity is a parameter to see if nodes with similar degree
tend to be interconnected. In general, a network is degree

assortative if high-degree nodes are connected to other nodes
with high-degree, while it is degree disassortative if high-
degree nodes are connected to other nodes with low-degree
nodes (Newman, 2002). Assortativity provides information about
connections between nodes and robustness of the network.

Resilience of the network was assessed by a randomor targeted
attack. In a random attack, nodes were deleted randomly from
a network and the size of the largest connected component
of the resulting networks was calculated (Bernhardt et al.,
2011; Hosseini et al., 2016). This simulation was done 1,000
times to obtain the average measures of the remaining network
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(Bernhardt et al., 2011; Hosseini et al., 2016). As for a targeted
attack, the above processes were repeated, but removing nodes
from a network in order of their degrees, from highest to lowest
(Bernhardt et al., 2011; Hosseini et al., 2016). We also calculated
the area under the curve (AUC) to indicate the aggregate metrics
of network robustness.

Statistical Analyses
The statistical analyses of demographic and clinical indices were
performed using the SPSS 22.0 (SPSS Inc., Chicago, IL, USA).
Demographic and clinical indices were analyzed with Student’s
t-test for continuous variables and the Chi Square test for
categorical variables. Statistical significance was set to P < 0.05.

To assess the statistical significance of between-group
differences in all network parameters, we used a non-parametric
permutation test with 1,000 repetitions (He et al., 2008; Zhang
et al., 2019). For each repetition, the corrected SD values of each
subject were randomly reassigned to one of two new groups with
the same number as the original PD and HC groups, and then the
correlation matrices were recalculated for the two new groups.
Subsequently, binarized matrices were generated using a range
of network densities (0.26–0.5, increments of 0.02). For the two
new groups, network parameters were calculated and differences
were compared at each density. A permutation distribution of
difference was generated under the null hypothesis. The actual
difference between PD patients and HC was placed in the
corresponding permutation distribution and a 1-tailed P-value
was calculated based on percentile position. An AUC summary
measure was used to evaluate the between-group differences
across all densities (Zhang et al., 2019). The statistical threshold
was set at P < 0.05 for group differences in global network
parameters. P < 0.05 was deemed significant after false discovery
rate (FDR) correction for the regional network parameters.

RESULTS

Demographic and Clinical Characteristics
No significant differences were found between HC and PD
patients in age (P = 0.211), gender (P = 0.564), education (P =

0.351), and MMSE score (P = 0.355) (Table 1).

Alterations in Global Network Parameters
The changes and between-group differences in global network
parameters of PD and HC groups at densities ranging from
0.26 to 0.50 are shown in Figure 2. We found that the SCNs of
both groups showed a small-world property, with normalized
clustering coefficient > 1, normalized path length ≈ 1, and
the small-world index > 1. Compared with HC, PD patients
exhibited increased normalized clustering coefficient, normalized
path length, and small-world index at several network densities.
The AUC analysis revealed that normalized clustering coefficient
and normalized path length were significantly increased (P =

0.005 and P = 0.042, respectively) in PD patients compared to
HC at a range of densities (0.26–0.5).

TABLE 3 | Hub distribution for each group.

Hubs HC PD

Degree-based hubs L paracentral L postcentral

L precentral L precentral

L superiorfrontal R precentral

R parstriangularis R superiorfrontal

L transversetemporal L transversetemporal

R insula R transversetemporal

L insula

Betweenness-based hubs L bankssts L

parstriangularis

R medialorbitofrontal

R transversetemporal

R parstriangularis L insula

L superiorfrontal

R superiorfrontal

R insula

HC, healthy control; PD, Parkinson’s disease; L, left; R, right.

Alterations in Regional Network
Parameters
The AUC analysis found no significant between-group
differences in regional network parameters after FDR correction.

Network Hubs
As shown in Table 3, distinct distribution and number of degree-
based and betweenness-based hubs were identified between
the two groups. Based on nodal degree, six hub regions were
identified in HC and seven hub regions were identified in PD
patients. Based on nodal betweenness, six regions were identified
as hubs in HC and three regions were identified as hubs in PD
patients. These degree-based and betweenness-based hub regions
of both groups were mainly located in frontal, temporal and
insular lobes (Table 3, Figure 3).

Degree Distribution
The degree distribution of both PD and HC networks followed
an exponentially truncated power law. For the PD patients, the
power exponent (k) was 1.04 and for HC was 1.28. The cut-off
degree (dc) was 7.39 for PD and 4.75 for HC. The goodness of
fit was 0.88 for PD patients and 0.82 for HC. The histograms
of degree distributions showed more high-degree regions in PD
patients compared to HC (Figure 4).

Network Robustness
Compared with HC, the assortativity of PD patients was
significantly increased, which was confirmed by the AUC analysis
(P = 0.005) (Figure 5).

The robustness analysis revealed that PD patients were more
vulnerable to a random failure (P = 0.023), but not a targeted
attack (P = 0.421), compared to HC (Figure 6).

DISCUSSION

As far as we have known, it is the first study demonstrating
abnormal topological organization of SD-based SCNs in PD
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FIGURE 3 | Network hubs in healthy controls (HC) and PD patients. Six degree-based hubs in HC (A), 7 degree-based hubs in PD patients (B), 6 betweenness-

based hubs in HC (C), and 3 betweenness-based hubs in PD patients (D). All abbreviations were listed in Table 2.

FIGURE 4 | The histograms of degree distributions in HC (A) and PD (B) groups.

patients compared to HC. Specifically, PD patients showed
increased normalized clustering coefficient and normalized path
length in global network parameters, as well as a reorganization
of degree-based and betweenness-based hubs (i.e., less frontal
hubs). Moreover, the degree distribution analysis showed
more high-degree nodes in PD patients. In addition, we also

found the increased assortativity and reduced robustness under
a random attack in PD patients compared to HC. Taken
together, these findings indicated an abnormal topological
organization of SD-based SCNs in PD patients, which may
contribute in understanding the pathophysiology of PD at the
network level.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 January 2021 | Volume 12 | Article 575672

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wang et al. Abnormal SCNs in Parkinson’s Disease

FIGURE 5 | Changes (A) and between-group differences (B) of assortativity as a function of network density in HC and PD groups. Between-group differences (Dot

markers) lying outside the 95% confidence intervals (dashed lines) indicate the densities where the difference is significant at P < 0.05. Positive values indicate

densities where values for PD patients are greater than for HC and negative values indicate the opposite.

FIGURE 6 | Results of network resilience to random failure (A) and targeted attack (B). Red stars represent significant differences between HC and PD patients.

Alterations in Global Network Parameters
The SCNs of both PD and HC groups have small-world

topological properties, that is, higher normalized clustering

coefficients and similar normalized path lengths than random

networks. Small-world topological networks support local
specialization and integration processing with efficient

information transmission while minimizing wiring costs
(Achard et al., 2006; Kaiser and Hilgetag, 2006). This finding is
consistent with previous SCNs studies in PD patients (Pereira
et al., 2015; Zhang et al., 2015; Xu et al., 2017, 2018; Guo et al.,
2018; Wu et al., 2018). There is now strong evidence that the

small-world property is usually a normal configuration of human
brain networks.

However, compared with HC, PD patients showed
significantly increased normalized clustering efficient and

normalized path length, which indicated that local specialization
is significantly enhanced and global information integration

ability is reduced in PD patients. PD network tends to a more

regularized network. Such abnormal topological organization

may be due to the reduced long-distance connections and the
increased short-distance connections as the local specialization
and global information integration are mainly associated with
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short- and long-range connections, respectively (Latora and
Marchiori, 2001; He et al., 2009). Our results are consistent
with most of previous SCNs studies based on other structural
features in PD. For example, in structural networks built with
LGI, Xu et al. (2017) also found higher clustering coefficient and
characteristic path length in PD patients compared with HC.
However, some SCNs studies found no changes of clustering
coefficient and characteristic path length in PD (Guo et al., 2018;
Xu et al., 2018). Additionally, our findings are also in agreement
with some DTI studies with regard to lower global efficiency(the
inverse of path length) in PD patients compared to HC, but are
inconsistent with the lower clustering coefficient (Kamagata
et al., 2018; Vriend et al., 2018; Koirala et al., 2019; Hu et al.,
2020).

These discrepancies among these results may be related
to the heterogeneity of PD patients (i.e., different stages,
disease duration or clinical phenotypes) and the variations
in methodological approaches (e.g., different atlases and
morphometric features). For instance, the early-stage PD patients
were recruited in some studies and the pathological damage to
brain structures may be not obvious, thus the SCNs can still
maintain the normal information transfer in these studies (Guo
et al., 2018; Xu et al., 2018). Moreover, cognitive impairment
may be related to more severe topological network changes than
normal cognition in PD patients. For instance, in structural
networks built with cortical thickness and subcortical volume,
Pereira et al. (2015) have found that PD patients with mild
cognitive impairment show larger characteristic path length
and reduced global efficiency compared with controls, while
no significant differences of global network parameters were
found between PD patients with normal cognition and controls.
Similar findings were also observed in a whitematter connectivity
network study by Wang et al. (2019). In addition, different brain
parcellation schemes (e.g., 68, 90, 116, 162, and 264 brain atlases)
and different morphometric features (e.g., local gyrification
index, gray matter volume, deformation-based morphometry,
and cortical thickness) in previous studies may also contribute
in the inconsistent results (Pereira et al., 2015; Zhang et al., 2015;
Xu et al., 2017, 2018; Guo et al., 2018; Wu et al., 2018). However,
the reasons for these discrepancies are not entirely clear and still
need to be further investigated.

Network Hubs
In the present study, distinct distribution and number of degree-
based and betweenness-based hubs were identified between the
two groups, indicating hub reorganization in PD patients. In
particular, compared with HC, PD patients showed lost degree-
based hubs in the left superiorfrontal, the right parstriangularis
and betweenness-based hubs in the bilateral parstriangularis and
the bilateral superiorfrontal, which may be related to the fronto-
striatal dopaminergic deficits in PD patients (Seidler et al., 2010).
In addition, the right transversetemporal was identified as a new
hub in PD patients. These findings are consistent with a brain
metabolic connectome using [18F] FDG-PET in early idiopathic
PD patients, which found widespread long-distance connectivity
decreases and loss of hub regions mainly in frontal cortex, as well
as long-distance connectivity increases in parietal, occipital and

temporal cortices (Sala et al., 2017). Another study of gray matter
volume-based SCNs observed lost hubs mainly located in frontal
cortex in PD (Guo et al., 2018), which was also in line with our
results. As the frontal cortex is primarily responsible for cognitive
function, the significant loss of hub regions in the frontal cortex
may indicate cognitive impairment in PD patients. In addition,
more degree-based hubs indicate more high-degree regions in
PD patients compared to HC. However, less betweenness-based
hubs in PD patients may reflect the increased separation as
betweenness-based hubs play an important role in bridging
nodes between different modules and facilitate the information
transmission and integration of the whole network (Rubinov and
Sporns, 2010).

Degree Distribution
Previous studies have demonstrated that human brain networks
followed an exponentially truncated power law distribution (He
et al., 2007; Hosseini et al., 2016; Cao et al., 2019; Palaniyappan
et al., 2019), which were consistent with our results. This
degree distribution pattern showed that PD and HC networks
were comprised of many nodes with relatively few connections
and some hub nodes with many connections. Such a network
configuration may be more resilient to a targeted attack than
a scale-free network, which is characterized by the coexistence
of some super hubs (i.e., nodes with an extremely high degree
or betweenness) and a large number of non-hub nodes (Albert
et al., 2000; Achard et al., 2006). However, although the degree
distribution patterns of both groups were basically similar, there
were also visible differences between them.We observed a higher
cut-off of the degree in PD patients relative to HC, suggesting
more high-degree nodes in PD patients. This subtle change may
indicate that the SCNs of PD is less tolerant to a targeted attack
than HC.

Network Robustness
Assortativity can directly reflects the robustness of the network.
In the present study, the assortativity was significantly increased
in PD patients relative to HC, which suggested nodes with the
same degree were more closely interconnected, that is, high-
degree nodes were connected to other nodes with high-degree
and low-degree nodes were connected to other nodes with low-
degree. It has been suggested that network with moderately
increased assortativity are more robust to a targeted attack, but
relatively less robust to a random attack (Trajanovski et al.,
2013). In a higher assortative network, high-degree nodes are
closely connected with each other, thus forming a centralized
interconnection core. When a node in the core is removed,
the other nodes in the core can still maintain maximum
connectivity of the network. Therefore, the network is relatively
robust against a targeted attack. However, as the majority of
low-degree nodes tend to connect to other low-degree nodes,
the network is more prone to fragmentation under a random
attack (Iyer et al., 2013). In addition, we speculated that the
higher assortativity of PD network may be mainly due to the
increased clustering coefficient, since the clustering coefficient
has a positive contribution to the assortativity of a network
(Estrada, 2011).
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At last, we analyzed the network robustness of both groups
under direct random or targeted attacks. The results showed that
PD patients had similar robustness to that of HC network in the
case of target attack, but significantly reduced robustness under
a random attack. It has been shown that the robustness of a
network under random or targeted attacks depends greatly on
its topological properties (Iyer et al., 2013). As described above,
the degree distribution analysis showed more high-degree nodes
in PD patients, indicating that PD network is less tolerant to a
targeted attack than HC. Nevertheless, these high-degree nodes
were closely interconnected (increased assortativity), which
resulted in enhanced robustness of the PD network under a
targeted attack. Hence, we speculated that the offsetting effect
of both topological properties may result in the similar target
attack tolerance of both groups. Similarly, the number of low-
degree nodes in PD network increased and connected to each
other, so the network was more likely to fragment in the event
of a random attack.

LIMITATIONS

This study has several limitations that need to be addressed.
First, the cross-section design of the study does not allow the
characterization of the dynamic changes of SD-based SCNs in
PD patients. Second, the network parameters were calculated at
the group level, so the relationship between clinical indices and
network parameters cannot be discussed. Finally, most of the PD
patients in our study had a long-term history of dopaminergic
medications, which may lead to structural plasticity and the
corresponding SCNs changes. Future studies of early drug-naive
PD patients are warranted.

CONCLUSION

In this study, we have applied SD and graph theoretical analysis
to investigate the topological alterations of SCNs in PD patients.
We revealed an abnormal topological organization in PD patients

as evidenced by increased normalized clustering coefficient and
normalized path length, a reorganization of hub and degree
distribution, increased assortativity and reduced robustness
under a random attack in PD patients compared to HC. These
findings may contribute in understanding the pathophysiology
of PD at the network level.
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