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Abstract

Horticulturalists and gardeners in temperate regions often claim that planting marigolds next

to tomato plants protects the tomatoes from the glasshouse whitefly (Trialeurodes vaporar-

iorum Westwood). If shown to hold true, this technique could be used in larger-scale tomato

production, protecting the crop and helping to introduce greater plant diversity into these

agro-ecosystems. Here we present two large-scale glasshouse trials corresponding to the

two main ways growers are likely to use marigolds to control whiteflies. In the first, marigolds

are grown next to tomato throughout the growing period and we quantify whitefly population

growth from the seedling stage over a 48 day infestation period. Here we show that associa-

tion with marigolds significantly slows whitefly population development. Introducing addi-

tional whitefly-attractive ‘pull’ plants around the perimeter of plots has little effect, but

reducing the proportion of marigolds and introducing other non-hosts of whiteflies (basil,

nasturtium and Chinese cabbage) also reduces whitefly populations on tomato. The second

experiment assesses the efficacy of marigolds when used as an ‘emergency’ measure.

Here we allow whitefly populations to build to a high density on unprotected tomatoes then

introduce marigolds and assess whitefly population over a further period. Following labora-

tory work showing limonene to be a major chemical component of French marigolds and a

negative behaviour response of whiteflies to this compound, limonene dispensers are

added as an additional treatment to this experiment. “Emergency” marigold companion

planting yielded minimal reductions in whitefly performance, but the use of limonene dis-

pensers was more effective. Our work indicates that companion planting short vine toma-

toes with French marigolds throughout the growing season will slow development of whitefly

populations. Introducing marigolds to unprotected tomatoes after significant whitefly build-

up will be less effective. The use of limonene dispensers placed near to tomato plants also

shows promise. It is argued that this work supports the possibility of the development of a

mixture of tomato companion plants that infer ‘associational resistance’ against many major
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invertebrate pests of tomato. Such a mixture, if comprising edible or ornamental plants,

would be economically viable, would reduce the need for additional chemical and biological

control, and, if used outdoors, would generate plant-diverse agro-ecosystems that are better

able to harbour invertebrate wildlife.

Introduction

Tomatoes (Solanum lycopersicum L.) are the second most important edible horticultural crop

by production in developed nations [1]. Under glass, pest infestations are dominated by the

common glasshouse whitefly (Trialeurodes vaporariorum) [2] which is known to cause severe

yield losses to an array of crops through transmission of a number of plant viruses [3, 4]. Direct

feeding from both adults and larvae results in honeydew secretion which reduces the photo-

synthetic capacity of the plant and renders fruit unmarketable [5]. Biocontrol is widely used to

manage T. vaporariorum infestations but limitations such as delayed efficacy [6] and hyperpar-

asitism [7] can lead to failure. Where biocontrol fails, there is still reliance on chemical control

for tomato production and excessive use of chemical sprays has resulted in resistant T. vapor-
ariorum genotypes, phytotoxicity and pesticide residue problems [8–10]. As with most con-

temporary cropping systems, tomatoes are typically produced in monoculture, thus rendering

crop areas of limited value to wildlife and largely devoid of “ecosystem services” [11]. Any

alternative methods of whitefly control that can reduce pesticide use and introduce greater ani-

mal and plant diversity into agricultural and horticultural systems should therefore be wel-

comed. The insistence of temperate region gardeners that planting marigolds next to tomatoes

protects the tomato crop from whiteflies therefore merits further investigation. Companion

planting is a well-researched (and implemented) pest control strategy and is believed to be

founded on ‘associational resistance’ [12, 13]. Both French (Tagetes patula L.) and English

marigold (Calendula officinalis) have been used as effective companion plants in a number of

other pest/crop scenarios. They have been shown to reduce pest populations either directly

through repellent volatile chemistry [14] or indirectly through promoting beneficial arthropod

populations [15–18]. Despite this, no research appears to be available that quantifies the poten-

tial for marigolds to control whiteflies on tomatoes.

Here, large-scale glasshouse trials in the United Kingdom are described investigating the

potential of intercropping tomato plants with marigold and other plant species to repel the

glasshouse whitefly, T. vaporariorum. One set of experiments investigated the effect of inter-

cropping with other plant species for the duration of the tomato growth period. The following

year, another experiment investigated the effect of introducing intercropped treatments into a

tomato crop grown alone for the majority of the growing season, when a high density whitefly

population had developed. This represents an “emergency” situation which horticulturists

may experience if no previous control methods have been in place. These studies aimed to

investigate: 1) Whether propagation of French marigolds (Tagetes patula L.) amongst tomato

plants from the start of the growing period protects tomatoes from whitefly infestation by

‘pushing’ them from the tomato crop; 2) If supplementing marigolds over the whole growth

period with other non-host species less preferred by whitefly, to ‘push’ whiteflies from toma-

toes, increases the marigold protective effect; 3) Whether this protection may be enhanced by

positioning preferred ‘pull’ whitefly host plants around the edge of the ‘push’ non-hosts [19],

4) Using laboratory studies, what is the main chemical component of marigold airborne vola-

tiles and do they have behavioural activity against whiteflies? 5) Whether the introduction of
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marigolds and limonene (identified from 4 above) dispensers can protect tomatoes in an

“emergency” situation where there is a heavy whitefly infestation on the tomato crop. The

investigation into whether increased diversity achieves greater levels of whitefly control was

included because, from an ecosystem health perspective, plant diversity is desirable, but also

because plant diversity is known to be a fundamental determinant of invertebrate abundance

[20, 21]. Plant diversity in agroecosystems is also important for natural enemies and marigolds

have been found to increase populations of beneficial arthropods [17, 18]. In contrast, the cur-

rent work was conducted in a closed glasshouse with no biocontrol present and little opportu-

nity for natural enemies to enter. No natural enemies or parasitized pupae were observed in

either glasshouse experiment and whilst they may have still been present in very low numbers,

their effect on plant-whitefly interactions in both trials can be assumed to be minimal. There-

fore, any effects on whitefly performance were most likely due to direct effects between the

introduced non-host plants and whitefly. Non-host plants can act as a repellent to pests [14],

make host plants harder to find (disruptive crop hypothesis) [22] and presence of multiple

non-hosts have been found to induce ‘restlessness’ or ‘confused’ behaviour in the whitefly spe-

cies Bemisia tabaci [23]. The current work aimed to investigate if these effects from non-host

companion planting translate to lower rates of whitefly population development on tomato.

Results and discussion

The first large scale glasshouse study sought to establish a scientific basis for the propagation of

French marigolds amongst tomato plants from the start of the growing season to protect toma-

toes from whitefly infestation. This work aimed to identify whether this practice achieved sig-

nificant control of the important glasshouse pest T. vaporariorum, and whether this control

could be enhanced by other aversive, non-host plants. A second treatment also sought to quan-

tify whether this ‘push’ effect could be combined with the ‘pull’ of attractive host plants to

increase whitefly control. French marigold was found to be an effective companion plant and

subsequent headspace analysis followed by laboratory bioassays confirmed the volatile limo-

nene to be the probable mechanistic basis of the repellent properties this plant possesses. In a

second glasshouse trial, the potential for marigold plants and limonene dispensers to control a

heavy infestation of whiteflies on tomato was assessed.

Glasshouse trial 1: “Push”, “Push-Pull” and “High Diversity” control

strategies applied at the beginning of the infestation period

Fig 1 shows levels of whitefly infestation on the tomato crop through time. In the ‘push’ experi-

ment (Fig 1A) whitefly numbers on the control (tomato plants only), low diversity (LD, tomato

intercropped with marigold) and high diversity (HD, tomato intercropped with marigold and

other T. vaporariorum non-hosts) treatments began to diverge after 34 days. There was a sig-

nificant effect of treatment (Control, LD and HD)(repeated measures (rm) ANOVA F (2,126) =

18.85, p< 0.001) and treatment x time (each sampling point, n = 6) (rm ANOVA F (10,126) =

2.14, p = 0.025) in the “push” experiment (Fig 1A). There was no difference in whitefly abun-

dance between the treatments until day 34 where there were significantly less whiteflies on

tomatoes in LD (t = 2.89, df = 126, p = 0.013) and HD (t = 3.61, df = 126, p = 0.001) plots. This

trend continued until the final sampling point at day 48. Statistical comparisons were made

between whitefly population size in the HD and LD treatments but there was no significant

differences observed. This indicates that increasing the diversity of non-hosts does not

improve the repellent effect (conversely, and importantly, it does not reduce the potency of the

marigold-only effect). In the ‘push-pull’ experiment (Fig 1B), was a significant effect of treat-

ment (rm ANOVA F (2,105) = 3.73, p = 0.027) but no significant interaction between treatment
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Fig 1. Population development of the whitefly, T. vaporariorum on tomato in the glasshouse, with all whitefly life

stages (adult, eggs and nymphs) contributing to the average number of whitefly/leaf (n = 8). Day 0 is 10th August

2016 and the ‘push-pull’ was started 12 days after the “push” experiment. Whitefly abundance data from Fig 1A and 1B

was (log +1) transformed and analysed over time with repeated measures ANOVA’s and Bonferroni corrected post-hoc

comparisons, in which the p values were multiplied by the total number of comparisons (n = 3). Significant observations

between treatments at individual sampling points are annotated onto the graphs with asterisks, “�” indicates a p value of

<0.05, “��” p<0.001. All other p values were non-significant at α = 0.05. Fig 1A Shows the “push” experiment in which

repellent plants such as marigold (LD) and marigold plus non-hosts (HD) are intercropped amongst tomato plants.

There was a significant effect of the treatment (rm ANOVA F (2,126) = 18.85, p< 0.001) and treatment x time (rm

ANOVA F (10,126) = 2.14, p = 0.025) across the sampling period. Fig 1B Shows the ‘push-pull’ experiment which is the

same as the ‘push’ experiment but additionally a single (LD) and several (HD) host plant species surround the repellent

hosts and tomato. There was a significant effect of treatment (F (2,105) = 3.73, p = 0.027) but no significant effect of

treatment x time (F (8,105) = 1.49, p = 0.166) following repeated measures ANOVA’s. Post-hoc comparisons from Fig 1A

showed there were significantly less whiteflies in LD and HD plots at day 34 (LD, t = 2.89, df = 126, p = 0.013. HD, t =
3.61, df = 126, p = 0.001), day 43 (LD, t = 3.59, df = 126, p = 0.001. HD, t = 3.92, df = 126, p< 0.001) and day 48 (LD, t =
3.66, df = 126, p = 0.001. HD, t = 3.29, df = 126, p = 0.003). For Fig 1B, there were significantly less whiteflies on the HD

treatment at day 43 (t = 3.018, df = 105, p = 0.009) but not on the LD treatment (t = 2.20, df = 105, p = 0.088). Fig 1C

shows the data in Fig 1A and 1B expressed as effect size (relative to control). The Cliff’s dmeasure is used as this is

suitable for non-normal data of the type observed in experiments. Values of 1 or -1 (the sign shows the direction of

effects relative to control) indicate complete non-overlap between the groups under consideration and a value of 0

indicates complete overlap. Ninety five percent confidence intervals have been calculated and are available in the

supporting information (S1 Dataset), but to aid visualisation they have been removed from the figure.

https://doi.org/10.1371/journal.pone.0213071.g001
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x time (rm ANOVA F (8,105) = 1.49, p = 0.166). Average whitefly numbers on tomato were

fewer on LD and HD treatments relative to the control after around 20 days and there were

significantly fewer whiteflies in the HD treatment at day 43 (t = 3.018, df = 105, p = 0.009). It is

important to note that relatively low levels of whitefly numbers were present in the green-

house. Fig 1C shows that while the ‘push-pull’ experiment reached its maximum effect sooner

than the ‘push’ experiment, it did not produce a greater maximum effect. Additionally, there

was no significant difference in the effect of LD and HD treatments within experiments. It is,

therefore, doubtful that growers could be persuaded to make the extra effort to propagate ‘pull’

plants on the basis of these results. Fig 1C should be viewed with caution as experiments were

terminated at the end of the commercial growing season and effects may have diverged further

(or disappeared) if planting had begun earlier.

While some studies have shown a positive relationship between plant species richness and

insect abundance, this is thought to be related to plant productivity [20]. The artificial way in

which glasshouse plants are propagated, i.e. with physically separated roots, as well as the short

term nature of the experiments, may preclude such effects. In contrast, it was hypothesised

that increased plant diversity (the HD treatment) would depress whitefly population growth

on tomato, because a previous study showed increased plant diversity causes whiteflies to

become ‘restless’ and move around diversified cultures more than simple, single species ones

[23], presumably reducing time available for reproductive output. However, this hypothesis

was not upheld, and increased plant diversity appeared relatively neutral with regard to white-

fly performance on tomato in the current work. While these effects produced by marigold and

other non-hosts are exciting, they are of even more relevance if the planting regime does not

attract other pests to tomato. The only other pest to infest the experiment in significant num-

bers was the onion thrips (Thrips tabaci) there were no significant differences in larvae and

adult abundance between treatments in either the “push” or “push-pull” experiment (S1 Fig).

Other pests were found during the trial, but in much lower numbers, so were not included in

the analysis. Plants were selected for the experiment specifically with glasshouse whiteflies in

mind and it was not predicted that they would also repel other pests; therefore the lack of any

significant effect on other pest insects is encouraging for the future development of this

method. Total above ground fresh weight and fruit production was assessed at the end of the

experimental period for every tomato plant in each of the three treatments, although no signif-

icant differences were observed between any of the treatments (S2 Fig).

Mechanistic basis of French marigold intercropping. Whilst repellent volatile chemistry is

thought to be a major mode of action of companion plants [14], in the glasshouse experiment

described above plants were kept in communal drip trays which would have allowed the sharing

of root exudates between species. This phenomenon has been shown to trigger complex beha-

vioural changes inDeschampsia caespitosa and Arabidopsis thaliana plants [24, 25]. Therefore a

series of bioassays were conducted to see if this cross-species sharing of exudates could have influ-

enced whitefly population development on tomato. No change in T. vaporariorum preference or

performance (oviposition) was observed when tomato seedlings were previously exposed to mari-

gold root exudates (S3 Fig). This indicates that repellent volatile organic compounds from mari-

gold are the probable cause of the reduction in whitefly performance on tomato intercropped

with marigold (Fig 1). Following this finding, headspace analysis of marigold seedlings was con-

ducted in order to identify the repellent volatiles in operation. Limonene, a compound known to

have insecticidal activities against a number of arthropods [26] including the Silverleaf whitefly (B.

tabaci) [27–29], was found to be the most abundant volatile released from both flowers (24.01% of

volatile output) and leaf tissue (21.04%) of marigold seedlings (S4 Fig).

Whilst controlling insect pests by increasing plant diversity in agro-ecosystems would have

greater environmental benefit, the development of “low-risk” plant-based crop protection
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products, with favourable environmental credentials is still favourable to the use of synthetic

chemical sprays. Being based on naturally occurring chemistry, such products are generally

considered to offer a more sustainable alternative to conventional synthetic chemistry, particu-

larly when considering their strong potential use in IPM programmes. Whilst issues such as

phytotoxicity can arise from over-use of repellent volatile sprays, volatile dispensers alleviate

this issue by releasing the compounds of interest more slowly, and this method of delivery was

actually found to be more effective at controlling whitefly settling [28]. Additionally, volatile

dispensers take up less production space in the glasshouse and do not require the upkeep/hus-

bandry costs which could be associated with companion plants. Considering this, the use of

repellent volatile dispensers may be a more attractive alternative for some horticulturalists. We

therefore developed limonene dispensers similar to that used by Du, Han [28] in an attempt to

“push” whitefly from the target crop in a similar manner to that observed with marigold inter-

cropping. In laboratory assays, we found that the limonene dispensers repelled whitefly from

tomato and to only a slightly lesser extent than marigold seedlings (Fig 2), with 36.12% of

whitefly choosing limonene intercropped tomato and 26.93% choosing marigold intercropped

tomato (comparison of distribution between both treatments, X 2 = 2.016, p = 0.156, df = 1).

Subsequent 4-way olfactometry experiments presented odours to whitefly from marigold flow-

ers, marigold leaf tissue and the limonene dispensers. All of these treatments showed a signifi-

cant level of repellence to T. vaporariorum (S5 Fig). Marigold flowers were found to release

approximately double the amount of limonene than that of marigold leaf tissue per gram of

fresh weight (S4 Fig) with the level of repellence observed being proportional to the respective

tissue area (S5 Fig). These experiments confirmed the effectiveness of limonene as a repellent

to T. vaporariorum and led to limonene dispensers being used along with marigold plants in

the following glasshouse trial.

From the glasshouse trial and subsequent laboratory experiments we conclude that the

reduced whitefly populations observed on marigold intercropped tomato was due to repellent

volatile chemistry. Other marigold species have been shown to be repellent to tobacco whitefly

(Bemisia tabaci) [16], green peach aphid (Myzus persicae Sulzer) [14], cabbage aphid (Brevicor-
yne brassicae L.), flea beatles (Phyllotreta), small and large white butterly (Piers rapae L., Piers
brassicae L.) and the diamondback moth (Plutella xylostella L.) [15].

Glasshouse trial 2: “Emergency” Intercropping to protect tomatoes from

an established heavy whitefly infestation

Having shown that marigolds repel whiteflies from tomatoes during the early stages of plant

growth at relatively low whitefly density (Fig 1), and that limonene is a major volatile compo-

nent of marigolds (S4 Fig) and repellent to whiteflies (Fig 2), a further treatment with the limo-

nene dispensers was tested; here they were introduced to heavily infested tomato plots in the

same way as marigold plants. Heavy infestations are likely to occur if no protective measures

are deployed against whiteflies in tomato growing facilities and home gardens. At this stage,

even if more environmentally sound measures such as biocontrol are utilised, they are notori-

ously slow to take effect [6] and introduction of repellent plants or volatile dispensers could

have a more immediate impact on whitefly infestations. If found to be capable of reducing the

impact of a heavy whitefly infestation, then marigolds and/or limonene could be used instead

of a chemical pesticide application, reducing the environmental impact of synthetic, conven-

tional chemical whitefly control.

The effect of these treatments on settling adult whiteflies, egg and nymph numbers can

be seen in Fig 3A, 3B and 3C. Across the sampling period, there was no significant effects

observed on settling whitefly adults (Fig 3A) between treatment (rm ANOVA F (2,105) = 1.71,
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p = 0.185) and treatment x time (rm ANOVA F (8.105) = 0.896, p = 0.522) according to repeated

measures ANOVA’s. Average settling whitefly numbers were lower throughout the course of

the experiment on the limonene treatment (Fig 3A) whereas settling adults on the marigold

treatment were actually higher than the control at day 22. This suggests that any protective

effect provided by limonene dispensers is longer lasting than that provided by marigold plants.

Fig 3B shows that no significant effect was observed on whitefly egg abundance between

Fig 2. The percentage of whiteflies on tomato (n = 200) when given the choice between four un-accompanied

“Elegance” tomato seedlings or four “Elegance” seedlings intercropped with either flowering marigold plants (Fig 2A)

or limonene dispensers (Fig 2B). Whitefly eggs were also recorded for each replicate (Fig 2C and 2D). Values were

transformed to percentages and the Pearson’s chi-squared test was used to test differences in settling and oviposition

behaviour. Significant differences are annotated onto the graph for each treatment with the following format; “�”

indicates a p value of<0.05, “��” p<0.001. Comparisons between individual replicates and controls for all four graphs

(Fig 2A, 2B, 2C and 2D) are as follows; df = 1 for all reps, Fig 2A, rep 1 X 2 = 21.26, p =<0.000; rep 2 X 2 = 3.43,

p = 0.064; rep 3 X 2 = 17.01, p =<0.000; rep 4 X 2 = 11.17, p = 0.001; rep 5 X 2 = 5.95, p = 0.015; rep 6 X 2 = 15.72, p =

<0.000. Fig 2B, rep 1 X 2 = 2.92, p = 0.087; rep 2 X 2 = 8.33, p = 0.004; rep 3 X 2 = 0.985, p = 0.321; rep 4 X 2 = 8.33,

p = 0.004; rep 5 X 2 = 5.32, p = 0.021; rep 6 X 2 = 0.501, p = 0.479. Fig 2C, rep 1 X 2 = 13.82, p =<0.000; rep 2 X 2 =

0.323, p = 0.570; rep 3 X 2 = 12.65, p =<0.000; rep 4 X 2 = 1.65, p = 0.198; rep 5 X 2 = 2.05, p = 0.152; rep 6 X 2 = 9.51,

p = 0.002. Fig 2D, rep 1 X 2 = 2.31, p = 0.128; rep 2 X 2 = 0.731, p = 0.398; rep 3 X 2 = 6.876, p = 0.009; rep 4 X 2 = 2.97,

p = 0.084; rep 5 X 2 = 0.02, p = 0.887; rep 6 X 2 = 2.49, p = 0.114. On average over the 6 replicates, 21.93% of whiteflies

settled on tomato intercropped with marigold and 36.12% whiteflies settled on tomato intercropped with limonene

dispensers. 31.44% of eggs were laid on marigold intercropped tomato and 37.24% were laid on limonene intercropped

tomato. Average distribution (n = 6) of whiteflies in limonene and marigold treatments were compared to ascertain

whether marigold control was significantly more effective at repelling whitefly, however this was not the case (X 2 =

2.016, p = 0.156, df = 1).

https://doi.org/10.1371/journal.pone.0213071.g002
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Fig 3. Whitefly population development in the second glasshouse trial with marigolds and limonene “emergency”

intercropping treatments to control an established whitefly population (n = 8). Treatments comprised

intercropping eight heavily whitefly-infested tomato plants with eight further tomato plants (control), eight French

marigold plants (marigold treatment), or eight limonene dispensers (limonene treatment). The first data point in Fig

3A, 3B and 3C represents whitefly abundance (adults/eggs/nymphs) on the focal tomato plants immediately before

treatment plants were introduced. ‘�’ indicates a p value of<0.05, ‘��’ indicates a p value of<0.001, NS = not

significant. Fig 3A displays the average number of adult whitefly settled on each focal tomato plant in the three

treatments over the course of the experiment (n = 8). No significant effect on settling adult whiteflies was observed

between treatment (rm ANOVA F (2,105) = 1.71, p = 0.185) and treatment x time (rm ANOVA F (8.105) = 0.896, p =
0.522) across the sampling period. Fig 3B displays the average number of eggs laid on each focal tomato plant over the

course of the experiment (n = 8). No significant effect on whitefly egg abundance was observed between treatment (rm

ANOVA F (2,105) = 0.477, p = 0.625) and treatment x time (rm ANOVA F (8,105) = 0.351, p = 0.943) across the sampling

period. Fig 3C displays the average number of whitefly nymphs of all stages counted on each focal tomato plant over
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treatment (rm ANOVA F (2,105) = 0.477, p = 0.625) or treatment x time (rm ANOVA F (8,105) =

0.351, p = 0.943), meaning that adults were not deterred from laying eggs on the intercropped

tomatoes. Whilst no significant differences were observed, average settling adults and eggs

were lower on marigold and limonene intercropped plots at the second (day 7) and third (day

14) sampling point after introduction. This implies that the treatments did initially repel white-

fly settling and oviposition, albeit to a non-significant extent. These results from Fig 3A and 3B

would suggest that our treatments had minimal effect on whitefly behaviour and that any

effects were only apparent shortly after control measures were introduced. However, there was

a significant effect of treatment x time on whitefly nymph abundance Fig 3C across the sam-

pling period (rm ANOVA F (8,105) = 2.62, p = 0.011). Tomato plants from the limonene treat-

ment had significantly less nymphs than the control on day 29 (t = 4.18, df = 105, p< 0.001)
and neared significance at day 22 (t = 2.17, df = 105, p = 0.095). The limonene treatment also

had significantly less whiteflies than the marigold treatment at day 29 (t = -2.61, df = 105,
p = 0.030). The results from Fig 3C show that the limonene treatment had significant long-last-

ing effects on whitefly nymph abundance over the course of the experiment.

Taken altogether, despite the low number of significant effects between the treatments for

the various whitefly life stages, these results are suggestive of a mildly suppressive effect on

adult whiteflies of both marigolds and limonene (with limonene having the slightly stronger

effect), and more pronounced effects on whitefly nymphs, with the limonene treatment being

more effective. The fact that no significant effect was observed on settling whiteflies and egg

numbers between treatments was interesting, as in previous experiments we found whiteflies

to be repelled from both marigold plants and limonene dispensers. In a similar study, Du, Han

[28] detected no significant mortality on different whitefly life stages, whilst the present study

identified significantly fewer nymphs on tomato plants presented with limonene dispensers,

which would suggest an effect on nymph mortality or egg hatch. The disparity observed in the

results, of minimal effects on settling adults and eggs, but a significant effect on nymph mortal-

ity in the limonene treatment presents an interesting pattern, with several potential explana-

tions. This may be evidence of the repellent effect being insufficiently strong to repel whiteflies

completely, as they are still capable of laying as many eggs on the treated tomatoes. Toxicity of

limonene against eggs or nymphs may be another explanation: limonene has been shown to be

toxic to the whitefly species Aleurodicus dispersus, and A. antidesmae, and the inability of eggs

and nymphs to move away from this chemical could make them more susceptible to any toxic

effects [30]. However, in the aforementioned study from Hollingsworth [30] toxicity was not

life stage specific, but achieved an equally significant effect on egg numbers.

Fig 4A and 4B show the effect of the treatments on tomato fruit production over the course

of glasshouse trial 2, and the aboveground plant tissue weight (excluding tomatoes), and the

total unripe tomato weight, per plant at the conclusion of the study, when plants were destruc-

tively sampled. In Fig 4A, tomato vegetative tissue in the limonene treatment was significantly

heavier per plant than both the control (p = 0.05) and the marigold treatment (p = 0.005). This

indicates that as a result of the limonene treatment, tomato plants were able to produce more

vegetative tissue, possibly as a result of the reduction in whitefly performance on these plants.

Despite this, here were no significant differences between the limonene treatment and the

the experiment (n = 8). There was no significant effect on treatment (rm ANOVA F (2,105) = 2.72, p = 0.070) but there

was a significant effect on treatment x time (rm ANOVA F (8,105) = 2.62, p = 0.011). The limonene treatment had

significantly less nymphs than the control on day 29 (t = 4.18, df = 105, p< 0.001) and neared significance at day 22 (t
= 2.17, df = 105, p = 0.095). The limonene treatment also had significantly less whiteflies than the marigold treatment

at day 29 (t = -2.61, df = 105, p = 0.030). Ninety five percent confidence intervals have been calculated and are available

in the supporting information (S2 Dataset), but to aid visualisation they have been removed from the figure.

https://doi.org/10.1371/journal.pone.0213071.g003
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control in terms of total fruit weight per plant (Fig 4B). By contrast, marigold treated tomatoes

experienced a near-significant reduction in fruit weight per plant compared to the control

(p = 0.100) and a significantly lighter fruit weight than the limonene treatment (p = 0.014).

There appears to be a difference in the effect that marigold and limonene treatments had on

the plants, with limonene enhancing vegetative growth and possibly increasing fruit number,

and marigold treatment potentially resulting in lighter plants with less fruit weight. An expla-

nation for this may be found in the density of the plants in the treatments: based on observa-

tions of the plant growth in the different treatments, the introduction of marigolds (with a

Fig 4. Plant development characteristics at the end of the 2017 assay into the efficacy of marigolds and limonene

as an emergency treatment for the control of established whitefly populations (n = 8). Fig 4A displays the median

aboveground tissue weight of each focal tomato plant, excluding tomatoes, at the end of the 29 day experiment (n = 8).

Tomato plants from the marigold treatment were near-significantly lighter than tomato plants from the control (t =

-1.86, df = 14, p = 0.085) and significantly lighter than tomato plants from the limonene treatment (t = -3.3, df = 14,

p = 0.005) according to t-tests. Tomato plants from the limonene treatment were significantly heavier than those from

the control according to a t-test (t = 2.15, df = 14, p = 0.05). Fig 4B displays the median weight of all tomatoes from

each focal tomato plant at the end of the 29 day experiment (n = 8). The total tomato weight from plants in the

marigold treatment was near-significantly lower than plants in the control (t = -1.76, df = 14, p = 0.100) and

significantly lower than the total tomato weight of plants from the limonene treatment (t = -2.8, df = 14, p = 0.014).

There was no significant difference in tomato weight between the control and limonene treatment.

https://doi.org/10.1371/journal.pone.0213071.g004
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very bushy growth habit) may have restricted access to sunlight of the lower parts of tomato

plants in that treatment, possibly inhibiting growth. The limonene treatment, by contrast, had

a very low planting density, with the introduction of the limonene dispensers not restricting

access to sunlight. Whilst limonene may be providing benefits to the tomato plants of reduced

whitefly pest load, resulting in greater plant growth, it is necessary to see whether this advan-

tage over controls persists in future studies that control for planting densities.

From these experiments it would appear that marigolds have a less pronounced influence

on whitefly populations when introduced as an emergency control measure to reduce the

impact of a heavy whitefly infestation. By contrast, application of limonene dispensers

achieved a greater control over whitefly populations, giving reductions in average adult settling

throughout the experiment and achieving significant reductions in nymph survival, despite

similar numbers of eggs being laid on limonene-treated plants as the control. This translated

to significant impacts on plant size (above ground tissue weight) and marginal impacts on

fruit yield (Fig 4), showing limonene dispensers to have some degree of efficacy when deployed

in this “emergency” scenario. This volatile based system involving limonene could be devel-

oped into a highly effective control agent of whitefly and since the efficacy of repellent volatiles

is thought to be dose dependant [14], increasing limonene release could have a more pro-

nounced disruptive effect. Future experiments should look to find optimum delivery levels of

limonene, whilst ensuring phytotoxicity and other non-target effects do not occur.

Conclusions and prospects

The efficacy of a method popular amongst domestic gardeners, of intercropping tomato with

French marigolds for pest control, appears to have been supported in the present study. Signif-

icant control of whitefly was achieved when marigolds were intercropped amongst tomatoes

from the beginning of the growth period. However introducing marigolds as a replacement for

chemical control methods after significant whitefly infestation produced minimal effects. In

the “emergency” situation, the limonene dispensers were more effective at reducing whitefly

performance than whole plants, and this method warrants further experiments for optimisa-

tion of its deployment. Future experiments should look to ascertain how repellent volatiles

effect whitefly behaviour in a no-choice situation without control plots present, which could

have acted as refuge areas for the whitefly. Despite this, we predict that repellent volatiles

would still reduce whitefly performance by invoking restlessness and/or abnormal behaviour,

as has been shown previously [23]. Effects on natural enemies and other prominent pest spe-

cies should be explored before implementing our methods in a commercial glasshouse setting.

Nevertheless, the results obtained from this work are extremely promising for the application

of repellent volatile chemistry for the protection of glasshouse grown tomatoes.

Increasing plant diversity further in the ‘push-pull’ assay in the first glasshouse trial did not

result in enhanced pest control. Thrips, another important pest of glasshouse grown tomato,

showed no level of preference to any of the treatments employed in both the “push” and

“push-pull” experiments in this first glasshouse trial. In one respect this is positive and strongly

suggests a future direction for this research, as it appears that other non-host plants can be

added to the mixture alongside marigolds and still produce a negative effect on whiteflies on

tomato, whilst having a neutral effect on other insect pests. It is envisaged that a mixture of

plant species may even be developed that can be intercropped with tomato and will repel a

number of the major invertebrate pests of tomato. This will be a challenge and will become

more difficult as the number of pests considered increases, as each plant species must be a

non-host of the focal pest, but also of the other pests the mix aims to repel (introducing a plant

species that repels one pest but is suitable to another risks reducing the effectiveness of the
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technique). For example, both marigold [31] and tomato [32] are susceptible to the two-spot-

ted spider mite (Tetranychus urticae Koch) and therefore as part of this mix a plant would

need to be introduced to alleviate negative effects of this pest. We believe that through careful

planning and constructing models of known plant-insect interactions it would be possible to

create a mix of plants which mitigate arthropod pest damage to agricultural crops. Such a mix,

if comprising edible or ornamental species, could be very attractive to growers and provide

numerous societal benefits such as reducing pesticide use, diversifying horticultural produc-

tion [28], increasing the diversity of invertebrate fauna within agroecosystems [13, 20], and

increasing the diversity of produce on market shelves in a world increasingly dominated by

fewer food types.

Materials and methods

Laboratory experiments

Whitefly. Whiteflies, T. vaporariorum (Westwood), originated from a lab culture at

Rothamsted Research which was first collected in 1960 in Kent on French bean and had subse-

quently been maintained in a large laboratory population. The insects for both glasshouse and

laboratory experiments were taken from a mixed age colony from a culture at Newcastle Uni-

versity (UK) where they were maintained on pre flowering aubergine (Solanum melongena
“Moneymaker”- Marshalls Seeds Cat. 1020–2017) at 20˚C, 16:8 light/dark.

Plants. For all laboratory experiments (Air-entrainment, free-choice and root exudates

assays), tomato seeds (S. lycopersicumMill., ‘Elegance’ Cat. E/12/11, Batch 0113479253) were

obtained from Monsanto and used for all experiments. In the laboratory assays, plants were

grown from seed in J. Arthur Bowers John Innes no 2 in 9-cm-diameter and 8.7-cm-deep pots.

All plants were grown at a distance of approximately 60 cm from a 400-W Son-T bulb housed

in a Harrier HR400SH 400-W lamp under a 16 h light/8 h dark cycle and a temperature regime

of 25˚C in the light and 20˚C during the dark period. Tomato and marigold seedlings were

grown in separate propagation units to prevent the transfer of volatile organic compounds

between the two species. For air-entrainment, whitefly free-choice and root exudates assays,

both tomato and marigold plants were at stage 14 on the Biologische Bundesanstalt, Bundes-

sortenamt und Chemische Industrie (BBCH) scale [33].

Air entrainment volatile analysis. Headspace volatiles of marigold plants were analysed

by dynamic air entrainment (Pye volatile collection kit, Kings Walden, Herts, UK) in order to

deduce compounds potentially repellent to T. vaporariorum. All equipment was washed with

Teepol detergent (Sigma-Aldrich) and rinsed with acetone and distilled water twice before

baking at 180˚C for 2 hours. Porapak Q (60/80 mesh, 0.05 g) tubes were eluted with diethyl

ether (Fischer Scientific, 12347103) and heated at 140˚C for 2 hr under a steam of constant

nitrogen to remove contaminants, this process was repeated twice for each tube. Either a single

flower or leaflet of 2–3 week old tomato seedlings was partially enclosed in a glass bell cylinder,

fresh weight (g) of the entrained section was recorded after use. The bottom of the cylinder

was closed without pressure around the plant stem by using two semicircular aluminum plates

with a hole in the centre to accommodate the stem. Charcoal filtered air was pumped in at 1L

min−1 and drawn out at 800 ml min−1 through the porapak Q adsorbent tube in a 5-mm diam-

eter glass tube. The difference in flow rates created a slight positive pressure to ensure that

unfiltered air did not enter the system, thus removing the need for an airtight seal around the

stem. Plants were entrained for 24 hours from midday onwards. The porapak Q filter tube was

eluted with 0.75 ml of diethyl ether (Fisher Scientific, 12347103), providing a 500μl solution

that contained the isolated volatile compounds. All samples were tightly sealed in GC vials and

stored at -20˚C until needed.
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Gas chromatography (GC). GC-FID analyses were carried out using an Agilent 5890 GC.

The injection port (280˚C) was in the splitless mode and the flame ionization detector was

heated to 300˚C. The sample (1ul) in diethyl ether was injected by an HP7673 auto sampler

and the split opened after 1 minute. Separation was performed on a fused silica capillary col-

umn (30m x 0.25mm i.d) coated with 0.25um dimethyl poly-siloxane (HP-5 phase). The GC

was temperature programmed from 50˚C-310˚C at 5˚C min and held at final temperature for

20 minutes with Hydrogen as the carrier gas (flow 1ml/min, pressure of 50kPa, split at 30 mls/

min).

Gas chromatography-mass spectrometry (GC-MS). GC-MS analysis of the biological

extracts was performed on a Agilent 7890A GC split/split less injector (280˚C) linked to a Agi-

lent 5975C MSD (electron voltage 70eV, source temperature 230˚C, quad temperature 150˚C

multiplier voltage 1200V, interface temperature 310˚C). The acquisition was controlled by a

HP Compaq computer using Chemstation software, initially in full scan mode (50–600 amu/

sec) or in selected ion mode (30ions 0.7cps 35ms dwell) for greater sensitivity. The sample

(1ul) in diethyl ether was injected by an Agilent7683B auto sampler and the split opened

after 1 minute. Separation was performed on an Agilent fused silica capillary column (30m x

0.25mm i.d) coated with 0.25um dimethyl polysiloxane (HP-5) phase. The GC was tempera-

ture programmed from 50–310˚C at 5˚C min and held at final temperature for 10 minutes

with Helium as the carrier gas (flow rate of 1ml/min, initial pressure of 50kPa, split at 30 mls/

min). Peaks were identified and labelled after comparison of their mass spectra with those of

the NIST05 library if> 90% fit or from their elution order from biochemical literature.

Limonene dispensers. The use of limonene as a treatment to control whitefly infestation

required the development of a slow-release dispenser that was comparable in its rate of emis-

sion to the quantity of limonene released by a marigold plant. To achieve this, the amount of

limonene released over 24h from a single marigold plant of weight 26.37g (a typical size of a

marigold grown in the growth rooms at Newcastle University) was quantified as 363.26 μg

(using air entrainment/GC-FID). For the lab based whitefly preference assays (Fig 2), a single

30ml medicine vial (obtained from https://bit.ly/2q9Dzwh) with a 2mm hole drilled in the

screw top lid was used. This was limonene dispenser “type 1”. 3ml of pure limonene (Sigma-

Aldrich, 183164) was placed inside this vial and was found to release 652.86 μg over 24 hours

after headspace analysis followed by GC-MS conducted in the same way as described for the

marigold seedlings. For the “heavy infestation” experiment (Fig 3), the comparable marigold

plants in the glasshouse at Stockbridge Technology Centre were much larger (151.6g on aver-

age, equating to 2. 08mg of limonene per plant) than those found in the laboratory at Newcas-

tle University and therefore limonene output needed to be increased accordingly. These same

medicine vials with 3ml limonene were used, only the lid was replaced with a rectangular piece

of muslin cloth secured with two elastic bands, this was limonene dispenser “type 2”. Two lim-

onene dispensers were found to release 2.96mg of limonene over 24 hours. Limonene in the

bottles was replaced every two weeks, which was shown to give a constant level of limonene

output. Exactly matching emission rates to that of respective marigold plants proved difficult

with the slow-release dispenser system in place here. Nevertheless, comparative limonene

emission rates were achieved and future studies could invest more time developing volatile

slow-release systems which exactly match volatile emissions from other repellent non-host

companion plants.

Limonene and root exudates free-choice assays. To confirm the repellent effect of mari-

gold and limonene to adult T. vaporariorum, a series of laboratory bioassays were conducted.

For each experiment 8 “Elegance” tomato seedlings were placed inside a 90x60x60cm mesh

cage (Watkins and Doncaster, product code: E6098). These 8 plants were separated into two

groups of four and placed at opposite ends of the cage, 50cm apart. A schematic overview of
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this setup can be seen in the S7 Fig. Two-hundred whiteflies of mixed age and sex were

released into the centre of the cage and total eggs and settling adults on every plant was

recorded after exactly 24 hours. For the repellence assay, two marigold seedlings were placed

in the two corners of the cage behind one of the two groups of tomato seedlings. Whitefly pref-

erence was assessed based on their location in the cage, i.e. at the side accompanied by mari-

gold seedlings or not. The same procedure was conducted for “type 1” limonene dispensers

and each experiment was repeated a total of 6 times.

To assess the effect of root exudate sharing between tomato and marigold, similar whitefly

free-choice assays were conducted where both species were placed in communal drip trays

(52x42cm) prior to assessment of whitefly settling and oviposition preference. Four tomato

seedlings were placed in small plastic drip tray filled with water to make the pots roughly 2cm

submerged, topping up when necessary. Two flowering marigold seedlings were introduced to

these drip trays for one or seven days, and for control replicates 2 tomato seedlings were

added. Whilst plants in the glasshouse study shared root exudates for longer, difficulties in rep-

licating this with the laboratory growth space available limited us to these time frames. Despite

this, it was assumed that any morphological and/or physiological changes resulting from root

exudate sharing would be apparent after the time frames implemented here. These plants

remained in the growth rooms under the Harrier HR400SH 400W lamp described previously.

Whitefly preference was then assessed against four other tomato seedlings (taken straight from

the growth rooms described previously) and set up in the same 90x60x60 cm cage as described

previously. For both experiments the Pearsons chi-squared test was used to compare settling

distribution and expected values for the marigold and limonene assays were assumed as equal

(50/50). For the root exudates assays, settling distribution was compared to the average across

the 6 control replicates described above.

Glasshouse experiment 1: “Push”, “Push-Pull” and “High Diversity” control strategies

applied at the beginning of the infestation period. In order to establish a baseline measure

of whitefly preference for different plant species, a laboratory assay was conducted using plant

leaf disks in a no choice assay that quantified T. vaporariorum preference for each species indi-

vidually. On the basis of the leaf disk results nasturtium, Chinese cabbage, basil, and marigold

were designated as ‘push’ plants and pumpkin, melon, courgette, and sunflower as ‘pull’ plants

in the glasshouse trial that followed. S6 Fig displays the full results of the leaf disc assays with

comparisons to similar experiments on T. vaporariorum preference from published literature.

Experiments were conducted in the mid-late growing season (started 10th August) 2016 in a

448m3 glasshouse in the grounds of Stockbridge Technology Centre Ltd., Yorkshire, England

(Grid Ref. SE 55977 36605). Experiments were supplemented with a population of T. vaporar-
iorum consisting of 3 heavily infested aubergine (Solanum melongena “Moneymaker”) plants

from the culture described above, distributed in the centre of the greenhouse. The glasshouse

represented a closed environment which limited the ability of natural pests to infest our experi-

mental crop. However, the glasshouse was not screened and we expect that some whiteflies

from the surrounding environment did infest our experimental crop, but that the vast majority

originated from the introduced cultures described. We did observe low numbers of thrips and

spider mites (which entered the glasshouse naturally) in both glasshouse trials. Plants were

grown from seed, one per compartment, in standard seed germination trays in glasshouses at

Stockbridge Technology Centre (UK) for 5 weeks. At the point of replanting for both “push”

and “push-pull” experiments, plants were at stage 13 on the BBCH scale and had the following

number of fully expanded leaves: tomatoes 3–6 leaves, marigold 4–6 leaves, basil 3–4 leaves,

nasturtium 4–5 leaves, cabbage 4–6 leaves, sunflower 3–5 leaves and courgette, pumpkin, and

melon 2–4 leaves. Plants were replanted into 5 litre pots and placed into 110 x 55 x 4cm drip
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trays, 8 pots to a tray. Plants were replanted in Clover Multipurpose Compost (Dungannon,

Co. Tyrone,N, Ireland BT71 4QR).

Two experiments were undertaken to investigate whether intercropping from the start of

the growth period could assert control over whitefly populations, S8 Fig contains a schematic

overview of these experiments. The first experiment sought to answer whether intercropping

with marigolds could reduce whitefly numbers on tomato by ‘pushing’ whiteflies from tomato,

and if so, whether this effect could be enhanced by the use of additional non-host, ‘push’

plants. The second experiment sought to identify whether the ‘push’ effect could be combined

with the ‘pull’ effect of attractive host plants placed around the edge of the treatment, to attract

whiteflies from tomatoes, and whether this effect could be further intensified by using a higher

diversity of both ‘push’ and ‘pull’ plant species.

Single, fully-expanded leaves were selected by randomising both compound leaf selection

and then individual leaflet from 8 tomato plants per replicate. These were then examined in
situ for T. vaporariorum adults and adults of other insect pests. The sampling regime can be

viewed in Fig 1 and covered a period of 48 days. These leaves were removed and placed in

sealed plastic bags, then stored overnight at 4˚C and examined the next day for whitefly (and

other pest) larvae and eggs. The abundance of all pest insects present was recorded to test the

effect of intercropping on other pest species as well as the target pest T. vaporariorum. Thrips
tabaci were the only other pest to be consistently observed in the glasshouse, albeit at very low

numbers. Other insects were encountered in very low abundances so were not included in

analysis. Thrips population development in both experiments is presented as average number

of pests per leaf and can be viewed in S1 Fig. Procedures were identical for the ‘push-pull’

experiment, the outer ring of pull plants was not sampled. At the end of the experimental

period, each focal tomato plant was destructively sampled and total fruit and total above-

ground tissue weight measured (S2 Fig).

Data for insect abundance was non-normally distributed and was therefore (log + 1) trans-

formed to meet normality and homogeneity of variance assumptions for statistical analysis.

Whitefly and thrips abundance (adult, larvae and egg numbers were added together to give a

single value for each insect) were analysed with repeated measures ANOVA’s using the

“lmerTest” package in R. Time (sampling date) was used as the repeated measure with treat-

ment and the treatment x time interaction as fixed factors. The Bonferroni post-hoc correction

was used to analyse differences between treatments at individual sampling points, this was

done by multiplying p values by the total number of comparisons made. Therefore all p values

reported are significant at α = 0.05. Tomato plant and fruit weights were also non-normally

distributed but were analysed with Mann Whitney U tests. The non-parametric effect size

measure, Cliff’s delta (d) was determined using the ‘effsize’ package for R in order to allow a

standardised comparison of effects that takes into account different start times of experiments

[34]. The Cliff’s delta (d)measure was ascertained from the un-transformed non-parametric

data.

Glasshouse Experiment 2: “Emergency” Intercropping to protect tomatoes from an

established heavy whitefly infestation. These experiments were run in the same greenhouse

at Stockbridge Technology centre from 13th July 2017 – 14th August 2017. The aim of the

experiment was to build up a high density whitefly population on a tomato crop, then intro-

duce either more tomatoes (control), French marigolds (T. patula; marigold treatment), or

limonene dispensers (limonene treatment), and observe the level of whitefly control achieved.

Marigolds and tomatoes for this experiment were planted as seeds in standard seed germina-

tion trays in a glasshouse at Stockbridge Technology Centre on 25th April 2017. On 6th June

2017, when the plants had reached stage 13 on the BBCH scale, plants were re-potted in the

experimental glasshouse into 5L pots containing 5L of Clover multipurpose compost (details
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above). These plants were then divided into two groups: 192 tomato plants (hereafter referred

to as the focal tomato plants) were placed in the experimental glasshouse in 110 x 55 x 4cm

drip trays as described above, and were subdivided into three treatment blocks, replicated

eight times. A schematic overview of both experiments in the glasshouse can be viewed in S8

Fig. These plants had four heavily infested aubergine plants from the laboratory at Newcastle

University placed amongst them to supplement naturally occurring whitefly pest populations

(S8 Fig); the aim was to achieve a heavy whitefly infestation across the whole glasshouse. The

second group of plants (comprising 64 tomato plants and 64 marigold plants) were placed in

an adjacent greenhouse, of the same dimensions as the experimental greenhouse, and covered

in porous white gauze. The aim was to keep these plants uninfested so as to not affect the

whitefly population once they were introduced.

Both groups of plants were grown in their respective greenhouses for 13 days until 26th July

2017, at which point a high density whitefly population had been achieved (this density may be

seen in the first sampling point of Fig 3A). On this date, the uninfested plants from the second

greenhouse were introduced into the infested greenhouse, and arranged amongst their respec-

tive treatments as follows. The experiment was arranged as for the ‘Push’ experiment outlined

(see S8 Fig) above, with eight replicates of three treatments: a control, a marigold treatment

and a limonene treatment (which was used in place of the HD treatment, see S8 Fig). The con-

trol, as before, comprised eight, whitefly-infested focal tomato plants, with eight uninfested

tomato plants randomly distributed amongst them. The marigold treatment comprised eight

focal tomato plants with eight marigold plants randomly distributed amongst them (identical

to the LD ‘push- treatment, see S8 Fig). The limonene treatment included eight tomato plants

with 16 “type 2” limonene dispensers (described above) bottles randomly distributed amongst

them, with limonene bottles placed two per 5L pot filled with 5L of soil.

After the introduction of the treatment plants, the experiment was continued for a further

29 days, with sampling being undertaken in the same way as for the ‘push-pull’ assay. The

number of adult insects, including whitefly adults, which had settled on a single leaf from each

of the focal tomato plants were counted each week, as well as the number of unripe tomatoes

as they emerged. As before, adult insects were assessed on the day, and eggs and nymphs

counted the next day under low power microscopy. Plants were sampled weekly over 29 days,

after which the experiment was ended due to declining plant health in the greenhouse, possibly

due to the heavy whitefly infestation. At the culmination of the experiment, after the insect

assessment, each focal plant was destructively sampled and total fruit and total aboveground

tissue weight measured. Very few tomatoes were ripe on each treatment, so tomato weights

represent the weight of the green tomatoes on the plants at the time of harvesting. Abundance

of all whitefly life stages was (log +1) transformed and analysed with repeated measures ANO-

VA’s with Bonferroni post-hoc correction in the instance of a significant interaction (as above

in glasshouse trial 1). The final plant and fruit weight were compared using t-tests on untrans-

formed data.

Supporting information

S1 Fig. Thrips population development from glasshouse trial 1. Population development of

thrips (T. tabaci) on tomato in the glasshouse, with all thrips life stages (adult and larvae) con-

tributing to the average number of thrips/leaf. Data was (log +1) transformed and repeated mea-

sures ANOVA’s were used to assess the effect of treatment and treatment x time on thrips

abundance across the experimental period. No significant interactions were observed between

treatments (rm ANOVA F (2,126) = 0.95, p = 0.388) or treatment x time (rm ANOVA F (10,126) =

0.570, p = 0.835) for the “push” experiment (A). For the “push-pull” experiment (B), no
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significant effects were observed between treatment (rm ANOVA F (2,105) = 0.333, p = 0.717)

and treatment x time (rm ANOVA F (8,105) = 0.420, p = 0.906). Ninety five percent confidence

intervals have been calculated and are available in the supplementary information (S1 Dataset),

but to aid visualisation they have been removed from the figure. S1A Fig shows the “push”

experiment in which repellent plants such as marigold (LD) and marigold and other non-hosts

(HD) are distributed amongst tomato plants. S1B Fig shows the “push-pull” experiment which

is the same as the “push” experiment but additionally a single (LD) and several (HD) host plant

species are placed around the perimeter of the mixture of repellent hosts and tomato.

(PDF)

S2 Fig. Plant development characteristics from “push” and “push-pull” experiments in

glasshouse trial 1. Plant development characteristics at the end of the 2016 “push” and “push-

pull” glasshouse trials (n = 8). S2A Fig shows the median above ground plant weight for each

of the three treatments (control, low diversity and high diversity) from the “push” experiment

with 95% confidence intervals annotated as error bars. S2B Fig shows the median weight of

tomatoes per plant per treatment also from the “push” experiment, 95% confidence intervals

are annotated as error bars. S2C Fig shows the median above ground plant weight for each

treatment in the “push-pull” experiment with 95% confidence intervals annotated as error

bars. There is no tomato yield data for the “push-pull” experiment as tomatoes had not yet

formed due to this experiment starting later than the “push” experiment and being subse-

quently cut-short by the onset of late season blight. The Mann Whitney U test was used to

compare differences between the treatments as the data was found to be non-normally distrib-

uted. For all three graphs, there was no significant differences observed between any of the

treatments.

(PDF)

S3 Fig. Whitefly repellence assays: Sharing of root exudates. The percentage of settling

whiteflies (n = 200) when given the choice between four “Elegance” tomato seedlings or four

“Elegance” seedlings previously cultivated in communal drip trays with flowering T. patula
seedlings for either 24 hours or 7 days (S3A and S3B Fig). The tomato plants which were

grown in this way are referred to with the acronym SRE (shared root exudates). Whitefly eggs

were also recorded for each replicate (S3C and S3D Fig) and the Pearson’s chi-squared test was

used to test differences in settling and oviposition behaviour compared to control distribu-

tions. Significant differences are annotated onto the graph for each treatment with the follow-

ing format; �p< 0.05 significance; ��p< 0.01 significance, df = 1 for all groups. For S3A Fig,

rep 1 X 2 = 0.18, p = 0.671; rep 2 X 2 = 3.92, p = 0.048; rep 3 X 2 = 0.08, p = 0.776; rep 4 X 2 =

0.72, p = 0.396; rep 5 X 2 = 0.02, p = 0.887; rep 6 X 2 = 0.98, p = 0.332. For S3B Fig, rep 1 X 2 =

1.64, p = 0.199; rep 2 X 2 = 0.02, p = 0.887; rep 3 X 2 = 0.500, p = 0.479; rep 4 X 2 = 0.20,

p = 0.887; rep 5 X 2 = 0.504, p = 0.478; rep 6 X 2 = 0.320, p = 0.572. For S3C Fig, rep 1 X 2 =

1.62, p = 0.202; rep 2 X 2 = 0.082, p = 0.775; rep 3 X 2 = 0.02, p = 0.886; rep 4 X 2 = 7.22,

p = 0.007; rep 5 X 2 = 0.325, p = 0.569; rep 6 X 2 = 0.021, p = 0.886. For S3D Fig, rep 1 X 2 =

0.08, p = 0.777; rep 2 X 2 = 2.04, p = 0.153; rep 3 X 2 = 1.64, p = 0.203; rep 4 X 2 = 6.61,

p = 0.010; rep 5 X 2 = 1.64, p = 0.199; rep 6 X 2 = 0.322, p = 0.570. On average over the 6 repli-

cates, 49.89% of whiteflies settled on SRE tomato in the 24 hour treatment and 49.91% white-

flies settled on SRE tomato in the 7 day treatment.

(PDF)

S4 Fig. Limonene identification and quantification. S4A Fig, GC-FID profile showing the

volatile output from a single French marigold flower over 24h. For both marigold flowers and

leaf tissue, limonene was the most prominent volatile and the GC trace shown was typical

Companion planting with French marigold protects tomatoes from glasshouse whitefly

PLOS ONE | https://doi.org/10.1371/journal.pone.0213071 March 1, 2019 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213071.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213071.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213071.s004
https://doi.org/10.1371/journal.pone.0213071


across all the replicates. Limonene formed 24.01% and 21.04% of the volatile output from both

flowers and leaf tissue respectively. Whilst other prominent volatiles were detected in marigold

headspace samples, none matched the emission rates and cost effective appeal which was offered

through the use of limonene. It was therefore decided that whitefly repellence to this individual

chemical would be assessed. Other identified volatiles from the GC-FID trace are labelled concur-

rently, “^” indicates confirmation of presence with authentic standards, where available; 1 = limo-

nene^, RT 11.91; 2 = α-pinene^, RT 8.37; 3 = isobutyric acid, RT 11.45; 4 = (E/Z)-β-ocimene^,

RT 12.66; 5 = Siloxane contaminant (originating from the GC column), RT 16.05; 6 = terpino-

lene^, RT 17.03; 7 = Butylated hydroxytoluene (stabilising agent from the diethyl ether), RT 25.95.

S4B Fig displays average limonene release from marigold flowers and leaf tissue was quantified

and displayed as μg of limonene per gram of fresh weight over 24 hours. Error bars display upper

and lower bound 95% confidence intervals, each tissue group was replicated 5 times.

(PDF)

S5 Fig. Whitefly repellence assay: Four-way olfactometer. Whitefly response to marigold

plant tissue and limonene was tested using a 4-way olfactometer with four different treatments;

one marigold flower, marigold leaves that were the same weight as one marigold flower

(1.713g) (ML1), marigold leaves that were double the weight of one marigold flower (3.426g)

(ML2) and a “type 1” limonene dispenser. The two different amounts of leaf tissue were chosen

considering the amount of limonene released from flowers was approximately double that of

leaf tissue per gram of fresh weight (S4B Fig). For each treatment, 100 whiteflies of mixed sex

were introduced to the olfactometer and average (n = 4) percentage of whiteflies which

selected the wing of the olfactometer containing the marigold plant tissue or a limonene dis-

penser is displayed. The Pearson’s chi-squared test was used to test if distribution of whiteflies

differed significantly from the average settling distribution across 4 control replicates where

only tomato was present in all four wings of the olfactometer. Significant differences are anno-

tated onto the graph with “�”. For each of the treatments; marigold flower = X 2 = 11.21,

p = 0.001; ML1 treatment = X 2 = 0.653, p = 0.419; ML2 = X 2 = 8.87, p = 0.001; limonene dis-

penser = X 2 = 6.33, p = 0.050, df = 3 for all. Average settling percentages across the four experi-

mental wings of the olfactometer in the control was 24.70%. For each of the treatments,

average settling in wings containing individual treatment materials were as follows; marigold

flower = 10.5%, ML1 = 21.5%. ML2 = 12.1%, limonene = 14.1%. Methods for this experiment

can be found in S1 materials and methods.

(PDF)

S6 Fig. Whitefly host preference leaf disc assays. The non-choice plant tissue preference

assay may be seen in S6A Fig, with 8 disks of tomato in each dish. Fifty whiteflies were added

and the average number of whiteflies settled on plant tissue after 21h was calculated. Average

whiteflies settled (n = 8) on each plant species can be seen in S6B Fig, with 95% confidence

intervals for the mean plotted, and the species ordered in order of preference. This quantifica-

tion of preference agreed with previous broad surveys of T. vaporariorum plant range (S6C

Fig) from CABI [35], Roditakis [36] and Mound and Halsey [37], respectively, with non-hosts

being less preferred and hosts more preferred. ‘+’ indicates ‘host’, ‘-’ indicates ‘non-host’ and

‘0’ indicates that this plant was not considered. Methods for this experiment can be found in

S1 materials and methods.

(PDF)

S7 Fig. Schematic overview of whitefly free choice assays. This diagram shows a plan view of

the experimental design employed for the whitefly free-choice assays.

(PDF)
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S8 Fig. Schematic overview of glasshouse experiments. Layout of experiments to test the effi-

cacy of ‘push’ and ‘push-pull’ strategies against the glasshouse whitefly on tomato, and the effi-

cacy of intercropping at reducing large whitefly population sizes. A randomised block design

was used, with each of the 8 replicates containing all 3 treatments for each study in a random

order. The ‘push’ experiment involved intercropping tomato with non-hosts. The ‘push-pull’

experiment was similar but additionally had attractive host plants around the perimeter.

Whitefly plant preference for the various hosts was determined in laboratory leaf disk experi-

ments (S6 Fig) and confirmed by literature surveys. The location of heavily infested aubergine

plants used to supplement natural whitefly populations are shown with triangles containing

the letter ‘W’. The experiment to test the introduction of plants during an advanced whitefly

infestation was nearly identical in layout to the ‘Push’ experiment, but with limonene dispens-

ers placed in compost replacing the non-tomato plant species in the HD treatment used the

‘push’ assay. Acronyms for the treatments used are as follows; C—control, LD—low diversity,

HD—high diversity. For the individual plants within each treatment; T—tomato, M—mari-

gold, N—nasturtium, B—Basil, C–Chinese cabbage, Me–Melon, Co–courgette, S–sunflower.

(PDF)

S1 Dataset. Raw data from glasshouse experiment 1.

(XLSX)

S2 Dataset. Raw data from glasshouse experiment 2.

(XLSX)

S1 Materials and Methods. Materials and methods for supporting information files S5 Fig

and S6 Fig.

(DOCX)

Author Contributions

Conceptualization: David George, Colin R. Tosh.

Data curation: Niall J. A. Conboy, Thomas McDaniel, Colin R. Tosh.

Formal analysis: Niall J. A. Conboy, Thomas McDaniel, Ellie Wharton, Colin R. Tosh.

Funding acquisition: David George, Colin R. Tosh.

Investigation: Niall J. A. Conboy, Thomas McDaniel, Ellie Wharton, Paul Donohoe, Rhian-

non Curtis, Colin R. Tosh.

Methodology: Niall J. A. Conboy, Thomas McDaniel, Colin R. Tosh.

Project administration: Niall J. A. Conboy, Thomas McDaniel, Adam Ormerod, David

George, Colin R. Tosh.

Resources: David George, Colin R. Tosh.

Supervision: Niall J. A. Conboy, Thomas McDaniel, David George, Angharad M. R. Gate-

house, Colin R. Tosh.

Validation: Niall J. A. Conboy, Colin R. Tosh.

Visualization: Colin R. Tosh.

Writing – original draft: Niall J. A. Conboy, Thomas McDaniel, Colin R. Tosh.

Writing – review & editing: Niall J. A. Conboy, Thomas McDaniel, Colin R. Tosh.

Companion planting with French marigold protects tomatoes from glasshouse whitefly

PLOS ONE | https://doi.org/10.1371/journal.pone.0213071 March 1, 2019 19 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213071.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213071.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213071.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213071.s011
https://doi.org/10.1371/journal.pone.0213071


References
1. Rubatzky VE YM. World Vegetables: Principles, Production, and Nutritive Values. Springer US,.

Springer, US: Springer; 2012.

2. Lange WH, Bronson L. Insect Pests of Tomatoes. Annu Rev Entomol. 1981; 26:345–71. https://doi.org/

10.1146/annurev.en.26.010181.002021 WOS:A1981KX79600014.

3. Andi Nasruddin LAM. First record of Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae)

severely damaging field grown potato crops in South Sulawesi, Indonesia. Journal of plant protection

research. 2016; 56(2).

4. Wainaina JM, De Barro P, Kubatko L, Kehoe MA, Harvey J, Karanja D, et al. Global phylogenetic rela-

tionships, population structure and gene flow estimation of Trialeurodes vaporariorum (Greenhouse

whitefly). B Entomol Res. 2018; 108(1):5–13. https://doi.org/10.1017/S0007485317000360

WOS:000424027600002. PMID: 28532532

5. Jauset AM, Sarasua MJ, Avilla J, Albajes R. Effect of nitrogen fertilization level applied to tomato on the

greenhouse whitefly. Crop Prot. 2000; 19(4):255–61. https://doi.org/10.1016/S0261-2194(00)00016-8

WOS:000087225300006.

6. Bale JS, van Lenteren JC, Bigler F. Biological control and sustainable food production. Philos T R Soc

B. 2008; 363(1492):761–76. https://doi.org/10.1098/rstb.2007.2182 WOS:000252663200006. PMID:

17827110

7. Schooler SS, De Barro P, Ives AR. The potential for hyperparasitism to compromise biological control:

Why don’t hyperparasitoids drive their primary parasitoid hosts extinct? Biol Control. 2011; 58(3):167–

73. https://doi.org/10.1016/j.biocontrol.2011.05.018 WOS:000292912500001.

8. Rezaei N, Karimi J, Hosseini M, Goldani M, Campos-Herrera R. Pathogenicity of Two Species of Ento-

mopathogenic Nematodes Against the Greenhouse Whitefly, Trialeurodes vaporariorum (Hemiptera:

Aleyrodidae), in Laboratory and Greenhouse Experiments. J Nematol. 2015; 47(1):60–6.

WOS:000353628000006. PMID: 25861117

9. Gorman K, Devine GJ, Denholm I. Status of pesticide resistance in UK populations of the glasshouse

whitefly, Trialeurodes vaporariorum, and the two-spotted spider mite, Tetranychus urticae. Proc Brigh-

ton Crop. 2000; 1–3:459–64. WOS:000166809600070.

10. Gorman K, Devine G, Bennison J, Coussons P, Punchard N, Denholm I. Report of resistance to the

neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Pest

Manag Sci. 2007; 63(6):555–8. https://doi.org/10.1002/ps.1364 WOS:000246982100003. PMID:

17437257

11. Malezieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, et al. Mixing plant spe-

cies in cropping systems: concepts, tools and models. A review. Agron Sustain Dev. 2009; 29(1):43–

62. https://doi.org/10.1051/agro:2007057 WOS:000261843700005.

12. Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z. Associational Resistance and

Associational Susceptibility: Having Right or Wrong Neighbors. Annu Rev Ecol Evol S. 2009; 40:1–20.

https://doi.org/10.1146/annurev.ecolsys.110308.120242 WOS:000272455700001.

13. Malezieux E. Designing cropping systems from nature. Agron Sustain Dev. 2012; 32(1):15–29. https://

doi.org/10.1007/s13593-011-0027-z. WOS:000299748400002.

14. Ben Issa R, Gautier H, Costagliola G, Gomez L. Which companion plants affect the performance of

green peach aphid on host plants? Testing of 12 candidate plants under laboratory conditions. Entomol

Exp Appl. 2016; 160(2):164–78. https://doi.org/10.1111/eea.12473 WOS:000381692400008.

15. Beata Jankowska MP, Elzbieta Jedrszczyk. Effect of intercropping white cabbage with French Marigold

(Tagetes patula nana L.) and Pot Marigold (Calendula officinalis L.) on the colonization of plants by pest

insects. Folia Horticulturae. 2009; 21/1:95–103.

16. Sujayanand GK, Sharma RK, Shankarganesh K. Impact of intercrops and border crops on pest inci-

dence in okra. Indian J Hortic. 2016; 73(2):219–23. https://doi.org/10.5958/0974-0112.2016.00051.7

WOS:000381658100012.

17. Zhao J, Guo XJ, Tan XL, Desneux N, Zappala L, Zhang F, et al. Using Calendula officinalis as a floral

resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Antho-

coridae). Pest Manag Sci. 2017; 73(3):515–20. https://doi.org/10.1002/ps.4474

WOS:000394657600006. PMID: 27860184

18. Balzan MV. Flowering banker plants for the delivery of multiple agroecosystem services. Arthropod-

Plant Inte. 2017; 11(6):743–54. https://doi.org/10.1007/s11829-017-9544-2 WOS:000414713000002.

19. Cook SM, Khan ZR, Pickett JA. The use of push-pull strategies in integrated pest management. Annu

Rev Entomol. 2007; 52:375–400. https://doi.org/10.1146/annurev.ento.52.110405.091407

WOS:000243653800019. PMID: 16968206

Companion planting with French marigold protects tomatoes from glasshouse whitefly

PLOS ONE | https://doi.org/10.1371/journal.pone.0213071 March 1, 2019 20 / 21

https://doi.org/10.1146/annurev.en.26.010181.002021
https://doi.org/10.1146/annurev.en.26.010181.002021
https://doi.org/10.1017/S0007485317000360
http://www.ncbi.nlm.nih.gov/pubmed/28532532
https://doi.org/10.1016/S0261-2194(00)00016-8
https://doi.org/10.1098/rstb.2007.2182
http://www.ncbi.nlm.nih.gov/pubmed/17827110
https://doi.org/10.1016/j.biocontrol.2011.05.018
http://www.ncbi.nlm.nih.gov/pubmed/25861117
https://doi.org/10.1002/ps.1364
http://www.ncbi.nlm.nih.gov/pubmed/17437257
https://doi.org/10.1051/agro:2007057
https://doi.org/10.1146/annurev.ecolsys.110308.120242
https://doi.org/10.1007/s13593-011-0027-
https://doi.org/10.1007/s13593-011-0027-
https://doi.org/10.1111/eea.12473
https://doi.org/10.5958/0974-0112.2016.00051.7
https://doi.org/10.1002/ps.4474
http://www.ncbi.nlm.nih.gov/pubmed/27860184
https://doi.org/10.1007/s11829-017-9544-2
https://doi.org/10.1146/annurev.ento.52.110405.091407
http://www.ncbi.nlm.nih.gov/pubmed/16968206
https://doi.org/10.1371/journal.pone.0213071


20. Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J, et al. Effects of plant species

richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett. 1999; 2

(5):286–93. https://doi.org/10.1046/j.1461-0248.1999.00083.x WOS:000083017700004.

21. Landis DA, Wratten SD, Gurr GM. Habitat management to conserve natural enemies of arthropod

pests in agriculture. Annu Rev Entomol. 2000; 45:175–201. https://doi.org/10.1146/annurev.ento.45.1.

175 WOS:000086173900008. PMID: 10761575

22. Finch S, Collier RH. The influence of host and non-host companion plants on the behaviour of pest

insects in field crops. Entomol Exp Appl. 2012; 142(2):87–96. https://doi.org/10.1111/j.1570-7458.

2011.01191.x WOS:000298916500001.

23. Bernays EA. When host choice is a problem for a generalist herbivore: experiments with the whitefly,

Bemisia tabaci. Ecol Entomol. 1999; 24(3):260–7. https://doi.org/10.1046/j.1365-2311.1999.00193.x

WOS:000082489500002.

24. Semchenko M, Saar S, Lepik A. Plant root exudates mediate neighbour recognition and trigger complex

behavioural changes. New Phytol. 2014; 204(3):631–7. https://doi.org/10.1111/nph.12930

WOS:000343869000021. PMID: 25039372

25. Biedrzycki ML, Jilany TA, Dudley SA, Bais HP. Root exudates mediate kin recognition in plants. Com-

mun Integr Biol. 2010; 3(1):28–35. Epub 2010/06/12. PMID: 20539778; PubMed Central PMCID:

PMCPMC2881236.

26. Ibrahim MA, Kainulainen P, Aflatuni A, Tiilikkala K, Holopainen JK. Insecticidal, repellent, antimicrobial

activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for con-

trol of insect pests. Agr Food Sci Finland. 2001; 10(3):243–59. WOS:000174435500011.

27. Shi XB, Chen G, Tian LX, Peng ZK, Xie W, Wu QJ, et al. The Salicylic Acid-Mediated Release of Plant

Volatiles Affects the Host Choice of Bemisia tabaci. Int J Mol Sci. 2016; 17(7). ARTN 104810.3390/

ijms17071048. WOS:000381500900063.

28. Du WX, Han XQ, Wang YB, Qin YC. A Primary Screening and Applying of Plant Volatiles as Repellents

to Control Whitefly Bemisia tabaci (Gennadius) on Tomato. Sci Rep-Uk. 2016; 6. ARTN 2214010.1038/

srep22140. WOS:000371116700001.

29. Tu HT, Qin YC. Repellent Effects of Different Celery Varieties in Bemisia tabaci (Hemiptera: Aleyrodi-

dae) Biotype Q. J Econ Entomol. 2017; 110(3):1307–16. https://doi.org/10.1093/jee/tox110

WOS:000403150200061. PMID: 28431083

30. Hollingsworth RG. Limonene, a citrus extract, for control of mealybugs and scale insects. J Econ Ento-

mol. 2005; 98(3):772–9. https://doi.org/10.1603/0022-0493-98.3.772 WOS:000229652600020. PMID:

16022305

31. Price JF. CHEMICAL CONTROL OF TWOSPOTTED SPIDER MITE ON GREENHOUSE MARIGOLD.

Arthropod Management Tests. 2013; 38(1). https://doi.org/10.4182/amt.2013.G12

32. Zanin DS, Resende JTV, Zeist AR, Oliveira JRF, Henschel JM, Lima RB. Selection of processing

tomato genotypes resistant to two spotted spider mite. Hortic Bras. 2018; 36(2):271–5. https://doi.org/

10.1590/S0102-053620180221 WOS:000441466400021.

33. Klingauf PDF. Growth stages of mono-and dicotyledonous plants, BBCH monograph. Berlin and

Braunschweig: Federal Biological Research Centre for Agriculture and Forestry 2001.

34. M T. effsize: Efficient Effect Size Computation 2016. Available from: https://cran.r-project.org/web/

packages/effsize/index.html.

35. Trialeurodes vaporariorum [Internet] 2013. Available from: http://www.cabi.org/isc.

36. Roditakis NE. Host Plants of Greenhouse-Whitefly Trialeurodes-Vaporariorum Westwood (Homoptera,

Aleyrodidae) in Crete—Attractiveness and Impact on Whitefly Life Stages. Agr Ecosyst Environ. 1990;

31(3):217–24. https://doi.org/10.1016/0167-8809(90)90221-X WOS:A1990DV58800003.

37. SH MLaH. Whitefly of the World: A Systematic Catalogue of the Aleyrodidae (Homoptera) with Host

Plant and Natural Enemy data. British Museum. 1978.

Companion planting with French marigold protects tomatoes from glasshouse whitefly

PLOS ONE | https://doi.org/10.1371/journal.pone.0213071 March 1, 2019 21 / 21

https://doi.org/10.1046/j.1461-0248.1999.00083.x
https://doi.org/10.1146/annurev.ento.45.1.175
https://doi.org/10.1146/annurev.ento.45.1.175
http://www.ncbi.nlm.nih.gov/pubmed/10761575
https://doi.org/10.1111/j.1570-7458.2011.01191.x
https://doi.org/10.1111/j.1570-7458.2011.01191.x
https://doi.org/10.1046/j.1365-2311.1999.00193.x
https://doi.org/10.1111/nph.12930
http://www.ncbi.nlm.nih.gov/pubmed/25039372
http://www.ncbi.nlm.nih.gov/pubmed/20539778
https://doi.org/10.1093/jee/tox110
http://www.ncbi.nlm.nih.gov/pubmed/28431083
https://doi.org/10.1603/0022-0493-98.3.772
http://www.ncbi.nlm.nih.gov/pubmed/16022305
https://doi.org/10.4182/amt.2013.G12
https://doi.org/10.1590/S0102-053620180221
https://doi.org/10.1590/S0102-053620180221
https://cran.r-project.org/web/packages/effsize/index.html
https://cran.r-project.org/web/packages/effsize/index.html
http://www.cabi.org/isc
https://doi.org/10.1016/0167-8809(90)90221-X
https://doi.org/10.1371/journal.pone.0213071

