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Neural synchrony in cortical
networks: mechanisms and
implications for neural
information processing and
coding

Kai S. Gansel*

Independent Researcher, Usingen, Germany

Synchronization of neuronal discharges on the millisecond scale has long

been recognized as a prevalent and functionally important attribute of

neural activity. In this article, I review classical concepts and corresponding

evidence of the mechanisms that govern the synchronization of distributed

discharges in cortical networks and relate those mechanisms to their

possible roles in coding and cognitive functions. To accommodate the

need for a selective, directed synchronization of cells, I propose that

synchronous firing of distributed neurons is a natural consequence of spike-

timing-dependent plasticity (STDP) that associates cells repetitively receiving

temporally coherent input: the “synchrony through synaptic plasticity”

hypothesis. Neurons that are excited by a repeated sequence of synaptic

inputs may learn to selectively respond to the onset of this sequence

through synaptic plasticity. Multiple neurons receiving coherent input could

thus actively synchronize their firing by learning to selectively respond at

corresponding temporal positions. The hypothesis makes several predictions:

first, the position of the cells in the network, as well as the source of their input

signals, would be irrelevant as long as their input signals arrive simultaneously;

second, repeating discharge patterns should get compressed until all or some

part of the signals are synchronized; and third, this compression should be

accompanied by a sparsening of signals. In this way, selective groups of cells

could emerge that would respond to some recurring event with synchronous

firing. Such a learned response pattern could further be modulated by

synchronous network oscillations that provide a dynamic, flexible context

for the synaptic integration of distributed signals. I conclude by suggesting

experimental approaches to further test this new hypothesis.
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synchrony, cell assembly, oscillation, STDP, spike pattern, temporal compression,
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Introduction

Taken on its own, i.e., without any temporal reference, a
single action potential represents a single bit of information. If
all brain cells were active independently, neural coding could be
fully described by defining the mechanisms of spike generation
and characterizing the firing patterns of single cells, and no
additional information would be contained in multineuronal
activation patterns. Yet, as countless studies have shown, neurons
dynamically coordinate their firing. Neural coding thus involves
the formation of multineuronal firing patterns that may function
as discrete, information carrying elements. The organization
of these elements as well as their correlation with cognitive
processes constitutes the core problem in neural coding, with
many details still being unclear even after decades of thorough
investigation.

Delage was probably the first who anticipated ensembles of
coactive neurons to be the physiological equivalent of what he
called “a single idea” (Delage, 1919; Herculano-Houzel, 1999).
Driven by direct interactions, the members of the ensemble
would leave on the physical connections among them a trace,
a “relic,” that would facilitate their future cooperation. Some
30 years later, Hebb elaborately formulated what became known
as the “cell assembly hypothesis” (Hebb, 1949). He conjectured
that through “some growth process or metabolic change,”
repeated coactivation of a group of neurons causes the formation
of a “cell assembly”—an anatomically dispersed set of neurons
among which excitatory connections have been potentiated. As
a consequence, repeating activation patterns in a way translate
into assembly formation, and are henceforth represented by the
activity of the assembly. Given that repeating excitation patterns
most likely carry some meaning, each cell assembly is proposed
to be a correlate of some discrete, cognitively meaningful item
of information. Hebb’s concept has been reviewed many times
and refined ever since (Braitenberg, 1978; Sakurai, 1999; Harris,
2005). In particular, the strict connectivity-based definition has
been relaxed in favor of a purely temporal one (Gerstein et al.,
1989; Fujii et al., 1996; Singer et al., 1997). From a downstream
point of view, there is no need for the neurons in the assembly
to be directly connected—all that matters is their synchronous
activity within a critical time window.

Taking for granted that irreducible cognitive contents cannot
be represented by the activity of single cells, but are based on
the transient coactivation of confined groups of neurons (Singer,
2007), we are thus left with the question of how long this critical
time window would be, and how precisely the firing of the
constituent neurons would be coordinated. Considering that
the temporal scale of neuronal synchronization would have to
comply with even the fastest cognitive processes, the answer
comes down to at most a few milliseconds, or at least, the shorter
the better. In this respect, it just fits that synchronization of
neuronal discharges on the milliseconds scale has long been
found to be a prevalent and functionally important attribute of

neural activity (Singer, 1993; Stevens and Zador, 1998; Usrey and
Reid, 1999; Lestienne, 2001; DeWeese and Zador, 2006; Uhlhaas
et al., 2009; Gansel, 2014).

The aim of this article is to review classical concepts and
corresponding evidence of the mechanisms that govern the
synchronization of distributed discharges in cortical networks
and to relate those mechanisms to their possible roles in coding
and cognitive functions. To this end, the prerequisites for
precise coordination of multineuronal firing on the molecular,
cellular, and network level, with a special emphasis on
network oscillations, are discussed (sections “Prerequisites of
a directed synchronization of distributed spiking activity”
and “The role of neural oscillations”). To accommodate the
need for a selective, directed synchronization of cells and
to explain the discovery of recurring patterns of precisely
synchronous, distributed spiking activity in the neocortex
in the absence of network oscillations and sensory input
(Gansel, 2014), the new “synchrony through synaptic plasticity”
hypothesis is presented (section ‘The “synchrony through
synaptic plasticity” hypothesis’). The hypothesis is inspired
by theoretical studies that have demonstrated that neurons
equipped with spike-timing-dependent plasticity (Caporale and
Dan, 2008) may tune to repeating spatiotemporal input patterns
by potentiating synaptic weights on afferents that consistently
fire early, thereby steadily decreasing postsynaptic response
latency with respect to the onset of the pattern, until it
reaches a minimal value (Guyonneau et al., 2005; Masquelier
et al., 2008, 2009). Given appropriate input firing patterns
and plasticity mechanisms, multineuronal spike sequences
should therefore progressively be compressed in time and
eventually become synchronized (Suri and Sejnowski, 2002), if
the participating neurons respond to coherent input. Finally,
the integration of synchronizing mechanisms is discussed with
respect to their possible roles in cognitive functions, referring
to Chalmers’ “principle of structural coherence” (Chalmers,
1995; section “Neural correlates of cognitive processes”). I
conclude by contemplating the consequences of the formation
of synchronous cell assemblies on neuronal coding and by
suggesting experimental approaches to further test the new
“synchrony through synaptic plasticity” hypothesis (section
“Discussion”).

Prerequisites of a directed
synchronization of distributed
spiking activity

Timescales and accuracy of neuronal
signaling

Energy supply critically limits signaling in the brain
(Karbowski, 2014). For the cerebral cortex, the volume of signal
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traffic that can be supported by the brain’s metabolic rate was
calculated to be about five action potentials per neuron and
second in rat and less than one per neuron and second in human
(Laughlin and Sejnowski, 2003; Lennie, 2003). Considering the
speed of neural computations, the permissible signaling rate is
remarkably low, and this metabolic limit must affect the way
in which information is processed. Recordings from sensory
cortices suggest that the nervous system has countered this
natural constraint by distributing signals sparsely in time and
space (Weliky et al., 2003; Kerr et al., 2005; DeWeese and Zador,
2006; Waters and Helmchen, 2006; Hromádka et al., 2008;
Jadhav et al., 2009). The conclusion that at most a few discharges
per neuron are available to convey a message is confirmed
by the finding that sensory information is transmitted quickly
along feed-forward connections (Thorpe et al., 1996), requiring
only 10–15 ms per processing stage (Tovée, 1994). Therefore,
it was argued that information can only be represented by
short, fast responses forming a sparse population code. In
fact, reliable decoding of stimulus features is possible based
on the relative timing of the first spikes elicited in individual
neurons in the retina (VanRullen and Thorpe, 2001; Gollisch
and Meister, 2008), the olfactory system (Junek et al., 2010),
the somatosensory system (Petersen et al., 2001; Johansson
and Birznieks, 2004), and even in cell cultures (Shahaf et al.,
2008). But how reliable is the initiation of action potentials in
single neurons, and what is their temporal precision? Membrane
potential fluctuations induced by stochastic ion channel gating
and probabilistic release of synaptic vesicles are potential sources
of random variations in spike generation and timing (Faisal
et al., 2008; Ribrault et al., 2011). So, the probability that an
arriving presynaptic nerve impulse fails to evoke a postsynaptic
response is remarkably high, between 0.5 and 0.9 (Allen and
Stevens, 1994; Laughlin and Sejnowski, 2003). However, because
of the great number of synapses, failures do not necessarily
lose information. The variability introduced by nondeterministic
processes acting on the level of single molecules may average
out on the cellular level (Atmanspacher and Rotter, 2008)
and may even sharpen the signal due to stochastic resonance
(McDonnell and Abbott, 2009; McDonnell and Ward, 2011).
The amplitude and exact timing of somatic potentials in
response to a particular input would be expected to approach
a Gaussian distribution, giving rise to precisely timed action
potentials in most cases while occasionally failing to cause
a spike in time. This is indeed what could be observed by
repeatedly injecting irregular depolarizing currents into cortical
neurons in vitro (Mainen and Sejnowski, 1995), and simulations
suggest that the same is true for the axonal propagation
of action potentials, leading to small, mostly submillisecond
variations in spike timing over distances of millimeters (Faisal
and Laughlin, 2007). High reliability of spiking has also been
demonstrated in the visual (Kara et al., 2000; Herikstad et al.,
2011) and in the auditory system (DeWeese et al., 2003)
in vivo.

Cellular properties impacting precision of
spiking

The temporal precision of neuronal communication
crucially depends on a number of basic cellular properties.
Spike-timing-dependent plasticity rules for modifications in
synaptic strength indicate that postsynaptic potentials are
effectively integrated within only 20–30 ms (Dan and Poo, 2006;
Caporale and Dan, 2008). Such short integration times mainly
result from rapidly deactivating AMPA receptors that can have
deactivation time constants of less than a millisecond (Hestrin,
1993; Geiger et al., 1997; Magee, 2000) and indirectly control
the kinetics of NMDA receptor currents by only allowing for a
correspondingly short release of the magnesium block (Oertner,
2009; Holbro et al., 2010). In addition, disynaptic feedforward
inhibition may confine the effective integration time window
in the soma to a few millisecond (Pouille and Scanziani, 2001).
Backpropagating action potentials coinciding at the synapse
with excitatory postsynaptic potentials may trigger dendritic
calcium spikes and in this way cause highly nonlinear responses
(Stuart et al., 1997; Schiller et al., 1998; Larkum et al., 1999;
Stuart and Häusser, 2001; London and Häusser, 2005). Another
nonlinear element is the spike threshold which is inversely
related to the rate of membrane depolarization preceding a spike
and the rise time of the action potential, endowing neurons
with enhanced sensitivity to synchronous inputs (Azouz and
Gray, 2000; Harnett et al., 2012; Fontaine et al., 2014). With
increasing input rates, both the amplitude and duration of
somatic potentials in response to synaptic input are reduced,
resulting in a shortening of the temporal integration window
and requiring a yet higher precision of presynaptic signals to
drive the neuron to fire (Azouz and Gray, 2003; Léger et al.,
2005). The dynamics of spike threshold adaptations most
likely depend on fast sodium channel inactivation following
membrane potential fluctuations (Platkiewicz and Brette,
2011), making neurons particularly susceptible to rapid input
fluctuations (Mensi et al., 2016) while slow voltage fluctuations
do not contribute to spiking because they are filtered by
threshold adaptation. Finally, many synapses operate most
reliably at certain frequencies of presynaptic firing and display
depression or facilitation of postsynaptic responses (Galarreta
and Hestrin, 1998; Reyes et al., 1998; Thomson, 2003). Such
synapses effectively detect changes in the firing rate, but report
frequency of maintained activity poorly because they are unable
to respond at sustained rates (Abbott et al., 1997; Tsodyks
and Markram, 1997; Avissar et al., 2007). Besides the effects
of repetitive signaling on the release probability of vesicles
at the presynapse, the kinetics of transmitter binding and
channel gating of postsynaptic NMDA receptors produces
currents with distinct waveforms depending on pulse frequency
(Popescu et al., 2004), leading to the long-known fact that
the postsynaptic response is sensitive to the exact timing of
successive input signals (Reich et al., 2000). One important
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consequence of this sensitivity is that modifications in synaptic
strength depend not only on the relative spike timing between
the neurons but also on the spiking pattern within each neuron,
with the timing of the first spike in each burst being dominant
in determining the ensuing synaptic modifications (Froemke
and Dan, 2002). Taken together, these properties make neurons
susceptible to transient signals and precise spike timing codes,
and the transmission of a continuous rate signal difficult
(König et al., 1996).

Counting spikes vs. spikes that count

Nevertheless, dissenting models have been devised in which
the membrane potential undergoes a random walk to the
spike threshold so that any temporal structure in the input is
lost (Shadlen and Newsome, 1998). Based on these models,
it has been concluded that the summation of postsynaptic
potentials in cortical neurons is too imprecise to support
precise spike timing codes, thus leaving as the only coding
dimension the firing rates of neurons. A reliable estimate of the
instantaneous firing rate would then require the simultaneous
readout of a population of neurons (Gautrais and Thorpe,
1998), implying ergodicity and independence of cells. Assuming
uncorrelated inputs, the model by Shadlen and Newsome
predicts a Gaussian distribution of membrane potential with
only small membrane potential fluctuations. In vivo recordings,
however, revealed highly non-Gaussian membrane potential
dynamics displaying quiescent periods interrupted by large,
brief excursions consistent with coordinated presynaptic firing
(DeWeese and Zador, 2006). As has been shown both
theoretically and experimentally, the organization of presynaptic
input into synchronous volleys is also necessary to explain
the irregular output firing of neurons (Softky and Koch, 1993;
Stevens and Zador, 1998). These findings are in conflict with
basic assumptions of the model and question its validity.
Moreover, correlations between cells would compromise the
ensemble representation of firing rate especially at high
frequencies, imposing rigorous constraints on the temporal
accuracy of neural computations (Mazurek and Shadlen, 2002).
The above arguments indicate that neuronal dynamics and
theoretical considerations may be at odds with a firing rate
code. Further there is evidence for millisecond-precise spike
timing depending on sensory input, behavior, or internal state
in a variety of cortical areas like the frontal cortex (Vaadia
et al., 1995), the motor cortex (Riehle et al., 2000; Hatsopoulos
et al., 2003; Shmiel et al., 2005, 2006), the somatosensory
cortex (Foffani et al., 2004; Panzeri and Diamond, 2010),
auditory cortex (deCharms and Merzenich, 1996; Engineer
et al., 2008), visual cortex (Gray et al., 1992; König et al.,
1995; Bair and Koch, 1996; Tiesinga et al., 2008), and also
in upstream and downstream areas like the thalamus (Dan
et al., 1998; Usrey, 2002; Desbordes et al., 2008), retina (Berry

et al., 1997; Greschner et al., 2006; Jacobs et al., 2009), and
the hippocampus (Harris et al., 2003; Robbe et al., 2006). We
are thus led to a view of neural activity as being basically
and essentially characterized by sparse, temporally precise,
coordinated firing.

Coordinating neuronal activity:
mechanisms and functions

Sparse activation of small neuronal populations and even of
single cells in the neocortex has been shown to evoke distinct
movements (Brecht et al., 2004) and actually drive behavior
(Houweling and Brecht, 2008; Huber et al., 2008), demonstrating
a possible functional role of sparse cortical activity that might
be explained by the ability of single discharges to initiate
both widespread excitation and inhibition (Kapfer et al., 2007;
Molnár et al., 2008; Li et al., 2009; Wolfe et al., 2010). It has
been argued that this sensitivity of the cortical network to
single action potentials would cause relatively large random
membrane potential fluctuations and so entail a reduction of
the signal-to-noise ratio in neuronal communication (London
et al., 2010), implicitly assuming that spike generation is
inherently noisy. Reversing the argument, however, one might
as well conclude that this very sensitivity requires signal
propagation to be accurately controlled, and one might suspect
that the brain has evolved to make optimal use of its limited
resources and has developed adaptive mechanisms to prevent
the processing of signals that carry no meaning or, even worse,
affect information processing. Cortical computation would then
imply sparse representations and a very selective routing of
signals. To integrate and segregate distributed information
efficiently, neurons would have to coordinate their firing and
engage in coherent activity patterns while maximizing the
repertoire of functional states (Tononi et al., 1998; Sporns and
Kötter, 2004), which amounts to operating in a critical regime
between total independence and perfect functional unity. Not
surprisingly, the brain is endowed with a variety of features
and components controlling neuronal cooperation and the
propagation of neuronal activity.

Elements controlling neuronal signaling and
cooperation

The diversity of neuronal cell types and the intrinsic
heterogeneity of their biophysical properties have been found to
increase the system’s coding capacity through a decorrelation of
the firing of cells (Padmanabhan and Urban, 2010). Likewise,
the dynamics in neuronal populations become more complex
through the divergent and convergent actions of various
transmitters and neuromodulators (Marder and Thirumalai,
2002; Edeline, 2012). Another factor that has an impact on
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the functional repertoire of the network is the mere number
of its neurons and the degree of their connectedness. These
and other cellular and network properties also play a role in
regulating the activity flow in the brain. First and foremost,
the propagation of signals is confined by the functional
anatomy of the network, that is, synaptic connections and
their effective strengths (Sporns et al., 2000). Given the dense
meshwork of axonal and dendritic processes, neural signals are
often presumed to potentially take any direction at any time;
however, they do not. Rather, synapses may temporarily be
silenced (Voronin et al., 1996), and the overall distribution of
synaptic strengths in local cortical circuits comprises relatively
few strong connections embedded in a “sea” of weaker ones
(Song et al., 2005; Yassin et al., 2010), constraining the range
of possible signaling pathways (Luczak and MacLean, 2012)
and again maximizing the network’s capacity to produce and
retain stable activity patterns (Chen et al., 2010). Besides
the effective synaptic connectivity, a neuron’s functional state
is relevant to the routing of signals. In particular, neuronal
responsiveness is controlled through the rate and balance of
excitatory and inhibitory inputs (Haider and McCormick, 2009).
Synaptic bombardment can cause continuing depolarizations
and an increased variance of the membrane potential and
thereby raise a neuron’s sensitivity especially to inputs of small
amplitude (McCormick et al., 2003; Shu et al., 2003), while
the concomitant drop in input resistance leads to substantial
dendritic attenuation of electrical signals, with distal synapses
having reduced effects at the soma (Destexhe and Paré, 1999;
Fellous et al., 2003). This high conductance state (Destexhe
et al., 2003) is thought to be generated through local recurrent
excitation (Sanchez-Vives and McCormick, 2000) and has been
linked to the encoding of sensory information in the primary
visual cortex (Anderson et al., 2000). In addition to these input-
driven fluctuations between a hyperpolarized “down” state and a
depolarized “up” state, the intrinsic ability of neurons to respond
selectively to inputs at preferred frequencies (Hutcheon and
Yarom, 2000) affects their integrative properties: Both synaptic
mechanisms (Thomson, 2003) and ionic conductances (Llinás,
1988) may create a resonance effect (Hutcheon et al., 1996;
Ulrich, 2002) that influences spike timing and information
transmission between cells (Fellous et al., 2001). Finally, the
propagation of signals directly depends on the ongoing activity
pattern, with neuronal oscillations playing a prominent role
in defining temporal windows for effective excitation (Fries,
2005, 2009; Fries et al., 2007; Cardin et al., 2009). The interplay
of concurrent excitatory and inhibitory inputs (Isaacson and
Scanziani, 2011), in conjunction with ephaptic transmission
of electrical potentials (Weiss and Faber, 2010; Anastassiou
et al., 2011), dynamically determines the possible impact
of incoming signals (Chance et al., 2002; Azouz and Gray,
2003). Acting together, all these structural and functional
elements gate the information flow in the brain (Jefferys,
1995; Salinas and Sejnowski, 2001; Vogels and Abbott, 2009;

Adesnik and Scanziani, 2010; Fröhlich and McCormick, 2010)
and produce both the network and the activity patterns that
then give rise to cognitive functions. In the following sections,
I will further discuss the role of synchronous oscillatory
activity therein.

The role of neural oscillations

Theoretical considerations

Synchronously discharging neurons often produce
oscillatory rhythms of various frequencies, generated by
networks of diverse sizes (Kopell et al., 2000; Buzsáki and
Draguhn, 2004; Buzsáki, 2006). Theoretically, synchronous
oscillations might simply be an unavoidable byproduct
of neuronal network dynamics without any particular
computational role. Alternatively, they could directly contribute
to the representation of information, for example by providing
the timing for an internal clock or as a reference signal
relative to which spike times become meaningful, or they
could actively regulate the flow of information in neural
circuits by interfering with the action potential generation
and temporally link neurons into assemblies (Buzsáki and
Draguhn, 2004; Sejnowski and Paulsen, 2006; Fries et al.,
2007). Encoding by phase and synchrony has highly attractive
computational properties (Hopfield, 1995, 2004; Nádasdy,
2009). It has been proposed that phase encoding might affect
the temporal segmentation of several working memory items
(Lisman and Idiart, 1995; Jensen, 2006), and that waves of
activity might serve to tag sensory input at different spatial
locations with a unique phase (Ermentrout and Kleinfeld,
2001). The addition of phase information may be used as a
means to segment and categorize parallel inputs. In a similar
way, top-down processes could shape spiking activity by
coordinating subthreshold membrane potential fluctuations
to establish selective functional relationships between neurons
during states of anticipation (Engel et al., 2001). The idea that
the formation of dynamic links mediated by synchrony over
multiple frequency bands subserves neuronal communication
(Bressler et al., 1993; Singer, 1999b; Varela et al., 2001; Averbeck
and Lee, 2004) was dubbed “communication through coherence”
by Fries (Fries, 2005). Rhythmic excitability fluctuations are
thought to confine neural signal transmission such that only
coherently oscillating neuronal groups can interact effectively,
in the sense that their excitability peaks need to coincide to
facilitate the propagation of spikes. The resulting effective
communication structure may flexibly be rearranged through
shifts in attention or other cognitive processes that come
along with alterations in the oscillation patterns, which in turn
would alter the selective linking of distributed representations
(Serences and Yantis, 2006).
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Binding by synchrony

Coherent oscillations could also provide a mechanism to
solve the so-called “binding problem” (Treisman, 1996): If we
assume that some irreducible percept or thought or motor plan is
represented by a group of neurons on a dynamical basis, what is
the signature that transiently binds their activity into a unified
whole? Milner proposed that cells selectively segregate their
firing in time to signal their functional relationships (Milner,
1974), and von der Malsburg formulated the “correlation theory
of brain function” based on the same rationale (von der
Malsburg, 1986; von der Malsburg and Schneider, 1986; von
der Malsburg, 1995). Singer and co-workers adopted these
concepts (Singer and Gray, 1995; Engel et al., 1997; Gray,
1999) and advanced the “binding by synchrony” hypothesis
that suggests that functional relations between neurons are
encoded by synchronous firing in the millisecond range, brought
about by the phase-locking of distributed oscillations (Engel
et al., 1992; Singer, 1993, 1999a). The idea behind this is that
elementary relations are represented by the firing of individual
neurons mediated through appropriate convergence of input
connections, and that more complex relations are represented by
the activity of cell assemblies generated by dynamic associations
of cells (Singer et al., 1997; Roelfsema, 2006).

Correlating phase of firing with cognitive
performance

Network oscillations are often carried by rhythmic inhibitory
input originating from synchronized interneuronal spiking
(Buzsáki and Chrobak, 1995; Whittington et al., 2000; Fricker
and Miles, 2001; Hasenstaub et al., 2005; Bartos et al., 2007; Sohal
et al., 2009). It has been shown both experimentally (Lampl
and Yarom, 1993; Volgushev et al., 1998; Schaefer et al., 2006;
McLelland and Paulsen, 2009) and in simulations (Hopfield,
2004) that the ensuing subthreshold membrane potential
fluctuations interact with excitatory inputs such that the timing
of action potentials becomes a function of the oscillation phase
and is made less variable. As a result, discharges are temporally
coordinated and related to the network rhythm. Examples in
which the phase of firing carries significant information have
been reported from prefrontal (Siegel et al., 2009), auditory
(Kayser et al., 2009), and visual cortex (Montemurro et al.,
2008). In cortical area V4 of monkeys, the frequency-dependent
strength of the phase-locking of spikes is modulated by
attention (Fries et al., 2001; Grothe et al., 2012). Moreover,
the interaction of neuronal groups has been found to depend
on the phase relation between rhythmic activities within the
groups (Womelsdorf et al., 2007), consistent with the idea that
firing phases and times of increased susceptibility to input need
to match the inter-group transmission delays to facilitate the
propagation of spikes. Similarly, the strength of the interareal

phase synchronization of neuronal activity in monkey V4 and
prefrontal cortex was shown to correlate with visual short-term
memory performance (Liebe et al., 2012), suggesting that
this synchronization subserves intercortical communication and
contributes to the maintenance of visual short-term memories.
Thus, neural oscillations may dynamically shape suprathreshold
activity and flexibly arrange signaling pathways in concert with
cognitive processes (Wang, 2010; Cannon et al., 2014).

Attempts at a causal proof

Given that the brain, like every system which has opposing
forces such as excitation and inhibition, almost inevitably will
generate oscillations (Buzsáki, 2006; Wang, 2010), it is hard
to believe that it did not evolve to make use of them. But
how exactly do neural oscillations relate to the processing
of information? The idea that oscillations could serve as an
internal clock has been dismissed in favor of a model using
high-dimensional network states for encoding time (Mauk
and Buonomano, 2004; Karmarkar and Buonomano, 2007).
The difficulty in assigning functional relevance to synchronous
oscillations lies in the correlative nature of most of the
investigations done so far. There are some exceptions, though. In
a series of experiments, Laurent and colleagues used picrotoxin
(a GABA antagonist) to disrupt synchronous oscillations in the
olfactory systems of insects (MacLeod and Laurent, 1996) and so
were able to demonstrate that the selective desynchronization of
projection neurons in the antennal lobe degrades the selectivity
of downstream neurons (MacLeod et al., 1998) and impairs
the animal’s ability to discriminate molecularly similar odorants
(Stopfer et al., 1997). In mammals, however, the situation is less
clear. Mice lacking the GABAA receptor β3 subunit produce
enhanced oscillations in the olfactory bulb and after training
are better than normal in discriminating closely related odorants
but worse in discriminating odorant mixtures (Nusser et al.,
2001). In the rat olfactory bulb, oscillatory power appears to
be actively modulated depending on the molecular similarity
of odorants that the rat has to distinguish, suggesting a role
of enhanced network oscillations in stimulus disambiguation
(Beshel et al., 2007). On the other hand, newborn rats who have
very few GABAergic granule cells do not produce synchronous
oscillations and yet are as good at making odor discriminations
as older ones who have developed interneurons and do produce
oscillatory activity in response to a stimulus (Fletcher et al.,
2005). The most convincing studies so far that tried to establish
a causal link between synchronous oscillations and behavioral
performance in vertebrates again relied on pharmacological or
optogenetic interference with normal neuronal functioning: In
the frog retina, a subclass of oscillating ganglion cells responding
to expanding dark objects gets out of sync when exposed to
bicuculline (GABAA antagonist), leading to the failure of an
escape behavior as it is normally induced by such stimuli
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(Ishikane et al., 2005). In the rat hippocampus, cannabinoids
cause a decrease in oscillatory power in various frequency bands
without affecting average firing rates, which in turn impairs
memory formation (Robbe et al., 2006). Conversely, memory
consolidation can be rescued through optogenetic entrainment
of hippocampal network oscillations in sleep-deprived and
amyloid precursor protein overexpressing mice (Ognjanovski
et al., 2018; Etter et al., 2019). These examples show that neural
network function is often associated with neuronal oscillations,
but in most cases, it is unclear how exactly they contribute to the
processing of information. Nevertheless, on a mechanistic level,
they play a consequential role in coordinating multineuronal
activity.

Cellular mechanisms: a deeper look

Network oscillations naturally arise from the interplay
of recurrent excitatory and inhibitory connections and the
resonant properties of individual neurons (Llinás, 1988; Gray
and McCormick, 1996; Hutcheon and Yarom, 2000; Cardin
et al., 2005). Since they are a built-in feature of virtually
every neural system, it can be supposed that controlling them
is one of the brain’s most basic functions (Buzsáki, 2006).
Cortical networks generate synchronous discharges at various
frequencies involving variable numbers of cells and thereby
distinguish varying functional states for the processing of
information (Buzsáki and Draguhn, 2004). By rapidly balancing
excitation with inhibition, the oscillation frequency can be
instantaneously modulated (Atallah and Scanziani, 2009). In
participating cells, rhythmic synaptic inputs and oscillations
of the local electrical field restrict effective excitation to the
depolarizing phase of the oscillation cycle, thus adding a
dynamic, temporal gate for the transmission of signals to the
spatial gates given by the functional connections in the network
(Fries, 2009). Depending on the interactions of concurrent
rhythms (Lakatos et al., 2005; Canolty et al., 2006; Roopun et al.,
2008), spiking activity may hence be orchestrated on multiple
spatiotemporal scales in parallel by modulations of the phase and
amplitude of distributed oscillations (Jensen and Colgin, 2007;
van Aerde et al., 2009; Canolty et al., 2010; Kopell et al., 2010),
possibly even across subjects when they engage in coordinated
actions (Lindenberger et al., 2009).

Temporal coding vs. binary coding

Taking a closer look at how oscillatory network activity
interferes with a single cell’s firing, the question arises to what
extent the timing of an action potential can be controlled
by oscillatory input. It is known that through the interplay
between the magnitude of dendritic excitation and rhythmic
inhibition of the somatic region, the more excited cells tend to
fire earlier in the oscillation cycle (Volgushev et al., 1998; Vinck

et al., 2010), such that the phase of firing corresponds to the
excitatory drive of the neuron (McLelland and Paulsen, 2009).
On these grounds, it has been proposed that the interaction
of subthreshold membrane potential oscillations with incoming
excitatory signals could serve as a fundamental computational
mechanism for the implementation of a temporal coding scheme
in which information is encoded by the precise timing of a
spike relative to the phase of the ongoing oscillation (Hopfield,
1995; Fries et al., 2007; Nádasdy, 2009). Yet, although the
particular phase in which a neuron fires can contain significant
information (Montemurro et al., 2008; Kayser et al., 2009;
Siegel et al., 2009), such a coding scheme would necessarily
be limited to the timescale on which rhythmic membrane
potential fluctuations can advance or delay the spike timing in a
systematic way without completely suppressing spike generation.
In vitro recordings have shown that this timescale dynamically
depends on the average absolute membrane potential, the time
constant of the membrane, the strength of the input signal,
and the frequency and amplitude of the membrane potential
fluctuations (Volgushev et al., 1998; McLelland and Paulsen,
2009). According to these studies, only neurons receiving
tonic excitatory drive, combined with slow oscillatory input
having a relatively long period compared to the membrane
time constant, may produce output signals whose timing
is smoothly scaled across the whole depolarizing phase. If,
however, there is only transient excitatory input or the period
of the rhythmic modulation approaches the time constant of
the membrane, neural oscillations act essentially as a logic gate
relaying incoming excitatory signals only within accordingly
narrow time windows. In so doing, network oscillations provide
context to afferent signals by selectively routing information
in the brain in a dynamic and state-dependent way. Playing
a complementary role to neuronal connectivity, rhythmic
modulations of the membrane potential may also synchronize
multineuronal firing when paired with prolonged excitatory
input; in this case, spike timing is largely determined and
actively controlled by the phase of the modulation and the
overall activation level of the cell (Lampl and Yarom, 1993;
Volgushev et al., 1998; Markowitz et al., 2008). In addition,
oscillations of the membrane potential may improve action
potential precision by imposing defined temporal windows for
the effective integration of excitatory inputs (Hopfield, 2004;
Schaefer et al., 2006; Poo and Isaacson, 2009). Thus, rhythmic
excitability fluctuations are able to dynamically control the
routing and the timing of neuronal signals (Jacobs et al.,
2007), and it might not be a coincidence that the phase of
ongoing network oscillations in the human brain has been
found to correlate with the perception of sensory stimuli
(Luo and Poeppel, 2007; Busch et al., 2009). Whether the
interference of oscillatory activity with afferent inputs and
the resulting spike timing constitute a temporal code or a
binary code then depends on the timescale of their effective
interaction.
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The “synchrony through synaptic
plasticity” hypothesis

If the dynamic, directed synchronization of discharges in
cortical networks represents the neural correlate of some forms
of cognitive processing, it is evident that this synchronization
cannot rely on random connectivity and on a random selection
of synchronously active cells, but would have to be based
on adaptive learning of repeating activity patterns to provide
meaning. On these grounds, I propose the “synchrony through
synaptic plasticity” hypothesis.

In various neural circuits and a variety of species ranging
from insects to humans the strengthening and weakening of
synapses has been shown to depend on the relative timing of pre-
and postsynaptic spiking in narrow time windows (Figure 1A;
Bi and Poo, 2001; Dan and Poo, 2006; Mansvelder et al., 2019)
that in turn depend on dendritic location (Froemke et al., 2005,
2010; Letzkus et al., 2006; Sjöström and Häusser, 2006) and the
amplitude and decay time constant of the postsynaptic potential
(Fuenzalida et al., 2007). This so-called spike-timing-dependent
plasticity (Caporale and Dan, 2008) has profound implications
for the shaping of the functional neuronal network and the
synchronization of distributed discharges. Under conditions in
which synaptic potentiation occurs if incoming signals slightly
precede postsynaptic depolarization (Figure 1B), inputs that
consistently fire the postsynaptic neuron with short latency
develop strong synapses, while synapses of less effective inputs
are weakened (Markram et al., 1997; Song et al., 2000). As a
consequence, response latencies of potentiated synapses become
shortened (Boudkkazi et al., 2007), causing a backward shift of
the critical time window and bringing earlier inputs into effect
(Figure 1C). In this way, neurons could become responsive to
ever earlier signals of a recurring input pattern, so long as the
temporal delay between succeeding input spikes does not exceed

the critical time window for synaptic plasticity (Figure 1D).
Multiple neurons being consistently driven by (parts of) the
same repeating spike pattern could thus actively synchronize
their firing by learning to selectively respond to this pattern
at corresponding temporal positions (Figure 2F). This possibly
gets to the core of what assembles cell assemblies and presents a
simple and effective mechanism for coordinating multineuronal
activity in the brain.

Relation to existing work

The hypothesis builds on previous theoretical studies and
extends them: while the work of Guyonneau et al. (2005)
and Masquelier et al. (2008, 2009) demonstrated that single
neurons equipped with spike-timing-dependent plasticity can
learn to selectively respond at the onset of repeating input
patterns (Figure 3A), the hypothesis applies this finding
to populations of neurons and investigates its potential
consequences on the directed synchronization of cells. Suri
and Sejnowski (2002) had shown before that spike-timing-
dependent plasticity may help to sustain the propagation
of synchronous volleys of distributed discharges in neuronal
networks, but did not explain how synchronous activity comes
about in the first place. Complementing similar simulations
with inhibitory synaptic inputs, Vilimelis Aceituno et al. (2020)
explored the development of postsynaptic discharge sequences
during learning, emphasizing the concomitant sparsening of
responses and pointing to prediction as a possible function
of response latency reduction. In an attempt to link the
effects of spike-timing-dependent plasticity with the formation
of functional cell assemblies, the hypothesis presented here
tries to: (a) integrate current knowledge on the mechanisms
of synaptic plasticity with plasticity of firing patterns on the

FIGURE 1

Learning to respond to the onset of a recurring input pattern through spike-timing-dependent plasticity (STDP). (A) Classical STDP rule: If the
presynaptic input signal slightly precedes postsynaptic spiking, synaptic efficacy is enhanced (green area), if postsynaptic spiking occurs slightly
before presynaptic input, synaptic efficacy is reduced (red area). Spike timing in ms indicates postsynaptic vs. presynaptic spiking. (B) Initial
situation: Two succeeding input signals, possibly arriving at different synapses, are followed by a postsynaptic spike (dotted red line) inside
the temporal window for synaptic potentiation. (C) Through an increase in synaptic efficacy, postsynaptic response latency is reduced, so that
postsynaptic spiking falls into the temporal window for synaptic potentiation subsequent to the first input signal. (D) Continuing latency reduction
of postsynaptic spiking leads to a response to the first input signal (=onset of recurring input pattern) with shortest possible latency.
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FIGURE 2

Mechanisms mediating neuronal synchronization in cortical networks. (A) Common sensory input. In principle, neurons may fire synchronously
simply because they are driven by a common sensory stimulus. In cortical areas, however, sensory signals are modulated by the ongoing
activity and follow a multitude of diverging and converging pathways with differing delays, rendering neuronal synchrony non-trivial.
Prerequisite: Adaptations of the functional network to bring about synchronous groups of neurons depending on stimulus features. May
require (F). (B) Common input from the same presynaptic neuron. Prerequisite: Isochronous synaptic connections. (C) Dynamical relaying. Two
cells/populations of cells can become synchronized with zero phase lag if coupled reciprocally to a third cell/population of cells. Prerequisite:
Relay cell/population of cells occupies a temporally equidistant location from the neurons to be synchronized. Comes down to (B). (D) Electrical
coupling through gap junctions. Reciprocal transmission of graded potentials facilitates the synchronization of coupled cells especially through
the formation of multi-cell syncytia, even if the impact of one cell onto another is relatively weak. Reproduced in part from Stephan et al. (2021).
(E) Network oscillations. Subthreshold membrane potential oscillations restrict effective excitation to the depolarizing phase of the oscillation
cycle and may synchronize coherently oscillating cells by actively controlling the phase of their spiking. Prerequisite: Slow oscillatory input with
a relatively long period compared to the membrane time constant and tonic excitatory drive. (F) Synchrony through synaptic plasticity. Neurons
that are excited by a repeated sequence of synaptic inputs (marked in red) may learn to selectively respond to the onset of this sequence through
synaptic plasticity. Multiple neurons receiving coherent (not necessarily identical) input could thus actively synchronize their firing by learning to
selectively respond at corresponding temporal positions. Prerequisite: Effective spike-timing-dependent synaptic plasticity.

network level, (b) explain the emergence of synchronous,
distributed spiking activity through learning, (c) relate emerging
synchronous activity patterns to cognitive functions, and (d)
embed mechanisms and putative functions of a directed
synchronization of discharges into the existing philosophical
framework, focussing on the “principle of structural coherence”
(Chalmers, 1995).

First prediction: spatial integration

The hypothesis makes several predictions. First, neurons
that coordinate their firing in response to a recurring activity
pattern do not need to be physically connected, and also do
not need to receive the same input signals. All that matters for
the mechanism to work is that they are driven by a coherent

pattern of activity, i.e., that their inputs are correlated. The
ensuing spike time coordination may therefore extend over
any distance, providing a simple solution for the problem of
how information can be integrated on different spatial scales
in the brain. In the visual and somatosensory system, for
example, information about sensory stimuli is known to be
concurrently represented and processed in several cortical areas
(McClurkin et al., 1991; Nicolelis et al., 1998), and neuronal
firing has been found to be significantly coordinated across
these areas in both sequential (Truccolo et al., 2010) and
synchronous (Reed et al., 2008) activity. Such widespread spatial
integration of information can be achieved through coordinated
adjustments of synaptic strengths in response to correlated
inputs, although the tendency of distributed cells to engage in
coherent activity patterns is likely to decrease with increasing
distance (Ohiorhenuan et al., 2010). It is important to note
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FIGURE 3

Experimental evidence supporting the “synchrony through synaptic plasticity” hypothesis. (A) Left: Simulation showing 100 afferent inputs to a
model neuron equipped with STDP. Half of the input spike trains contain a repeating spatiotemporal activity pattern lasting about 50 ms. Right:
After an initial unselective period, the receiving neuron learns to selectively respond to the repeating pattern, gradually reducing response latency
with respect to pattern onset from about 35 ms to about 5 ms, thus “tracking back” through the pattern and becoming a fast and reliable pattern
detector. Taken from Masquelier et al. (2008). (B) Two occurrences of an example spike pattern recorded from spontaneous multineuronal activity
in rat visual cortex in vitro. The second occurrence shows a temporally compressed pattern with increasingly synchronized spikes. Reproduced
from Gansel and Singer (2008). (C) Gradual temporal compression of repeating spike patterns recorded from multineuronal activity in rat visual
cortex in vitro, comprising 90,751 individual patterns. The plot shows median ± median deviation of pattern duration depending on pattern
repeat and linear regression with coefficient of determination R2 = 0.98, indicating robust compression. Duration normalized with respect to
mean duration per pattern. Reproduced from Gansel and Singer (2008). (D) Distribution of durations of repeating spike patterns recorded from
multineuronal activity in rat visual cortex in vitro. Patterns were collected using a sliding window of 50 ms and statistically validated. Gray line
indicates chance level obtained from randomized data. Pattern durations are evenly distributed over the entire time window used for the pattern
search, with the exception of a prominent peak below 5 ms, indicating precisely synchronous firing. Taken from Gansel (2014). Panels (C) and (D)
contain data recorded from 10 brain slices.

that the resulting synchronous groups would be different from
classical Hebbian cell assemblies as the participating cells would
not need to be directly connected (Hebb, 1949; Gerstein et al.,
1989), but are fully characterized by the transient (and non-
random) synchrony of their discharges (Freiwald et al., 2001;
Harris, 2005). From all the cells that happen to be activated
by the same repeating excitation pattern, certain subsets
could be selected as synchronous groups through coordinated
changes in synaptic strengths and latencies (Edelman, 1978)
based on the relative onset of a cell’s input signals associated
with that excitation pattern. Their joint activity would then
signify the onset of that exact neural (or cognitive) event
with shortest possible latency. Neurons being recruited into

synchronous groups would most likely derive from already
existing functional subnetworks (Yoshimura et al., 2005) within
which synaptic connections are relatively frequent and strong.
The related reshaping of the cortical network is thought to
underlie the consolidation of newly acquired “knowledge” and
goes along with the fact that neuronal populations in sensory
areas exhibit similar activation patterns both spontaneously
and in response to sensory input (MacLean et al., 2005;
Jermakowicz et al., 2009; Luczak et al., 2009; Luczak and
MacLean, 2012; Miller et al., 2014), suggesting that sensory
responses are drawn from a limited “vocabulary” of possible
activity patterns given by the intracortical functional synaptic
connectivity.
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Second prediction: temporal
compression

A second prediction is that, given the right plasticity
mechanisms, recurring multineuronal spike sequences should
progressively be compressed in time if the involved neurons
respond to coherent input. Evidence for a temporal compression
of repeating activity patterns has indeed been found both in vitro
(Ikegaya et al., 2004; Gansel and Singer, 2008; Figures 3B,C)
and in vivo (Euston et al., 2007) and is thought to reflect
functional modifications within the neural circuitry. Assuming
that the neurons that participate in the spike sequence receive a
succession of correlated input signals, the whole process would
stop when the cells learned to respond to the very onset of
their respective input pattern. If these input patterns have the
same temporal origin (which might be related to a sensory
stimulus, a motor command, or some other cognitive event),
the cells would henceforth respond in unison. In this way, any
recurring spatiotemporal activity pattern could eventually be
translated into the synchronous spiking of a certain set of cells
(cf. Figure 3D).

Third prediction: sparsening

This, in turn, would result in a significant sharpening of
neuronal representations and an increasingly concise layout of
information, which is another prediction of the hypothesis:
repetitive activation patterns would be transformed to short-
latency volleys of synchronous spikes (Suri and Sejnowski,
2002), whereas new spatiotemporal arrangements of signals
would provoke temporally dispersed responses. Further, the
synchronization would most likely involve a sparsening of
related spike events by confining the responses to smaller time
windows and concentrating them to the most reliably driven
neurons, optimizing energy efficiency (Lennie, 2003; Vilimelis
Aceituno et al., 2020) while enhancing the memory capacity of
the network (Meunier et al., 1991). The shaping of the functional
circuitry through synaptic plasticity might thus contribute to
the establishment of a sparse coding scheme (Laughlin and
Sejnowski, 2003; Olshausen and Field, 2004) as it appears to be
implemented in several sensory cortical areas (Vinje and Gallant,
2000; Weliky et al., 2003; Hromádka et al., 2008; Jadhav et al.,
2009; Poo and Isaacson, 2009).

Neural correlates of cognitive
processes

If the “synchrony through synaptic plasticity” hypothesis is
correct, groups of synchronously active cells will spontaneously
emerge in response to repeating excitation patterns in the brain
and consequently indicate a “known” event, suggesting that

these synchronous cell assemblies may function as elements
of a neuronal code that serve as a correlate of some discrete
cognitive content. In what follows, I will speculate about
the possible roles of these multineuronal signals in cognitive
processes.

Plasticity, degeneracy, and the hard
problem

When relating neural activity to cognitive functions and
phenomena, two things need to be considered. The first concern
applies to any physical account of conscious experiences and
has been addressed as “the hard problem of consciousness”
by Chalmers (Chalmers, 1995). Although it is evident that
experience arises from a physical basis, we have no satisfactory
explanation of why and how it so arises. We may well specify
the mechanisms that are responsible for the performance of
certain neural or cognitive functions, but why brain activity
gives rise to subjective experiences or “qualia” is entirely unclear.
In principle, any neuronal process could be instantiated in the
absence of experience, or as Chalmers put it: “Experience may
arise from the physical, but it is not entailed by the physical”.
It follows that no account of the physical brain processes will
tell us why and how they lead to the emergence of qualia.
Even if we succeed in mechanistically explaining the ability of
the brain to discriminate, categorize and appropriately react
to environmental stimuli, shift attention and to deliberately
control behavior, learn and to adapt, and to selectively combine,
memorize and recall pieces of information, we are still limited
to a phenomenological correlation of observed brain dynamics
and subjective conscious experiences (Nevertheless, we may
hope to identify some psychophysical principles connecting the
properties of neuronal processes to the properties of related
experiences, as I will exemplify below).

A second problem concerning the relation between neural
activity and cognitive functions is caused by the tendency of
the brain to display degeneracy (Edelman and Gally, 2001), that
is, the ability of structurally different elements to perform the
same function or yield the same output. Degeneracy can be
found on virtually any organizational level in the brain and is
an inherent feature of intra- and intercellular signaling, synaptic
plasticity, motor commands, and body movements, and also
inter-subject communication (there might be large or sometimes
even infinite numbers of ways to transmit the same message,
a situation most obvious in language). For instance, different
combinations of ionic conductances affecting the integration of
dendritic input signals may lead to the generation of identical
output signals of a cell (Achard and De Schutter, 2006). On the
network level, different configurations of connection strengths
and cellular properties may produce the same population
activity patterns (Prinz et al., 2004), and different ensembles
of neurons may be dynamically configured to initiate the same
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behavior (Meyrand et al., 1991). Accordingly, we do not lose
the perception of a seen object just because its image is slid
across the retina—we may continuously perceive it as the
same object although changing populations of neurons receive
and carry the associated information [eye movements actually
serve to maintain a stable visual perception (Martinez-Conde
et al., 2004)]. Further evidence supports the idea that there is
no simple one-to-one relationship between particular activity
patterns in the brain and certain cognitive processes: In the
visual cortex, neuronal responses to repeated presentations of the
same stimulus are highly variable and are strongly determined
by the ongoing activity (Arieli et al., 1996; Fiser et al., 2004). In
addition, synaptic connections continuingly undergo extensive
remodeling (Feldman, 2009; Minerbi et al., 2009), providing
the brain with an adaptive yet inherently unstable functional
structure. This implies that neural codes may change with time
through learning, and that the same activity pattern may be
interpreted differently (or evoke a different behavior) later in the
day (Eggermont, 1998).

Synchrony and the principle of structural
coherence

Despite these difficulties in establishing well-defined
relationships between mind and brain activity, neuronal
signaling in the brain is highly organized and far from
being random, as are cognitive processes, and some
relationships—i.e., some code relating a given activity pattern
to a particular cognitive function—must exist between the
two. So, given the synchronous activity of a selective set of
cells, what could be its cognitive correlate? Chalmers argued
that information, when being processed by the brain, has two
basic aspects, a physical aspect and a phenomenal aspect, and
that its physical representation should have a structure that
corresponds directly to the differences between phenomenal
states (Chalmers, 1995). If the argument holds, this principle of
structural coherence might provide a fundamental link between
the characteristics of cognitive processes on one hand and
the organization of neuronal activity on the other. Applied to
neuronal synchrony, it means that the directed coactivation of a
group of distributed cells could be expected to be paralleled by
a meaningful convergence of information on the cognitive level,
such as reaching a decision or creating a coherent perception
based on distributed signals (Singer and Gray, 1995; Engel et al.,
1997; Gray, 1999; Singer, 1999a). It has also been suggested
that the same mechanisms that mediate the synchronization
of distributed discharges are responsible for giving rise to
conscious experiences (Engel and Singer, 2001; Singer, 2007).
Becoming aware of a percept or an idea necessarily involves a
transition from one functional state to a different state, as has
been noted by Dennett (Dennett, 2009): “It seems obvious that
there has to be a time before which we are not conscious of some

item and after which we are conscious of it. In some sense, then,
we become conscious of various features of our experience, so
there must be some kind of transition, if not arrival at a place
or crossing of a boundary, then a change of functional state of
one sort or another”. Although it is difficult to demonstrate that
conscious perception requires neuronal synchrony, it should
be clear that the transient synchronization of a non-random
assembly of cells is precisely that sort of neuronal activity that
indicates non-random changes in functional states on timescales
fast enough to comply with all kinds of cognitive processes,
and thus satisfies the principle of structural coherence also with
respect to the processes underlying conscious experiences.

Integration of synchronizing mechanisms

Any functional interpretation of neuronal synchrony has to
include and obviously depends on the specific mechanism that
is responsible for the synchronization of neuronal activity. One
reason for synchronous firing could be concurrent activation
through sensory stimuli. In the mammalian visual system,
retinal ganglion cells may fire synchronous action potentials
simply because they are driven by a common stimulus. In the
lateral geniculate nucleus, corticothalamic efferents come into
play, and the synchrony of afferent signals becomes a little
less trivial (Sillito et al., 1994; Sillito and Jones, 2002). After
reaching cortical areas, sensory signals are modulated by the
ongoing cortical activity and follow a multitude of diverging and
converging pathways within both local and widespread cortical
circuits (Figure 2A). In other words, the more central the signals,
the more their timing depends on the functional architecture of
the network, and the less trivial is the interpretation of neuronal
synchrony relating to the sensory stream (Lima et al., 2010).

In the neocortex, neural connections have several inbuilt
features that directly support the synchronization of neuronal
signals. The most significant feature is the coupling of inhibitory
interneurons by gap junctions, forming large, continuous, cell
type-specific syncytia (Gibson et al., 1999; Amitai et al., 2002;
Fukuda et al., 2006; Figure 2D). Although the amplitude of
electrotonic signals quickly falls off with distance, this electrical
coupling facilitates the widespread synchronization of rhythmic
inhibitory activity, which in turn may constrain the firing of
entire populations of pyramidal cells to narrow time windows
(Buzsáki and Chrobak, 1995; Beierlein et al., 2000; Whittington
et al., 2000; Galarreta and Hestrin, 2001; Bennett and Zukin,
2004). As will be explained below, this mechanism is important
for the instantaneous coordination of multineuronal spiking
(and hence cognitive processes) on very short timescales.
Another feature of many thalamocortical and corticocortical
connections is the compensation for differing lengths of a cell’s
axonal branches by adjusting the degree of myelination and
the diameter of the fibers such that all postsynaptic targets
receive the signal at the same time (Innocenti et al., 1994;
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Salami et al., 2003; Kimura and Itami, 2009; Figure 2B).
This makes sense if one assumes that synchrony is a tag for
“belonging together” or “being one”. Finally, the cortical network
might also be endowed with synchronizing mechanisms other
than common input (Figures 2A,B) or synchronous network
oscillations (Figure 2E). The “synchrony through synaptic
plasticity” hypothesis explains how synchronous cell assemblies
could emerge through correlated changes in synaptic efficacies
in response to repeating excitation patterns (Figure 2F). The
gradual build-up of synchronous groups of cells through
learning would be vital for creating “sense out of fact”
(Johannesma et al., 1986) and might help to distinguish between
familiar and unfamiliar experiences (Suri and Sejnowski, 2002;
Korndörfer et al., 2017).

Selectivity, flexibility, and the learning
time barrier

There is, however, a problem: adaptive changes of synaptic
connections occur on a much longer timescale than most
cognitive processes and are unable to represent changes in
sensory information in real time. This inability to instantly
reconfigure the functional network in response to afferent
signals has been referred to as the “learning-time barrier” (von
der Malsburg, 1995) and calls for an additional mechanism
that can coordinate multineuronal activity on the timescales on
which cognitive processes take place, i.e., within milliseconds.
It is obvious that such a fast mechanism can only be
realized through dynamic activity patterns emerging from
and interacting with the functional neural circuitry. Although
any complex activation pattern could in principle serve
to selectively excite a certain set of cells while inhibiting
others, the most prominent and ubiquitous population pattern
that is known to flexibly and coherently modulate the
excitability of distributed cells on a milliseconds timescale is
synchronous network oscillations. As explained in previous
sections, network oscillations naturally arise from the resonant
properties of individual neurons and from the interplay
of recurrent excitatory and inhibitory connections. The
propensity to produce synchronous oscillations is higher
when recurrent feedback is strong (Wang, 2010), which adds
to the reason why cortical gamma-band oscillations tightly
correlate with hemodynamic signals indicating an increase in
energy consumption (Niessing et al., 2005). This means that
network oscillations are not inherently an energetically “cheap”
way to achieve neuronal synchrony, as has been suggested
(Buzsáki, 2006). In fact, the “cheapest” way to synchronize
the activity of neuronal ensembles would be to arrange
functional synaptic connections such that some selected sets
of cells will be synchronously activated by a certain preceding
(and possibly sparse) activity pattern, as proposed by the
“synchrony through synaptic plasticity” hypothesis. Nevertheless

do cortical networks readily engage in oscillatory activity,
thus serving the need for a fast and dynamic coordination
of multineuronal firing. On a mechanistic level, the principal
function of synchronous oscillations comes down to a temporal
modulation of the effective neuronal connectivity through
rhythmic fluctuations of the excitability of cells. Synchronized
rhythmic activity and functional synaptic connections thus
combine in a complementary way to allow for a spatially
and temporally selective transmission of signals and hence for
a selective activation of neuronal ensembles at any point in
time.

On a more cognitive level, synchronous oscillations
effectively reduce the system’s degrees of freedom and restrict
the space of possible activity patterns, so as to concentrate
on some signals and the information they carry while
disregarding others. Indeed do neurons in macaque area V4 that
are activated by an attended stimulus engage in enhanced
gamma-band synchronization compared with neurons activated
by a distracter, pointing to a functional role of synchronous
network oscillations in attentional stimulus selection (Fries
et al., 2001, 2008). For network rhythms to synchronize
the activity of neuron groups, though, it is unimportant if
they exhibit a stable phase and frequency—all that matters
for an effective coordination of multineuronal signals is the
limitation of neuronal discharges to narrow time windows by
alternating volleys of synchronous excitation and inhibition
(Atallah and Scanziani, 2009; Isaacson and Scanziani, 2011;
Nikolic et al., 2013). Could such rhythmic network activity
in principle be sufficient for a selective synchronization of
neuronal discharges, irrespective of the functional synaptic
connectivity? It clearly can not, first because synchronous
oscillatory activity is coherent across cell populations (Engel
et al., 1990; Jia et al., 2011) and thus lacks the spatial
selectivity needed for efficient neural coding, and second
because meaningful neuronal synchrony can only arise through
experience and learning, which involves adjustments of synaptic
efficacies and connections. It is thus evident that while dynamic
activation patterns are needed to flexibly arrange synchronous
cell assemblies on short timescales, functional adaptations of
selected synaptic connections are required to allow for a selective
synchronization of cells in the first place. According to the
“synchrony through synaptic plasticity” hypothesis, the directed
assembly of cells into synchronous groups could be based on the
detection of repeating activity patterns and hence on recognizing
recurrence as a fundamental property of behaviorally relevant
events.

Directed vs. accidental synchrony

The emergence of selective neuronal synchrony as a
potential carrier of information bears the question of how this
synchrony is interpreted in subsequent processing stages. It has
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been argued that parallel synaptic inputs arriving synchronously
at a postsynaptic neuron summate more effectively and for
this reason transmit their signals more reliably than temporally
dispersed inputs (König et al., 1996; Wang et al., 2010).
Although pyramidal neurons are indeed more sensitive to
coincident inputs especially at high activity levels (Azouz
and Gray, 2000, 2003; Prescott et al., 2006), it should be
clear that any synchronous discharge pattern in the brain
will fan out in both time and space through a multitude
of converging and diverging connections, meaning that its
impact on downstream cell populations is not determined by
the synchronicity of the signals per se. The question thus
becomes what distinguishes meaningful synchronous discharge
patterns from accidental neuronal synchrony, and the only
possible answer is their usefulness in interpreting sensory
information and generating appropriate behavior (Buzsáki,
2010) by informing downstream populations of neurons about
their current functional coherence in an “understandable” and
meaningful way. The ability to do so can be expected to
depend on prior adaptations of the functional network to
enable the immediate recognition and classification of the
associated information.

Discussion

Neuronal cooperation and the timescale
of cell assembly activation

The above arguments on the coordination of neuronal
activity through synaptic plasticity and the dynamic gating
of signals suggest that the emergence of synchronous cell
assemblies and their selective activation may be central to
cortical information processing and coding. The following
considerations are concerned with the likely organization
of these assemblies in time and their composite receptive
fields.

First issue: temporal precision of spike time
coordination

The first issue relates to the temporal precision with
which neurons could be expected to coordinate their firing.
In the past, spike timing was assessed relative to the timing
of external stimuli or other spikes emitted by the same cell,
a praxis that stems from the classic approach to explain
brain function by characterizing the response properties of
single cells and simply ignores the coordination of spike
events across populations of cells. These studies led to the
notion that neuronal spiking was generally unreliable and
imprecise, which in turn led to the conclusion that information
cannot be represented by the precise timing of spikes. Yet,

this view might just be a misconception of the temporal
organization of neuronal firing that follows from not taking
into account spike timing across cells, which would require
the parallel recording of multiple single cells and appropriate
measures of their spike time coordination (Masquelier, 2013).
We know from combined voltage-sensitive dye imaging and
intracellular recordings that the firing of a cortical neuron
strongly depends on the present activity pattern in the
surrounding area (Tsodyks et al., 1999) and that the large
variability of responses to sensory stimulation arises from a quite
deterministic interaction of afferent signals with the ongoing
activity (Arieli et al., 1996). Sensory evoked neural activity
thus represents the modulation of ongoing circuit dynamics by
sensory afferents, rather than directly reflecting the structure
of the input signal (Fiser et al., 2004). This means that it
might be more instructive to relate a neuron’s firing to the
activity of its peers than to some external event (Panzeri and
Diamond, 2010; Eldawlatly and Oweiss, 2011). The idea that
neurons are selectively bound into functional cell assemblies
whose activation represents cognitively meaningful units of
information and that these assemblies are distinguished by
synchronous firing within typically a few milliseconds (cf.
Figure 3D) fits with the finding that animals can exploit
differences in the timing of cortical signals that are as short as
3 ms to guide decisions (Yang et al., 2008; Hromádka and Zador,
2009).

Second issue: variability of single cell receptive
fields

The second issue concerns the role of single neurons in
information representation as part of functional cell assemblies.
How independent is the message a single cortical neuron
conveys by sending an action potential down its axon from
the signaling of others? If it was perfectly related to the firing
of any other cell, their signaling would be totally redundant,
reducing both the network’s coding capacity and efficiency.
If, on the other hand, it was fully independent, then this
would imply that it had a fixed meaning that is unmodifiable
by collateral signals, like in a labeled line code. However,
several arguments suggest that the information carried by
the spiking of a particular neuron may not be invariant
but be dependent on the functional state of the network as
a whole.

First of all, neural connections and synaptic strengths
are plastic and subject to continuing modifications (Minerbi
et al., 2009), resulting in an ever-changing functional structure
of the neuronal network. Together with other factors that
control the integration of synaptic inputs on short timescales
like ongoing network oscillations and dynamic excitability
changes (Civillico and Contreras, 2012), this leads to substantial
variability in the receptive fields of neurons (Weinberger, 1995;
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Wörgötter et al., 1998; Froemke et al., 2007; Sun and Dan,
2009) and thus in the information that could be conveyed
by a particular cell. Moreover, neurons in sensory cortical
areas may adapt their receptive fields to the properties of
the current sensory input (Yeh et al., 2009; Fournier et al.,
2011) and were shown to be sensitive also to the larger
stimulus pattern (Gallant et al., 1998; Haider et al., 2010),
variations of central states (Metherate et al., 1992; Wang
and McCormick, 1993), stimuli presented simultaneously in
other modalities (Lalanne and Lorenceau, 2004; Driver and
Noesselt, 2008; Varga and Wesson, 2013), shifts in spatial
and feature selective attention (Womelsdorf et al., 2006; Fritz
et al., 2007), and reward values (Shuler and Bear, 2006;
Brosch et al., 2011). The responsiveness of single neurons
thus depends on the concurrent sensory or cognitive context
(Gilbert and Li, 2013). Again, this means that neurons
dynamically coordinate their firing and represent information
by their joint activity. The synergistic encoding of information
by ensembles of neurons, as opposed to single-cell coding,
would be favorable also from a theoretical point of view: the
variable binding of distributed cells into functionally coherent
groups would maximize the repertoire of functional states
and in this way dramatically improve the coding capacity
of the network. Furthermore, dynamic changes in neuronal
firing correlations observed during sensory processing or
working memory operations (Vaadia et al., 1995; Sakurai
and Takahashi, 2006; Fujisawa et al., 2008; Ohiorhenuan
et al., 2010) seem to confirm that individual cells flexibly
take part in multineuronal representations. Given the large
number of diverging and converging connections in the brain,
correlated activity indeed appears to be the rule rather than an
exception, as it is commonly caused by shared input (Lampl
et al., 1999; Smith and Kohn, 2008; Figure 2B). Yet at the
same time, neighboring neurons in sensory cortical areas
may actively decorrelate their firing (Gawne and Richmond,
1993; Reich et al., 2001; Smith and Kohn, 2008; Ecker
et al., 2010; Renart et al., 2010) in a stimulus-dependent
way (Gawne et al., 1996; Vinje and Gallant, 2000; Yen et al.,
2007). Cortical neurons thus dynamically change the partners
with which they share coherent information, implying that
the information that is transmitted by a single cell may
vary as a function of the activity of its peers and cannot
possibly be decoded without taking into account the concurrent
population pattern.

Binding by synchrony revisited

The dynamic interdependence of neuronal responses and
the ensuing formation of multineuronal representations bring
us back to the binding problem (Singer and Gray, 1995; von
der Malsburg, 1995; Treisman, 1996; Roelfsema, 2006): if a
neuron’s firing, taken on its own, does not unambiguously

indicate some specific feature or state of the inner or outer
world, what are the mechanisms that are responsible for the
emergence of defined, meaningful firing patterns across multiple
cells, and what is the resulting spatiotemporal structure of these
patterns (Singer et al., 1997)? In the preceding sections, I tried to
argue that directed synchronous firing within a few milliseconds
is what defines the members of a functional cell assembly
(Figure 3D), and that their collective activation is what probably
defines irreducible units of information. A possible mechanism
that could mediate the selective formation of synchronous
cell assemblies as carriers of coherent information is given
by the “synchrony through synaptic plasticity” hypothesis
which consistently explains the signaling of functional relations
between neurons by synchronous spikes and the computation
of these signals: Whenever multiple cells repeatedly receive
correlated input, the associated changes of synaptic efficacies
may eventually create a set of cells that synchronously respond
to a specific activity pattern (Figure 2F) and thus share a
common, complex receptive field which cannot be reduced to
the receptive fields of single neurons (Johannesma et al., 1986;
Brette, 2012).

Experimental approaches to
multineuronal coding

Although much has been said and done since the days
of Hebb and the introduction of the cell assembly concept,
it appears that we still lack a complete, comprehensive
understanding of the dynamic organization of multineuronal
activity. The temporal precision of firing and the timescales on
which neuronal activity is coordinated are a matter of ongoing
debate (deCharms and Zador, 2000; Harris, 2005; Averbeck et al.,
2006; Tiesinga et al., 2008). Without a clear characterization
of the spatiotemporal structure of concerted neuronal firing
on short timescales—that is, the definition of a differentiated
signature of neural assemblies—also no superordinate structure
possibly representing cognitive processes on longer timescales
can be found.

First requirement: analysis of higher-order
firing correlations

What is hence needed is an approach to assess and
precisely characterize higher-order correlations among multiple
neurons on a moment-by-moment basis. Several methods
for the detection and statistical evaluation of recurring
multineuronal discharge sequences in parallel recordings
have been proposed that provide a precise description of
their spatiotemporal organization and allow for a continuous
correlation of the activity patterns with the ongoing information
processing (Gansel and Singer, 2012; Quaglio et al., 2017;
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Stella et al., 2019). They are readily applicable and are able
to answer the question if neurons fire independently or
depending on each other, if repeating spatiotemporal patterns
show significant structure, and what the relevant timescales
are.

Second requirement: disentanglement of
synchronizing mechanisms

For understanding the neural code, as important as the
signature of neural assemblies—the potential information-
carrying elements—are the mechanisms that mediate their
formation and conversion. It has been argued that network
oscillations tend to synchronize action potentials in coherently
oscillating cells and so create a signature of functional relatedness
(Singer, 1999a; Figure 2E). As already mentioned, they naturally
arise from the interplay of recurrent excitatory and inhibitory
connections and the resonant properties of individual neurons
(Llinás, 1988; Gray and McCormick, 1996; Hutcheon and
Yarom, 2000; Cardin et al., 2005). Synchronization of signals
is supported locally by the coupling of cells via gap junctions
(Bennett and Zukin, 2004; Figure 2D). Remote populations may
engage in zero phase lag oscillations despite long conduction
delays if coupled reciprocally to a relay population of cells
(Chawla et al., 2001; Vicente et al., 2008; Viriyopase et al.,
2012; Figure 2C), and it has been suggested that thalamic
nuclei may play an according role in mediating synchrony
among distant brain regions (Jones, 2002; Shipp, 2003; Vicente
et al., 2008). Another mechanism by which neuronal activity
is organized is the shaping of the functional network through
synaptic plasticity. The “synchrony through synaptic plasticity”
hypothesis explains the emergence of synchronously active
cell ensembles through experience (Figure 2F). How can the
influences of these different mechanisms on the generation
of precisely timed multineuronal discharge sequences be
disentangled and quantified?

As Buzsáki (2006) accurately pointed out, “the acid test
for providing a definite proof for the essential role of brain
rhythms in computation and brain function would be to
selectively eliminate them and examine what is left after the
complete lack of oscillatory timing”. However, oscillations are
an emergent network property and do not have “receptors”
that can be targeted by drugs or other means; only individual
neurons do. It is therefore impossible to selectively eliminate a
rhythm without fundamentally interfering with the elementary
properties of the parts that gave rise to it. Modifying the
function of certain receptors for neurotransmitters is likely to
radically change the flow of electrical signals in the network
and also affect all other activity patterns (Buzsáki, 2006). This
criticism applies to the aforementioned experiments that used
pharmacological interference and GABAA receptor β3 subunit
knock-out mice to disrupt or alter network oscillations, and

it also applies to more direct manipulations of the activity
of subpopulations of neurons by optogenetic methods. An
alternative way to study the organization of neural activity
in the absence of neural rhythms could be to record from
brain slices: by disconnecting some part of the network from
the rest of the brain, chances are high that the remaining
network is too small to generate synchronous oscillations
(Gansel, 2014). On the downside, neurons encounter a lack
of neuromodulators, but these can in principle be applied
externally; the important difference between an in vitro approach
compared to the elimination of oscillatory activity in vivo is
that receptor function and neuronal excitability can be left
untouched and unaffected. Furthermore, recording from an
isolated piece of neural tissue allows the investigation of its
inherent properties independently of long-range connections
and sensory input. This in vitro approach closes the gap between
in vivo recordings and neuronal network simulations and is best
suited to validate network models on the basis of real empirical
data.

Third requirement: multielectrode recordings

The aim to observe coordinated discharges at
sub-millisecond time resolution makes it obligatory to
simultaneously record from multiple single neurons with
multiple electrodes (Buzsáki, 2004; Miller and Wilson, 2008).
Until now, multi-site recordings of single-unit spike activity in
acute brain slices have been reported on only a few occasions
and did not follow any standardized approach. Problems arise
in particular when using flat electrodes because spikes can
be recorded only from the surface of the slice where most
cells are damaged as a result of the slicing procedure, and
because spike recording requires auxiliary techniques to assure
proper contact of the tissue with the electrodes (Egert et al.,
2002). To enable the recording of spikes from cells in the
middle of the slice, arrays of long enough, sharpened electrodes
would have to be employed (Gansel and Singer, 2013). Such
a setup would allow for the observation of a large, random
set of neurons of which a subset might participate in a given
neuronal assembly. Subsequent analysis, then, would allow
for interference of assembly properties. To characterize the
organization of local spiking activity in a comprehensive way,
it would be necessary to systematically test for coordination of
spike timing on several timescales. The discovery of recurring
patterns of distributed spiking activity that become progressively
compressed in time (Gansel and Singer, 2008; Figures 3B,C)
and show precise synchronous firing within typically a few
milliseconds while network oscillations and sensory input are
absent (Gansel, 2014; Figure 3D) provide direct evidence and
strong support for the “synchrony through synaptic plasticity”
hypothesis.
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