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Abstract: In recent decades, both clinical and animal studies have shown that fetal growth 
restriction (FGR), caused by exposure to adverse uterine environments, is a risk factor for 
hypertension as well as for a variety of adult diseases. This observation has shaped and 
informed the now widely accepted theory of developmental origins of health and disease 
(DOHaD). There is a plethora of evidence supporting the association of FGR with increased 
risk of adult hypertension; however, the underlying mechanisms responsible for this correla-
tion remain unclear. This review aims to explain the current advances in the field of fetal 
programming of hypertension and a brief narration of the underlying mechanisms that may 
link FGR to increased risk of adult hypertension. We explain the theory of DOHaD and then 
provide evidence from both clinical and basic science research which support the theory of 
fetal programming of adult hypertension. In addition, we have explored the underlying 
mechanisms that may link FGR to an increased risk of adult hypertension. These mechan-
isms include epigenetic changes, metabolic disorders, vascular dysfunction, neurohormonal 
impairment, and alterations in renal physiology and function. We further describe sex 
differences seen in the developmental origins of hypertension and provide insights into the 
opportunities and challenges present in this field. 
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Introduction: The Concept of Fetal Programming 
of Adult Disease
Recently, the theory of the developmental origins of health and disease (DOHaD), 
formerly known as the theory of fetal programming of adult disease, has gained 
traction as an important subject in both clinical and basic science medical 
research.1–5 Research suggests that pre- or postnatal exposure to developmental 
insults, such as nutrient insufficiency, and environmental exposures may result in 
temporary or permanent changes in fetal or neonate anatomy, epigenetics, metabo-
lism, and physiology of the fetus or neonate and subsequent early onset of chronic 
diseases in life.1,3,6,7 David Barker et al were among the first groups to propose this 
idea with convincing epidemiological evidence linking low birth weight (LBW) to 
increased risk of morbidity and mortality from coronary heart disease as well as the 
development of insulin resistance and type II diabetes.8,9 Since publication of these 
landmark studies, several clinical and animal studies supported this idea,4,5,10,11 

giving rise to the field of DOHaD.
LBW is defined as an absolute birth weight of less than 2500 grams, and this 

condition is a clinical surrogate of a variety of distinct pregnancy-related 
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complications, including fetal growth restriction (FGR), 
prematurity, and small for gestational age (SGA).12,13 

Although LBW is closely associated with a high incidence 
of infant morbidity and mortality, the public health sig-
nificance of this condition has risen in recent decades 
when it was discovered that poor adult health may be 
linked to compromised fetal growth.8,9,14 In most cases, 
LBW is a sign of poor fetal milieu during pregnancy and 
can be caused by multiple factors such as maternal and 
fetal genetics, presence of adverse environmental expo-
sures, and placental insufficiency.12,14 Fetal growth restric-
tion (FGR) is considered as a main cause of LBW. FGR 
results from insufficient uterine- placental perfusion, 
which leads to poor nutrient and oxygen supply to the 
fetus and consequently has detrimental outcomes on fetal 
growth and development and the diagnosis is based on the 
change in growth over time.15 In contrast, some babies 
experiencing prematurity, defined as birth before gesta-
tional week 37, have LBW and show signs of FGR.16 

Note that not all premature babies are born with LBW. 
The recent statistic of the birth data in US for year 2019 
reported 311,245 (8.31%) babies born with LBW but the 
number of premature babies is even higher as 382,061 
(10.23%) babies born preterm.17 Furthermore, sometimes 
LBW babies are SGA. A child is regarded as SGA when 
their abdominal circumference or weight at birth is below 
the 10th percentile or two standard deviations of the aver-
age abdominal circumference or weight for that specific 
gestational age, race, and gender.18 Thus, infants in the 
category of SGA may or may not have growth restrictions.

Placental insufficiency is used to describe deficits in 
placental supply of oxygen and nutrients to the fetus, 
which becomes pathogenic by slowing fetal growth.19,20 

FGR is mainly caused by placental insufficiency, elicited 
by a variety of factors including failure of uterine and 
placental spiral arteries to remodel, gestational hyperten-
sion, and maternal malnutrition.12,21–23 Suboptimal fetal 
nutrient supply and hypoxia may initiate preferential redis-
tribution of blood to vital organs that are important for 
short-term survival such as the brain, myocardium and 
adrenal glands.12,13 However, organs that are important 
for the long-term survival such as the kidneys and liver 
may be deprived of sufficient blood supply and nourish-
ment leading to compromised growth and subsequent 
organ dysfunction in adult life.24

Since FGR is now considered a risk factor for adult 
hypertension,25–27 we aim to give a synopsis of the current 
knowledge in the field of fetal programming of 

hypertension, with special attention to evidence from clin-
ical and animal research. We further suggest possible 
underlying mechanisms, reasons for observed sex differ-
ences in this phenomenon, and conclude by discussing the 
challenges and opportunities available in this dynamic 
field.

Fetal Programming of 
Hypertension: Evidence from 
Clinical and Preclinical Studies
Genetics and lifestyle have been recognized as factors that 
promote hypertension development. However, several 
clinical studies now suggest that a suboptimal fetal envir-
onment can also initiate the progression of impaired blood 
pressure (BP) regulation.3,14,28,29 David Barker et al laid 
the foundation of the theory of fetal origins of health and 
diseases.9 In a cohort study of 22,846 adult men from the 
US, Curhan et al30 found that LBW was associated with 
increased incidence of hypertension whereas high birth 
weight was linked to increased incidence of diabetes mel-
litus. In contrast, both LBW and high birth weight 
increased systolic and diastolic BP in a study carried out 
on children and young adolescents in China.31 Several 
other studies support that LBW is directly associated 
with increased incidence of hypertension.26,28,32,33 

Although children who suffered growth restriction may 
experience hypertension,27,34 the strength of association 
between LBW and essential hypertension becomes more 
pronounced in advanced age groups.35 These observations 
suggest that secondary insults accumulate with age and 
may shape and exacerbate hypertension in adult popula-
tions that experience fetal growth restriction. In 
a population-based cohort study on young Swedish men, 
both severity of birth weight restriction and the extent of 
prematurity increased the rise in BP. This underscores how 
the degree of FGR may be influential on increasing the 
risk of hypertension in adulthood.36 Human epidemiologi-
cal research provides clear evidence that, to some extent, 
our fetal environment may determine the risk of develop-
ing hypertension in adult life.

Animal studies have advanced the field of fetal origins 
of health and diseases because they mitigate some of the 
confounding variable effects that influence the develop-
ment of adult human diseases, such as genetic factors and 
postnatal environmental exposures.37 Many animal models 
of FGR have been developed including by various inter-
vention to the pregnant dams such as the use of surgical 
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methods to reduce blood flow to the placenta,19,38 immu-
nological intervention,39 maternal protein restriction,40,41 

and exposure to environmental agents such as drugs.42 

Few genetically modified animal models in pregnant 
mouse and rat are also reported to develop spontaneous 
preeclampsia phenotype and produce FGR offspring.43,44 

Although the causes of FGR may differ from one animal 
model to another, most investigations suggest that regard-
less of cause, suboptimal fetal environments are closely 
associated with adult risk for hypertension.11,40,42,45

Potential Mechanisms Involved in 
Fetal Programming of Hypertension
Epigenetics as a Driver of Fetal 
Programming of Hypertension
Dynamic and inheritable modifications that change chro-
mosome structure, but not gene sequence, are defined as 
epigenetics changes. These modifications regulate lineage- 
specific gene expression in several cellular processes 
including the pathogenesis of diseases and are 
a reflection of the interplay between DNA and environ-
mental factors.25,46 Gene expression is partly dependent on 
the accessibility of genomic regions like promoters, enhan-
cers, and silencers. These regions are essential for binding 
transcriptional factors such as activator and repressor pro-
teins to DNA when they regulate gene transcription.47 

Histone acetylation and methylation govern the accessibil-
ity of these genomic loci. In general, histone acetylation at 
lysine residues is associated with activation of gene 
expression while methylation may be associated with 
either transcriptional repression or activation, depending 
on gene specificity. Additional epigenetic modifications of 
histone proteins include sumoylation, ubiquitination, and 
phosphorylation. Methylation of DNA at specific cytosine 
regions of the promoter called CpG islands, is another 
form of epigenetic modification that regulates gene expres-
sion. Normally, promoter methylation is associated with 
transcriptional repression.48–50 Gene expression can also 
be regulated by non-coding RNAs; these small molecule 
expression profiles may correlate with the upregulation or 
suppression of specific genes. It should be noted that not 
all gene regulation mediated by non-coding RNAs fall 
under epigenetics. Epigenetic traits must be inheritable,51 

which can be through mitosis and often encompasses the 
effects of maternal factors and early life experiences on 
long-term health. Epigenetic effects inherited through 
germline cells often manifest as paternal and 

transgenerational inheritance.52 Epigenetics regulate var-
ious cellular and physiological functions including 
embryonic development, genome imprinting during blas-
tocyte maturation, and compensation of gene dosage dur-
ing X-inactivation.46

In addition to altering the development of key organs 
that regulate BP homeostasis, poor fetal environment has 
been shown to induce epigenetic changes which might 
influence predisposition to adult hypertension and the 
transmission of this phenotype to subsequent 
generations.7,25,53 Inhibition of DNA methyltransferase 
(DNMTs) with 5aza2DC and antagonism of histone dea-
cetylase (HDAC) with valproic acid during the fetal life of 
rats exposed to dexamethasone, inhibited the elevation of 
BP normally seen in adult rats exposed to glucocorticoids 
in utero.54 In addition, epinephrine and phenylethanola-
mine N-methyltransferase enzyme expression were 
reduced in these adult IUGR rats, implicating the involve-
ment of DNMTs and HDAC in the epigenetic program-
ming of hypertension in FGR. Cortisol is a glucocorticoid 
implicated in stress response and regulation of vascular 
tone. The enzyme 11-HSD2 converts cortisol to its inac-
tive form, cortisone, and its reduction is associated with 
increased vascular tone via amplified pressor response of 
angiotensin and catecholamines.55 FGR has been shown to 
reduce 11-HSD2 protein and increase methylation of the 
gene that codes for this enzyme, which results in transcrip-
tional repression,56,57 thus providing further evidence of 
epigenetic involvement in fetal programming of 
hypertension.

Maternal calorie restriction in rats has resulted in pul-
monary hypertension in offspring characterized by aber-
rant proliferation, migration, and angiogenesis in the 
pulmonary vascular endothelial cells (PVEC). PVEC 
derived endothelin 1 is thought to play a role in driving 
endothelial dysfunction in these animals. Epigenetic ana-
lysis of sperm and PVEC samples from first-generation 
IUGR animals revealed that there was reduced DNA 
methylation and enhanced trimethylation of lysine 4 of 
the histone 3 protein within the first intron of the endothe-
lin 1 (ET1) gene. In addition, PVEC samples derived 
from second-generation IUGR animals continued to have 
significant demethylation of ET1 first intron. These obser-
vations indicate a transgenerational inheritance of endothe-
lial dysfunction through epigenetics.25

Both maternal malnutrition and dexamethasone exposure 
have been shown to increase Angiotensin Receptor Type 1a 
(AGTR1a) expression in the hypothalamic paraventricular 
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nucleus, reduce DNA methyltransferase 3 (DNMT3) expres-
sion and its binding to the AGTR1a gene as well as increase 
DNA demethylation in that gene.58 These epigenetic mod-
ifications may be associated with the increased salt sensitive 
hypertensive phenotype seen in adult FGR animals. Others 
have demonstrated that non-coding RNAs are another epi-
genetic mechanism involved in hypertension 
pathogenicity;59 however, more research is needed to deter-
mine the extent that this type of epigenetic regulation is 
implicated in fetal programming of hypertension. Finally, it 
is paramount to note that while numerous studies have found 
an association between FGR/SGA/LBW and epigenetic 
modifications, there are few studies that have definitely 
linked epigenetic modifications to a phenotype, suggesting 
that this area requires further introspection.

Role of FGR Induced Vascular 
Dysfunction in Fetal Programming 
of Hypertension
Systemic vascular resistance is one factor that regulates 
BP homeostasis and is largely dependent on the patency of 
peripheral blood vessels. Increases in peripheral vascular 
resistance correlates with elevation of BP.1 Several studies 
have reported that FGR is associated with increased vas-
cular resistance in humans.60–62 In both human and animal 
models, FGR has been shown to alter normal physical 
structure of blood vessels including increasing the intima 
media thickness63,64 and smooth muscle cell number, redu-
cing arterial elasticity and endothelial cell volume65–69 as 
well as increasing collagen deposition.70 The collective 
evidence suggests that vascular remodeling is one mechan-
ism whereby FGR may program adult hypertension.

Angiogenesis defects are commonly seen in FGR and 
may also contribute to adult hypertension. Rat and sheep 
models of FGR demonstrate reduced micro vessel num-
bers in a variety of vascular beds.71–73 In addition, during 
perinatal development angiogenic capacity is reduced in 
FGR due to deregulated expression of vascular growth and 
proliferation factors such as vascular endothelial growth 
factor (VEGF),1,74 placental growth factor and insulin 
growth factor.75–77

Vascular response to physiological vasoactive com-
pounds is an important determinant of BP regulation and 
subsequent risk of hypertension.78 In some FGR animal 
models, suboptimal fetal environments have been shown 
to variably affect the response of different vascular beds 
to physiological vasodilator and vasoconstrictor agents.1 

Various in utero insults, such as maternal obesity,79 

endothelial nitric oxide synthase (eNOS) deficiency,80 

dexamethasone exposure81 in mice, and maternal cocaine 
exposure82 in rats have been shown to increase the 
response of mesenteric arteries to adrenergic agonists. 
However, some studies did not demonstrate this 
response,83,84 suggesting that the effect of FGR on 
these arteries might be dependent on the type and timing 
of developmental insult. Increased sympathetic activity 
subsequent to FGR, particularly to the kidney, sometimes 
results in adrenergic receptor desensitization due to high 
circulating levels of catecholamines.1 Angiotensin is an 
important target in hypertension treatment. Several 
developmental insults, such as reduced uterine 
perfusion,85 maternal high sucrose diet,86 fetal 
dexamethasone,87 and nicotine exposure88,89 alter this 
pathway in the vasculature (depending on the vascular 
bed). This leads to an elevated pressor response which 
may cause BP elevation. FGR has also altered endothelin 
resulting in an increased angiotensin pressor response.25 

Other vasoconstrictor mechanisms shown to be altered 
and potentiated by FGR include thromboxane90 and ser-
otonin signaling.91 In addition, increases in myogenic 
tone in FGR animals has been reported.92,93

Defective endothelial function can be a precursor to 
development of hypertension.94 FGR models of maternal 
nutrient restriction and high fat diet display signs of 
endothelial dysfunction by reduced vasodilator effects of 
acetylcholine in the mesenteric arteries and other vascular 
beds.83,95 Females are normally protected from this phe-
nomenon unless ovariectomized.96 Vasodilatory pathways, 
such as eNOS, prostaglandin,97 and endothelial dependent 
hyperpolarization98 may be mechanisms altered by FGR 
and responsible for reducing the integrity of vascular 
endothelial function in FGR offspring.

Contribution of FGR Induced 
Neuroendocrine Impairment in 
Fetal Programming of Hypertension
Both the nervous and endocrine systems are important reg-
ulators of BP and any functional imbalance in these two 
systems can result in elevated BP.99 Abundant evidence 
suggests that several neuroendocrine pathways are altered 
in FGR and may explain why disturbances in fetal life are 
closely associated with adult hypertension.3,61,100–102

Several endocrine pathways are altered in FGR. 
Endogenous or exogenous maternal exposure to 
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glucocorticoids may result in FGR, hyperactivation, and 
permanent alteration of the hypothalamic pituitary adrenal 
(HPA) axis and deregulation of BP homeostasis in 
offspring.59,102 Since the HPA axis is heavily involved in 
regulating the stress system, alterations of this pathway in 
FGR may lead to hypertension through stress associated 
mechanisms and alteration of brain mineralocorticoid and 
glucocorticoid receptors.102 In rats, maternal exposure to 
glucocorticoids increased the expression level of PNMT, 
an enzyme responsible for synthesis of epinephrine. 
Elevated epinephrine levels can increase sympathetic ner-
vous activity resulting in hypertension.103 Leptin signaling 
is another hormonal pathway altered by FGR6,104–106 and 
impairment of this pathway may lead to a hyperphagic 
phenotype that becomes obese and consequently hyperten-
sive. Alternatively, disruption in leptin signaling can lead 
to hypertension through sympathetic nervous activation 
and catecholamine secretion.105,107 Both maternal nutrient 
restriction and placental insufficiency can suppress the 
renin angiotensin system (RAS), with kidney expression 
of angiotensin receptor 1 (Ang R1) and circulating angio-
tensin II (Ang II) reduced at birth.108–110 The RAS is 
important in regulating nephrogenesis and kidney devel-
opment. FGR rodents often have inappropriately activated 
Ang II-Ang R1 signaling when they become hypertensive 
in adulthood.29,109 In addition, angiotensin (Ang)-(1-7), 
the pathway that opposes the Ang II-Ang RI signaling, 
was downregulated in adult glucocorticoid exposed 
sheep.111,112 Collectively, these results suggest that the 
RAS system might be implicated in altering kidney struc-
tural development and physiology during fetal life and 
might result in hypertension in adult life. Testosterone is 
another hormone that is implicated in programming fetal 
origins of hypertension. Gonadectomy improved BP 
homeostasis in FGR but not in control rats in a study by 
Ojeda et al,113 illustrating the importance of testosterone in 
the developmental origins of hypertension in these ani-
mals. FGR altered the energy homeostasis hormones, insu-
lin and visfatin104,105, which has the potential to indirectly 
contribute to the hypertensive phenotype through meta-
bolic dysfunction.

FGR is often associated with sympathetic nervous sys-
tem activation, presenting a potential mechanism leading 
to hypertension.3,114 Bilateral denervation of renal nerves 
protects against the hypertensive phenotype in adult male 
rats exposed to placental insufficiency.115 However, some 
investigations failed to show the association of FGR with 
increased sympathetic nervous activity,116,117 implying 

that the role of sympathetic activity in the etiology of 
developmentally programmed hypertension might be 
dependent on sex, animal model, and type and timing of 
the developmental insult.

Impairment of Renal Anatomy and 
Physiology as Etiology of Fetal 
Programming of Hypertension
The renal system is essential in regulating BP and altera-
tions in its physiology often results in secondary forms of 
hypertension. Renal artery perfusion pressure directly con-
trols extracellular volume and sodium excretion in 
a process called natriuresis; dictating the activation of 
several vasoactive systems including the renin angiotensin 
aldosterone system (RAAS), which is central in regulating 
BP.118 In addition, maladaptive changes in renal sodium 
and chloride handling have been associated with hyperten-
sive conditions. One body of evidence suggests that renal 
nephron number and glomerular filtration rate are nega-
tively associated with the risk of hypertension.119,120 

Furthermore, hypertension is often characterized with 
increased sympathetic activity to the glomerular afferent 
artery.121,122 Ultimately, this data shows the importance of 
the kidney in maintaining BP homeostasis under normal 
and hypertensive pathophysiological conditions.

Alterations in kidney anatomy and physiology have 
been identified in IUGR and present potential links 
between FGR and risk for hypertension. Maternal protein 
restriction, hypoxia, placental insufficiency, and glucocor-
ticoid exposure decrease nephron endowment and impair 
kidney anatomy in rodent offspring.123–126 In humans, 
deficiencies in maternal folate, vitamin A, and total energy 
has been associated with kidney function impairment indi-
cated by elevated proteinuria, reduced GFR, and abnormal 
creatine clearance in F1 offspring.127 Crump et al showed 
that the risk of kidney disease was higher in preterm FGR 
individuals as young age as 9 years old.128 Other studies 
have also observed alterations in kidney function and 
structure in human FGR individuals,129,130 indicating that 
kidney development is very sensitive to developmental 
insults during fetal growth. Reduced nephron number 
may lead to hyperfiltration in the available glomerular 
nephrons. This may cause increased glomerular intracapil-
lary pressure and hypertrophy which leads to diminished 
kidney function and subsequent hypertension.131 

Alterations in kidney physiology was also shown in ani-
mals exposed to FGR, particularly in RAAS system 
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suppression at birth and inappropriate activation in adult 
life.108,109 Furthermore, offspring of protein deprived 
dams show increased expression of the following sodium 
transport proteins before development of hypertension: the 
renal thick ascending limb Na+-K+-2Cl− cotransporter, 
Na+CL− transporter132 and both the α and β subunits of 
the apical Na+-K+ ATPase transporter.23 However, the 
basal sodium excretory function in these animals was 
normal suggesting that renal sodium handling in these 
offspring might be compromised even before the progres-
sion to hypertension. Other studies have demonstrated that 
increased renal sympathetic activity might be responsible 
for the hypertensive phenotype seen in adult FGR animals 
since renal denervation reduces BP in FGR but not control 
animals.115,133,134 Overall, these observations indicate that 
developmental insults on the kidney during fetal growth 
may have profound effects on the development of hyper-
tension in adult life.

FGR Induced Obesity as Risk for 
Hypertension
FGR individuals are more likely to experience adult meta-
bolic syndrome than normal birth weight individuals.135 

Metabolic Syndrome (Met S) is a group of conditions of 
metabolic origin which occur together and increase 
a patient’s risk of developing cardiovascular disease. The 
components of Met S include but are not limited to insulin 
resistance, hypertension, central obesity, hyperglycemia, and 
dyslipidemia.136 Increased risk of developing Met S in FGR 
individuals may be due to the “catch up growth” phenom-
enon often observed after FGR, which is characterized by 
childhood compensatory accelerated growth rate.137 Rodent 
model investigations have shown that FGR programs 
a hyperphagic phenotype in infancy by increasing the expres-
sion of orexigenic pathways and suppressing anorexigenic 
brain signaling. This hyperphagic phenotype is thought to 
cause post-natal catch-up growth (PNCG) and exacerbate 
development of the metabolic syndrome later in life.6,138

Insulin and leptin are the two principal hormones regu-
lating energy homeostasis; evidence indicates that FGR 
individuals tend to experience greater insulin and leptin 
resistance than their normal birth weight 
counterparts.135,139–141 Children and young adult FGR indi-
viduals demonstrated decreased response to insulin.142,143 

Furthermore, FGR rodents demonstrated signs of insulin 
and leptin resistance, impaired glucose tolerance, and 
reduced food expenditure in early life.101,144 Leptin 

resistance may also contribute to obesity and hypertension 
by affecting renal sympathetic flow and endothelial dysfunc-
tion as well as by altering the renin-angiotensin-aldosterone 
system (RAAS).145–147 Although FGR newborns exhibit 
relatively decreased serum leptin due to lower adipose tis-
sue, high leptin concentrations are observed in FGR indivi-
duals during catch up growth.140,141 Adult rodent FGR 
models exhibit increased serum leptin and indicate 
resistance.6 Thus, the dysfunction of this metabolic pathway 
may partly explain why adult FGR individuals often develop 
obesity and hypertension.

Sex Differences in Fetal 
Programming of Hypertension
In general, the prevalence of hypertension is higher in 
males than females,148–150 suggesting sex differences in 
the development and progression of hypertension. 
Likewise, fetal programming of hypertension is associated 
with sex differences. Both male and female FGR offspring 
exhibit hypertension before puberty; however, females 
become normotensive during adolescence when estrogen 
production peaks,113,151–155 whereas their male counter-
parts remain hypertensive. Ovariectomy significantly ele-
vated BP in FGR but not in control rats, whereas estrogen 
administration returned BP to normal range in FGR 
animals.151 These results indicate that sex hormones pro-
duced by ovaries, particularly estrogen, protect FGR rats 
from fetal programmed hypertension.

In males, castration protects FGR offspring from ele-
vation of BP, whereas exogenous administration of testos-
terone rejuvenates the hypertensive phenotype.113,156 In 
addition, testosterone has been shown to promote 
a hypertensive phenotype; animal studies have shown 
that its dosage is proportional to BP increases in 
animals.157,158 Sex hormones also influence the RAAS. 
Testosterone seems to promote RAAS activation since 
BP of male FGR rat offspring respond greater to angio-
tensin II administration than male control offspring.159

Conclusion
Although our current knowledge of the mechanisms respon-
sible for fetal origins of hypertension is still limited, 
a significant body of evidence from both human and animal 
models suggests that suboptimal fetal environments are asso-
ciated with adult development of hypertension (Figure 1). 
More research is required to establish the causal relationship 
between FGR and adult hypertension. Currently, we 
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understand that FGR results in alterations in the develop-
ment, anatomy, and function of several systems essential to 
maintaining normal physiological regulation of BP. These 
include the vascular, renal, neural, and endocrine systems. In 
addition, while huge advances in understanding fetal pro-
gramming of hypertension have been made in recent dec-
ades, the therapeutic relevance of the biological pathways 
altered by FGR remains to be evaluated in human popula-
tions. Much research is needed if FGR pathway alterations 
(such as endothelin, leptin, angiotensin, and eNOS signaling 
pathways) can be utilized to develop drugs or prophylactic 
agents against hypertension in the FGR population. Lastly, 
more research is required to understand the time course of 
developmental origins of hypertension in both animals and 
humans. Identifying the developmental periods in which the 
majority of adverse adaptations occur to fetal development 
will allow researchers to develop time-informed interven-
tions that may reverse or prevent these adaptations and 
improve the long-term health of FGR individuals.
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