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Abstract

Elsinochromes (ESCs) are virulence factors produced by Elsinoë arachidis which is the

cause of peanut scab. However, the biosynthesis pathway of ESCs in E. arachidis has not

been elucidated and the potential pathogenic mechanism of E. arachidis is poorly under-

stood. In this study, we report a high-quality genome sequence of E. arachidis. The size of

the E. arachidis genome is 33.18Mb, which is comparable to the Ascomycota genome (aver-

age 36.91 Mb), encoding 9174 predicted genes. The self-detoxification family including

transporters and cytochrome P450 enzymes were analysis, candidate effectors and cell

wall degrading enzymes were investigated as the pathogenicity genes by using PHI and

CAZy databases. Additionally, the E. arachidis genome contains 24 secondary metabolism

gene clusters, in which ESCB1 was identified as the core gene of ESC biosynthesis. Taken

together, the genome sequence of E. arachidis provides a new route to explore its potential

pathogenic mechanism and the biosynthesis pathway of ESCs.

Introduction

Elsinoë arachidis is a phytopathogenic fungus that causes peanut scab on Arachis hypogaea
Linn., resulting in tremendous yield loss (regional losses can be greater than 50%) in peanut

planting regions in China [1, 2]. Currently, disease occurrence patterns have been determined.

However, the mechanism of host-pathogen interactions is largely unknown, indicating

that new and effective prevention and control mechanisms of E. arachidis are urgently needed

[3–6].

Interestingly, several Elsinoë produce elsinochromes (ESCs) [7], which are red, photosensi-

tive, perylenequinone toxins. Previously, ESCs have been shown to promote electrolyte leak-

age, peroxidation of the plasma membrane, and production of reactive oxygen species such as

superoxide (O2
–). Additionally, ESCs contribute to pathogenesis and are essential for full viru-

lence which was validated by constructing mutants in E. fawcettii of a polyketide synthase-

encoding gene which is the core gene of ESC biosynthesis [8–10]. Cercosporin (Cercospora
spp.) is the most well-known member of the group of perylenequinone fungal toxins. The bio-

logical functions and biosynthetic pathway of cercosporin have been clarified. Like many tox-

ins identified in ascomycete fungi, its metabolic pathway is dependent on polyketide synthase
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(PKS) [11], and the other gene functions in the PKS gene clusters have also been determined.

However, the biosynthetic pathway of ESCs in E. arachidis and their potential pathogenic

mechanism remain to be explored. For instance, it is unclear whether, in addition to ESCs,

there exist cell wall degrading enzymes or effectors that act as virulence factors in E. arachidis
[12].

A growing number of studies have applied genome sequencing technology to the study of

phytopathogenic fungi, such as Magnaporthe oryzae [13], Fusarium graminearum [14], Sclero-
tinia sclerotiorum and Botrytis cinerea [15], which has provided new research avenues for a

better understanding of their genetic evolution, secondary metabolism, and pathogenic

mechanisms.

The present study was aimed at exploring the possible virulence factors of E. arachidis dur-

ing host invasion. We report on the 33.18Mb genome sequence of E. arachidis, the secondary

metabolism gene cluster, and the discovery of 6 PKS gene clusters in E. arachidis including the

ESC biosynthetic gene cluster and the core gene ESCB1. Through our analysis of the whole

genome, we show that E. arachidis has a complex pathogenesis, with, in addition to the toxin,

several candidate virulence factors including effectors, enzymes, and transporters. Moreover,

the putative pathogenicity genes provide new horizons to unravel the pathogenic mechanism

of E. arachidis.

Materials and methods

Whole-genome sequencing and assembly

In this paper, we used E. arachidis strain LNFT-H01, which was purified by single spores and

cultured on potato dextrose agar (PDA) under 5 microeinstein (μE) m-2s-1. The genome of

LNFT-H01 was sequenced by PacBio RS II using a 20kb library of LNFT-H01 genomic DNA

under 100 ×sequencing depth and assembled by Canu [16–18]. The assembled whole-genome

sequence, totaling 33.18 Mb and containing 16 scaffolds, was submitted to NCBI (GenBank

accession JAAPAX000000000). The characteristics of the genome were mapped in a circus-plot.

Phylogenetic and syntenic analysis

The evolutionary history can be deduced from conserved sequences and conserved biochemi-

cal functions. In addition, clustering the orthologous genes of different genomes can be helpful

to integrate the information of conserved gene families and biological processes. We calculated

the closest relatives to sequences from E. arachidis within reference genomes by OrthoMCL,

then constructed a phylogenetic tree by SMS implemented in the PhyML (http://www.atgc-

montpellier.fr/ phyml-sms/) [19, 20]. Syntenic regions between E. arachidis and E. australis
were analyzed using MCScanX, which can effectively determine the changes in chromosome

structure and reveal the history of the gene family expansion [21].

Repetitive sequence

Due to the low conservation of repetitive sequence (RS) between species according to MITE

Hunter, LTR FINDER, Repeat Scout, and PILER [22–25], we exploited the genome sequence

to established a RS database, classified and merged by PASTEClassifier and Repbase [26, 27].

Finally, we predicted the repetitive sequences with RepeatMasker [28].

Gene prediction and annotation

The ab initio-based and homology-based methods were performed to predict gene numbers in

the E. arachidis genome. A combination of Augustus, Glimmer HMM, Genscan GeneID, and
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SNAP [29–32] homology-based methods were used by GeMoMa [33] and the results were

integrated using EVM [34]. Non-coding RNA including rRNA, tRNA, and other RNAs were

also classified and analyzed. According to the structural characteristics of different non-coding

RNAs, different strategies were used to predict different non-coding RNAs. Based on the Rfam

[35] database, Blastn [36] was used to identify rRNA. We used tRNAscan-SE [37] to identify

tRNA. As for the pseudogenes, which have similar sequences to functional genes but have lost

their original functions due to mutations, we searched for homologous sequences in the

genome through BLAT [38] alignment, and we then used GeneWise [39] to search for imma-

ture stop codons and frameshift mutations in the gene sequence to obtain pseudogenes. The

preliminary functional annotation was conducted with multiple databases, including the

Pfam, NR, KOG/COG, KEGG, and GO databases [40–43]. The pathogen-host interaction

(PHI) database, carbohydrate-active enzymes (CAZy) database, and transporter classification

database (TCDB) were used to identify potential virulence-related proteins [44–46].

Identification and characterization of polyketide synthases (PKSs) and

secondary metabolite clusters

Secondary metabolite clusters were predicted by performing antiSMASH2 (https://

fungismash.Secondarymetabolites.org). In order to confirm the function of polyketide

synthase (PKS), which is the core protein that responsible for the biosynthesis of mycotoxin in

different organisms, PKS sequences were used to construct the phylogenetic tree by MEGA

10.0.5. The detailed information on PKS is reported in S9 Table. Domains of PKSs were identi-

fied via InterPro (https://www.ebi.ac.uk/interpro) and their location visualized by DOG 2.0.

ESCB1 expression and toxin determination

Elsinochrome extraction and quantitation were performed as previously described [12]. As for

ESCB1 expression, the strain used for the colony culture was the same as for toxin extraction.

Total RNA extraction was done using TransZolTM Up Plus RNA kit (Beijing, TransGen Bio-

tech). RT-PCR was performed using TransScript1One-Step gDNA Removal and cDNA Syn-

thesis (Beijing, TransGen Biotech). qPCR was done using SuperMix TransStart1 Green

qPCR SuperMix with primers ESCB1F (ATCCGAGGTCATTGGTGATG) and ESCB1R

(GAGGTTGACATCTGGC ATTTG).

Results

The characteristics of the whole-genome

Whole genome sequencing of E. arachidis was performed using PacBio RS II (100×coverage).

A total of 6.28 Gb high-quality sequencing raw data were assembled by CANU into 16 scaf-

folds (N50, 3,376,838bp) and the characteristics that are displayed in a circus-plot (Fig 1). We

analyzed the genome sequence through Augustus [29] and we identified 7,950 genes. In order

to obtain accurate information, we further performed a combination of Glimmer HMM

(9,277), Genscan (6,599), GeneID (11,100), and SNAP (10,175) [30–32]. By homology-based

methods using GeMoMa [33], taking E. australis as a reference genome, 8,339 genes were pre-

dicted. The above results were integrated by EVM [34] showing that the E. arachidis genome

contains 9,174 genes (Table 1). KOG, KEGG, and GO annotation were in S1 Fig.

The assembled size of the E. arachidis genome (33.18 Mb) was comparable in size to the

Ascomycota genome (36.91 Mb) [47], as well as M. oryzae, (38.10 Mb), Fusarium grami-
nearum (35.45 Mb), and Sclerotinia sclerotiorum (38.68 Mb). However, phylogenetic analysis

showed that the species used in this comparative study were distinct from one another.
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Notably, E. arachidis was only close to Sphaceloma murrayae and E. australis (S2A Fig), but in

terms of genome size, E. arachidis was larger than S. murrayae (20.72 Mb) or E. australis
(23.34 Mb). Additionally, synteny analysis indicated the highest synteny between E. arachidis
and E. australis (S2B Fig). Concerning the identification of repetitive DNA sequences, among

33,184,353bp of the E. arachidis genome, a total of 7,033,311bp (21.20%) repeat sequences

were identified including LTR retrotransposons and DNA transposons (S1 Table).

Genes associated with detoxification

Transporters. Transporters are membrane-associated proteins that can assist the move-

ment of ions, amino acids, and macromolecules across the membrane, which plays an impor-

tant role in a broad range of cellular activities such as nutrient uptake, the release of secondary

metabolites, and signal transduction [48]. The major facilitator superfamily (MFS) and ATP-

binding cassette (ABC) transporter superfamily are the two largest families of fungal transport-

ers [48]. Among these, the ABC transporters are the primary active transporters, usually as

part of multicomponent transporters, that transport different compounds including polysac-

charides, heavy metals, oligopeptides, and inorganic ions. In addition, MFS transporters are

secondary carriers that facilitate the secretion of endogenous fungal toxins, such as aflatoxins,

Fig 1. Circos-plot of E. arachidis. The outermost circle is the size of the genome, each scale is 5 Kb; the second circle

and third circle are the genes on the positive and negative strands of the genome, respectively (different colors

represent different COG functional); the fourth circle is repeated sequence; the fifth circle is tRNA and rRNA (blue:

tRNA, purple: rRNA); the sixth circle is GC content (light yellow: the GC content is higher than the average GC

content, blue: the GC content is lower than the average GC content); the innermost circle is GC-skew (dark gray: the G

content is greater than C, red: the C content is greater than G).

https://doi.org/10.1371/journal.pone.0261487.g001

Table 1. Gene annotation summary statistics.

Genome features

Genome assembly (Mb) 33.18

Number of coding sequence genes 9,174

GC Content (%) 48.24

PHI 2,752

Secreted protein 734

Transmembrane protein 1,829

TCDB 124

https://doi.org/10.1371/journal.pone.0261487.t001
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trichothecenes, and cercosporin. A large number of ABC genes (57) and MFS genes

(190) were found in E. arachidis (S2 Table), which represents 57% of the total number of trans-

porters (Fig 2A). EVM0006810.1, EVM0008188.1, EVM0008646.1, EVM0004073.1,

EVM0001603.1, EVM0008241.1, EVM0001951.1, EVM0000776.1, EVM0002663.1 are related

to CTB4 (Table 2), which encodes the MFS transporter, and are located in the cercosporin bio-

synthetic gene cluster. They play a role in the secretion of cercosporin in Cercospora nicotianae
and are involved in cercosporin resistance [49]. ESC, biosynthesized by E. arachidis, produces

reactive oxygen species in the light acting on the cell membranes and destroying the cellular

structure. Meanwhile, E. arachidis can grow and develop in the presence of high concentra-

tions of reactive oxygen species, which suggesting the certain detoxification of E. arachidis.
The ABC and MFS transporters may play functional roles in the secretion of toxins and play

an important role in the virulence toward the plant.

Cytochrome P450. The cytochrome P450 enzymes (CYPs) are multifunctional oxidore-

ductases that can aid in the detoxification of natural and environmental pollutants, involved in

the primary and secondary metabolism [50]. A total of 78 CYPs (S3 Table) were predicted in

E. arachidis genome, of which 20 CYPs were analyzed in the PHI data (Table 2), mainly

including the CYP51 and CYP52 families. The CYP51 families, the conserved fungal P450, are

involved in the biosynthesis of membrane ergosterol. MoCYP51B and MoCYP51A both

encode a sterol 14α-demethylase enzyme in M. oryzae that is required for conidiogenesis and

mediating the action of sterol demethylation inhibitor (DMI) fungicides [51]. CYP52X1, a

member of the CYP52 family, are involved in the degradation of specific epidermal lipid com-

ponents in the insect waxy layer [52]. In general, the CYPs may be involved in the detoxifica-

tion of the pathogen’s own toxins.

Fig 2. Characteristic of E. arachidis genome. (A) Transporters of E. arachidis genome. (B) pathogen-host interaction genes in E. arachidis genome. (C)

CAZymes in compared genomes. (D) Annotation of pectin and cellulase in E. arachidis.

https://doi.org/10.1371/journal.pone.0261487.g002
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Table 2. Detoxification genes in E. arachidis genome involved in PHI data.

gene ID PHI annotation ID Species

EVM0008224.1 MoCYP51B G4MZG5 Magnaporthe oryzae
EVM0001153.1

EVM0007235.1 CYP52X1 E2EAF6 Beauveria bassiana
EVM0005183.1

EVM0001975.1

EVM0006634.1

EVM0000493.1

EVM0002264.1

EVM0004742.1

EVM0009006.1

EVM0000504.1

EVM0001795.1

EVM0000711.1 cyp51 ABO93363 Mycosphaerella graminicola
EVM0007202.1

EVM0001836.1 CYP51C I1S2M5 Fusarium graminearum
EVM0002479.1

EVM0006459.1

EVM0007408.1 CYP1 AAG13968 Magnaporthe oryzae
EVM0001986.1

EVM0006925.1 Cyp51A I6YDU0 Fusarium graminearum
EVM0007146.1 GcABC-G1 F0XP73 Grosmannia clavigera
EVM0002882.1

EVM0000604.1 ABC2 BAC67162 Magnaporthe oryzae
EVM0002213.1 ABC3 Q3Y5V5 Magnaporthe oryzae
EVM0005164.1

EVM0004737.1

EVM0003047.1

EVM0005246.1

EVM0005274.1

EVM0001881.1

EVM0000747.1

EVM0001190.1

EVM0008962.1

EVM0000397.1

EVM0003703.1 ABC4 MGG_00937 Magnaporthe oryzae
EVM0007439.1

EVM0002950.1

EVM0008152.1

EVM0003958.1

EVM0000032.1 MgMfs1 A4ZGP3 Mycosphaerella graminicola
EVM0007852.1

EVM0005092.1

EVM0007310.1

EVM0003855.1

EVM0006410.1

EVM0002601.1

EVM0005626.1

(Continued)
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Analyses of pathogenicity proteins encoded by the E. arachidis genome

Through the pathogen-host interaction database, 2,752 potential pathogenic genes were

screened in E. arachidis (Fig 2B), mainly concerning the increased virulence and effectors, the

loss of pathogenicity, and reduced virulence as shown in S4 Table.

Effectors. During the interaction between pathogens and hosts, pathogens can produce

different effector proteins to change the cell structure and metabolic pathways of the host

plants, thereby promoting successful infection of the host plants or triggering host defense

reactions. In total, 734 genes were predicted to code for secreted proteins in the E. arachidis
genome. Analysis of the PHI database revealed 25 candidate effectors (Table 3) including

EVM0006757.1, a gene homologous to PemG1, an elicitor-encoding gene of Magnaporthe ory-
zae which triggered the expression of phenylalanine ammonia-lyase gene [53] and

EVM0003806, a gene homologous to glucanase inhibitor protein GPI1 [54] secreted by Phy-
tophthora sojae, which inhibits the EGaseA mediated release of elicitor active glucan oligosac-

charides from P. sojae cell wall. The function of candidate effectors from E. arachidis needs

further testing and verification, but also provides a novel research direction for the elucidation

of pathogenic mechanisms.

Carbohydrate-active enzymes. The cuticle and cell wall of plants are the primary barriers

that prevent the invasion of pathogens. Therefore, the ability to degrade complex plant cell

wall carbohydrates such as cellulose and pectin is an indispensable part of the fungal life cycle.

The CAZymes secreted by pathogenic fungi are capable of degrading complex plant cell wall

carbohydrates to simple monomers that can be used as carbon sources to help pathogen inva-

sion [55]. Mapped E. arachidis genomes with CAZy database detected 602 genes potentially

encoding CAZymes (S6 Table). Subsequently, we compared the CAZyme content to other

ascomycetes including necrotrophic plant pathogens (S. sclerotiorum and B. cinerea), a bio-

trophic pathogen (B. graminis), and hemi-biotrophic pathogens (M. oryzae and F. grami-
nearum) (Fig 2C, S7 Table). The CAZyme-content in E. arachidis is the largest in all compared

fungi genomes. This suggests that the CAZymes content does not directly correlate with the

lifestyle of the fungus. Further analysis showed, that the pectin and cellulase content of E. ara-
chidis (39) was smaller than that of the necrotrophic plant pathogens S. sclerotiorum (53) and

B. cinerea (62). However, it was significantly larger than that of B. graminis (2) (Fig 2D). In

addition to cell wall degrading enzymes, different pathogens likely use different strategies to

penetrate plant tissues.

Table 2. (Continued)

gene ID PHI annotation ID Species

EVM0004539.1 BCMFS1 AAF64435 Botrytis cinerea
EVM0006582.1

EVM0002249.1

EVM0002459.1

EVM0006810.1 CTB4 A0ST42 Cercospora nicotianae
EVM0008188.1

EVM0008646.1

EVM0004073.1

EVM0001603.1

EVM0008241.1

EVM0001951.1

EVM0000776.1

EVM0002663.1

https://doi.org/10.1371/journal.pone.0261487.t002
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Secondary metabolism

Gene clusters of PKS in E. arachidis. E. arachidis encodes 24 secondary metabolism clus-

ters, including PKS (6), nonribosomal peptide synthetase (NRPS) (11), NRPS-PKS (1), terpene

(6) (S3 Fig). The number of PKS clusters in E. arachidis were lower than in M. oryzae, similar

to E. fawcettii and F. graminearum, but the number of NRPS clusters was twice that of E. faw-
cettii, indicating significant differences in metabolic pathways between E. fawcettii and E. ara-
chidis (S4 Fig). We analyzed the PKS proteins from E. arachidis for conserved domains by

InterProScan and visualized them using DOG 2.0. (Fig 3). We found that E. arachidis contains

8 different domains including KS, AT, TE, ER, KR, MeT, ACP, and DH. According to their

domain structures, the 6 PKS genes could be further divided into reduced (EVM0002563,

EVM0005988, EVM0006869) and non-reduced (EVM0003759, EVM0004732, EVM0005880)

due to the reducing activity of ER and KR.

In order to further differentiate the 6 PKS genes, 19 different PKS genes were analyzed (S8

Table). Among the 6 PKS from E. arachidis, EVM0003759 was in the same clade as EaPKS

which is encoding for ESC biosynthesis in E. australis and therefore we named it ESCB1 (Elsi-

nochrome Biosynthesis gene 1). Interestingly, EVM0004732 and EVM0005880 are related to

the biosynthesis of melanin (Fig 4). This is the first time that melanin has been predicted in

this pathogen. Whether melanin in E. arachidis plays a role in pathogenicity as it does in M.

oryzae by aiding to penetrate the host plant remains to be verified.

Table 3. Effector candidates of E. arachidis in PHI database.

Effector Candidates PHI annotation ID Species

EVM0000548.1 ANP1 Q6FM27 Candida glabrata
EVM0002759.1 Atf1 I1S0C0 Fusarium graminearum
EVM0005988.1 ACE1 CAG28797 Magnaporthe oryzae
EVM0003884.1 BEC1005 CCU82697 Blumeria graminis
EVM0000372.1

EVM0004193.1

EVM0007602.1

EVM0008348.1

EVM0007402.1 BEC1019 KJ571201 Blumeria graminis
EVM0004104.1 BEC1040 CCU82707 Blumeria graminis
EVM0002180.1 FRE3 J9VNH2 Cryptococcus neoformans
EVM0005699.1

EVM0000237.1

EVM0003806.1 GIP1 AAL11720 Phytophthora sojae
EVM0003007.1 hopI1 AAL84247 Pseudomonas syringae
EVM0006701.1

EVM0001739.1 mkkA A0A068BFA5 Epichloe festucae
EVM0003220.1 MgSM1 MGG 05344 Magnaporthe oryzae
EVM0006757.1 PemG1 ABK56833 Magnaporthe oryzae
EVM0001649.1 So (soft) K9Y567 Epichloe festucae
EVM0005038.1

EVM0005550.1

EVM0009148.1

EVM0003400.1 T6SS2 Q6TKU1 Escherichia coli
EVM0008814.1

https://doi.org/10.1371/journal.pone.0261487.t003
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Expression of ESCB1 and analysis of flanking genes in E. arachidis. Noteworthily, we

previously determined that the content of ESC in E. arachidis was obviously decreased under

dark conditions [12]. We compared the toxin content and ESCB1 expression under light and

dark conditions, as expected, the change tendency was similarity (Fig 5). 13 putative Open

Reading Frames were identified in the flanking of ESCB1 (Fig 6), including EVM0001135 and

Fig 3. Structure of polyketide synthases proteins. The conservative domain of polyketide synthases was clarified by

InterProScan, and the visualization of different domains by using DOG 2.0.

https://doi.org/10.1371/journal.pone.0261487.g003

Fig 4. Phylogenetic analyses of E. arachidis and other fungal polyketide synthases (PKS). Phylogenetic tree was

constructed with PKS sequences from different organisms which classified with the types of reducing domains are

divided into five clades.

https://doi.org/10.1371/journal.pone.0261487.g004
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EVM0007299 which encode O-methyltransferase, EVM0006582 and EVM0006794 similarity

to MFS transporter, EVM0002495 Cytochrome P450, and EVM0002638 zinc finger transcrip-

tion factor.

Fig 5. ESC and expression levels analysis of ESCB1. ESC and expression levels of ESCB1 was investigated in light and

dark condition, respectively.

https://doi.org/10.1371/journal.pone.0261487.g005

Fig 6. Distribution of the ESCB1 gene cluster. BLASTX was used to search the NCBI database to predict the function

of related genes.

https://doi.org/10.1371/journal.pone.0261487.g006
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Discussion

Elsinoë species cause scab and spot anthracnose on various crops including peanut, cassava,

citrus, mango, and grape. In this paper, the first whole genome sequence of E. arachidis were

reported and revealed the complex gene structures that may be involved in its pathogenic

mechanism. Additionally, we predicted the ESC toxin biosynthesis gene cluster. The genome

size of E. arachidis is 33.18Mb, which was comparable in size to the Ascomycota genome size,

however, compared with E. australis (23.34 Mb), E. arachidis has a larger genome size. This

may be due to the lower proportion of repeat sequences in the E. fawcettii genome [56]. The

GC content was 48.24% and CDSs percentage of the genome was 43.94%.

Mycotoxins play an important part in the pathogenic mechanisms of pathogens. Mycotoxin

ESCs, perylenequinones photosensitive toxins, can produce reactive oxygen species (ROS) and

act on the cell membrane to destroy the cell structure. E. arachidis can maintain growth and

development even in the presence of high toxin levels, which indicates an efficient self-detoxi-

fication mechanism. We identified ABC transporters and MFS transporters in E. arachidis
indicating the complex transportation of substances in E. arachidis and that some of them may

have an effect on the secretion of ESCs. Cytochrome P450 enzyme system, a multifunctional

oxidoreductase, may involve in the self-detoxification of E. arachidis by providing redox con-

ditions to maintain its own steady state for various physiological and biochemical reactions.

ESC is a crucial virulent factor in the pathogenic process of E. arachidis. However, com-

pared with mycotoxins such as aflatoxins, fumonisin, and trichothecenes, and host-selective

toxins such as T-toxin, still little is known about the biosynthetic pathways of perylenequinone

mycotoxins. Cercosporin, the same group of perylenequinone toxins with ESC, has been

proved that CTB1 (cercosporin synthase gene 1) which encoding polyketide synthase is the

core gene of cercosporin biosynthesis pathway [10]. Efpks1 has been shown to function the in

ESC biosynthesis in E. fawcettii, but the specific biosynthesis pathway still needs to be further

clarified [8, 9]. With the prediction of the secondary metabolism gene cluster of E. arachidis, 6

gene clusters related to polyketide synthase were obtained. The core genes were EVM0002563,

EVM0003759, EVM0004732, EVM0005880, EVM0005988, and EVM0006869. Phylogenetic

tree constructions showed that EVM0003759 is involved in ESCs synthesis, while

EVM0004732 and EVM0005880 play a role in melanin synthesis. To our knowledge, this is the

first time that melanin has been identified in E. arachidis. Interestingly, analysis of the position

between the core genes of ESCs and melanin gene clusters, we found that the three genes are

all located in Contig00003. This result also cast some doubt on whether PKS synthesis path-

ways from ESC and melanin are interrelated or competing.

Pathogens employ complex mechanisms to break through the defenses of plants, including

toxins, enzymes, and other pathogenic factors to help invasion and colonization. Analysis of

the CAZy and PHI databases revealed that, in addition to ESCs, enzymes, effectors, and certain

transcription factors may be involved in the pathogenic process. Increased virulence factors

(3%) that cause increased pathogenicity include O-methylsterigmatocystin oxidoreductase,

AK-toxin biosynthetic gene 7 (AKT7) and bZIP transcription factor MeaB. EVM0005728,

EVM0001699 and EVM0004784 are related to AKT7, which encodes a cytochrome P450

monooxygenase in Alternaria alternata and can limit the host-selective toxin AK-toxin pro-

duction [57]. EVM0002472 is endowed with a basic leucine zipper (bZIP) domain similar to

the MeaB transcription factor in Fusarium oxysporum [58], which activates a conserved nitro-

gen responsive pathway to control the virulence of plant pathogenic fungi (S5 Table).

In conclusion, we reported the whole-genome sequence of E. arachidis. Analysis of its

assembly and annotation allowed the identification of the presumptive PKS gene clusters.

Based on our results, we hypothesize that ESCB1 maybe the core gene of the biosynthesis of
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ESC. Additionally, pathogenic factors including CAZymes and effectors may help E. arachidis
to circumvent the defense mechanisms of peanuts. Our work lays the foundation of future

research aimed at elucidating the detailed pathogenic mechanisms of E. arachidis.

Conclusions

In conclusion, this is the first report of the high-quality genome of E. arachidis by PacBio RS

II. The basic information of the sequence, gene family and metabolic gene cluster of E. arachi-
dis were clarified. Through further analysis of the key genes in different PKS gene clusters, the

expression of ESCB1 (EVM0003759) under light and dark condition was initially determined

to participate in the ESC biosynthetic pathway, and the flanking sequences of this gene cluster

were annotation, including major facilitator superfamily transporter, cytochrome P450, mono-

oxygenase and O-methyltransferase. In addition to ESC toxins, genes related to mycotoxin

biosynthesis such as melanin are also noted. This information provides new ideas for further

exploration of the pathogenic mechanism of E. arachidis.
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