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Abstract

Pediatric brain tumors may originate from cells endowed with neural stem/precursor cell
properties, growing in vitro as neurospheres. We have found that these cells can also be present
in adult brain tumors and form highly infiltrating gliomas in the brain of immunodeficient mice.
Neurospheres were grown from three adult brain tumors and two pediatric gliomas.
Differentiation of the neurospheres from one adult glioblastoma decreased nestin expression and
increased that of glial and neuronal markers. Loss of heterozygosity of 10q and 9p was present in
the original glioblastoma, in the neurospheres and in tumors grown into mice, suggesting that PTEN
and CDKN2A alterations are key genetic events in tumor initiating cells with neural precursor

properties.

Recent data have proposed that brain tumors contain a
"core" of stem cells providing them with the potential to
grow aggressively, escaping the effects of radiotherapy and
chemotherapy [1,2]. These cancer stem cells were isolated
from medulloblastomas or gliomas and grew in vitro as
neurospheres, suspended clonal aggregates containing
cells with different levels of commitment [3].

Such observations, derived from pediatric tumors only,
did not include data on the in vivo tumorigenicity of can-
cer stem cells. We have found that neurospheres from an
adult glioblastoma (GBM) have the potential to express
glial and/or neuronal markers and form highly infiltrating
gliomas into the brain of immune-deficient mice.

The neurospheres were derived from three adult brain
tumors and two pediatric malignant gliomas (BT1-BT5,
see Additional file 1). The neurospheres of BT1, a glioblas-
toma multiforme (GBM) were studied by flow-cytometry
and immunohistochemistry. Under differentiating condi-
tions (EGF-bFGF-LIF withdrawal and FBS addition) nestin
expression decreased and BT1 neurospheres expressed
high levels of neuronal and astrocytic markers. Remarka-
bly, most of the cells expressed both such markers, sug-
gesting the altered function of a complete differentiation
program (see Additional file 2).

To test their neoplastic potential we injected BT1 and BT2
(a central neurocytoma) neurospheres into nude mice. All
the mice injected intracerebrally (i.c.) with BT1
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neurospheres, but none of those injected subcutaneously
(s.c.), developed brain tumors that were lethal after 3, 5
and 6 months, respectively. After 4 months, however,
none of the mice injected with BT2 neurospheres devel-
oped a tumor. Adherent cells from the same two patients
were also injected i.c. and s.c. into nude mice. Two of
three mice injected i.c. with BT1 adherent cells, but none

http://www.molecular-cancer.com/content/3/1/25

that were lethal 4 and 5 months after injection,
respectively.

All the brain tumors in nude mice appeared as large, infil-
trating gliomas (Fig. 1A-B) with features of a grade II-III
oligoastrocytoma (Fig 1D-E). Both the primary tumor (Fig
1F), and the tumors in nude mice (Fig 1G-H) expressed

of those injected with BT2 cells, developed a brain tumor  nestin.

A B

s %
:

S Pl |
R

&

Figure |

Histological analysis of BT| and BT I-derived tumors in nude mice. BT | neurospheres (| x 10e5) were stereotacti-
cally injected into the left hemisphere of nude mice (Charles River ltalia, Calco, Italy; n = 3) or subcutaneously (n = 3). Nude
mice were also injected with | x [0e5 BT adherent cells into the brain (n = 3) or subcutaneously (n = 3). Cells from BT2
were injected with similar procedures into nude mice. Control mice (n = 3) were injected with | X 10e5 neural stem/progeni-
tor cells obtained from C57BL6J mice with previously described methods [I I]. Fig | A-B shows the GFAP staining in brown of
coronal sections of the tumor derived from neurospheres (I A) or from adherent cells (1B). The right part on the figures cor-
respond to the left hemisphere, were cells were injected. Fig. 1 C-E show H-E staining of the primary tumor with features of a
glioblastoma multiforme (1C) and of a tumor in mouse brain derived from neurospheres, showing an area with a prevailing
aspect of oligodendroglioma (1D) or adherent cells, exhibiting anaplastic changes (1E). Fig. |F-H show nestin staining of the pri-
mary tumor (|F) and of a tumor in mouse brain derived from neurospheres (I G) or adherent cells (1H).
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Figure 2

Genetic analysis on BT I, BT I-neurospheres and adherent cells and BT I-tumors in nude mice. DNA was
extracted from frozen tissues, cell cultures or lymphocytes, using standard protocols. Primers, microsatellite markers and PCR
conditions for LOH analysis were described before [12]. We also investigated markers 95157 and 9S171 flanking the CDKN2A
gene on 9p21. Before doing microsatellite analysis on mouse tumors we confirmed that PCR primers did not hybridize on
mouse DNA. For cytogenetic analysis cells were harvested with 0.1 pg/ml Colcemid (Karyomax Colcemid, Life Technologies)
overnight. Hypotonic treatment, fixation and GTG banding of metaphase chromosomes were performed with standard meth-
ods. The karyotypes were described in accordance with ISCN guidelines http://cgap.nci.nih.gov/Chromosomes/Mitelman Spec-
tral karyotyping was performed on metaphase cells according to the manufacturer's instructions (ASI, Carlsbad, CA) and to
published procedures [13]. Spectral images were acquired and analyzed with an SD200 Spectral Bio-imaging System (ASI Ltd.,
MigdalHaemek, Israel) and a charged-coupled device camera (Hamamatsu, Bridgewater, NJ) connected to a Zeiss Axioskop 2
microscope (Carl Zeiss, Canada) and analyzed by the use of SKYVIEW (version 1.6.1; ASI) software. The upper panel shows the
results of LOH analysis on 9p and 10q of the different samples outlined on the left. The lower panel illustrates a representative
spectral karyotype of neurospheres obtained with the simultaneous hybridization of 24 combinatorially labeled chromosome
painting probes. Karyotype display of chromosome banding (inverted DAPI) and SKY analysis (chromosomes were assigned a
pseudo-color according to the measured spectrum) are shown. The number (7) next to the marker chromosome (der(3)) indi-
cates the origin of inserted material.
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The five chromosomal regions showing frequent allelic
imbalance in gliomas (1p, 9p, 10q, 17p and 19q) were
investigated on six specimens obtained from BT1 surgery.
No allelic loss was detected in specimen 1 (S1; frontal
area); S2 and S3 (fronto-temporal area) showed LOH on
chromosome 10q; S4 and S5 (temporal area) had LOH on
10q and 9p (Fig 2). Neurospheres were derived from S6
(temporal) and their analysis showed the same alterations
of S5, i.e. LOH on 10q and 9p (Fig. 2). Adherent cells
deriving from S6 did not show any detectable LOH and
no alteration was found on 1p, 17p and 19q. In the pri-
mary tumor the allelic imbalance was partial, in neuro-
spheres, on the contrary, it was complete. Interestingly,
not only tumors deriving from BT1 neurospheres but also
the tumor from adherent cells showed LOH on 9p and

10q (Fig 2).

Cytogenetic analysis of BT1 neurospheres showed a
pseudo-diploid karyotype with monosomy of chromo-
somes 9, 10, 18, trisomy of chromosomes 19 and 20 and
presence of three marker chromosomes. A pseudo-tetra-
ploid clone was also present, resulting from duplication
of the pseudo-diploid clone and with the same numerical
and structural abnormalities (Fig. 2). The G-banding kary-
otype of BT1 adherent cells resulted 46, XY. SKY analysis
confirmed the numerical changes (monosomies and triso-
mies) shown by G-banding and allowed to unravel the
nature of a the marker chromosomes as a
der(3)ins(3;7)(3pter—3q11::7q11—>7q22::3q11—>3qter)

Three observations are provided by the follow-up of nude
mice injected with BT1 cells. First, tumors only developed
into the brain and not subcutaneously. Thus, in BT1 the
cancer "stem" cells required to be in their niche, i.e. the
brain, to develop tumors and the evolution of these
tumors resembled closely that of "real" gliomas. The phe-
notype of such gliomas, however, appeared less aggressive
than in the original tumor, possibly because the cancer
"stem" cells were conditioned by in vitro passaging and by
growth in the brain of immune-deficient mice.

Second, the tumors obtained from neurospheres were
completely different from those obtained from estab-
lished cell lines like U87, 9L, C6 or F98: they grew slower,
were highly infiltrating and showed a morphological pat-
tern resembling that of an anaplastic, mixed glioma, but
without necrotic areas and palisade cells typical of a GBM
(compare Fig. 1C with 1D-E). LOH studies demonstrated
the loss of a region chromosome 10q where PTEN is
located. PTEN is a critical tumor suppressor gene in GBM
but has also an important role in the regulation of neural
stem cell proliferation [4-6]. Its loss can therefore be a cen-
tral event in the neoplastic derangement of brain cancer
"stem" cells. We also found combined 9p LOH associated
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to 10gqLOH in S4-5 and in the neurospheres, but not in
S2-3, suggesting that 9p LOH is secondary to that on 10q.
LOH on 9p suggests the alteration of the important tumor
suppressor gene CDKN2A, encoding p16 and p14(ARF).
pl6 expression is absent or defective in glioblastomas
[7,8] and p16 has an important role in the terminal differ-
entiation of neural precursor cells [9]. Furthermore, p16 is
the main target through which Bmil regulates neural stem
cell differentiation and self-renewal [10].

Third, LOH on 10q and 9p were present not only in the
original tumor and in neurospheres but also in neuro-
sphere-derived gliomas in nude mice. Remarkably, even if
adherent cells had a normal karyotype and no allelic
imbalance, the derived tumors did show 10q and 9p
LOH. This suggests that few adherent cells with these
genetic abnormalities escaped our analysis and under-
went a positive selection in vivo. These results, therefore,
point to PTEN and CDKN2A alterations as critical events
in tumor initiating cells, a definition synonymous of can-
cer stem cells.

The identification of neurospheres from adult brain
tumors, and specifically from an adult GBM, is strength-
ening the case for the importance of cancer "stem" cells in
the genesis of these malignancies. A thorough genetic dis-
section of such cells on a larger scale should give new
insights for the therapeutic targeting of these cancer
"queen-bee" cells.

Additional material

Additional File 1

Additional file 1 (Tunici et al-Additional file 1.doc) contains Methods
with references, comments on in vitro data and the legend to the addi-
tional file 2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-3-25-S1.doc]

Additional File 2

Additional file 2 (Tunici et al-Additional file 2.ppt) contains figures of
brain tumor neurospheres, and flow cytometry and immunohistochemical
data for their characterization.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-3-25-S2.ppt]
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