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A B S T R A C T

Traditional pathological diagnoses and clinical methods are insufficient to accurately predict the prognosis of lung
adenocarcinoma (LUAD). Epithelial-mesenchymal transition (EMT) process is closely related to tumor cell
migration. However, the prognostic value of EMT-related genes in LUAD is still unclear. In this study, we collected
bulk RNA-sequencing (RNA-seq) and microarray data of LUAD patients from public databases and identified
different expressed EMT-related genes in tumor and normal tissues. Then, we used the least absolute shrinkage
and selection operator Cox regression model to develop a multigene signature in the cancer genome atlas (TCGA)
cohort and validated the model in the OncoSG (Singapore Oncology Data Portal) cohort as well as other datasets.
Finally, we constructed a 12-gene signature to divide LUAD patients into high-risk and low-risk groups of overall
survival (OS), which has a better stability and accuracy in predicating the OS of patients compared with some
other published signatures of LUAD. In addition, evaluation of the risk model using the time-related receiver
operating characteristic (ROC) curve confirmed the predictive ability of the model. Functional analysis showed
that these genes are related to immunity. CD8 T cell and CD4 T cell types were significantly negatively correlated
with the risk score in the analysis of immune infiltration. In general, our model provides useful information that
may help clinicians better predict the prognosis of LUAD patients and provides potential targets for immuno-
therapy of LUAD.
1. Introduction

Lung cancer is the deadliest cancer with the highest morbidity and
mortality worldwide and more than 1.3 million cases reported annually
[1]. Lung cancer has two main types: non-small cell lung cancer (NSCLC)
and small cell lung cancer (SCLC). NSCLC accounts for 85% of all cases,
and lung adenocarcinoma represents the most common subtype of
NSCLC, comprising approximately 40% of all lung cancer cases [2]. The
standard therapeutic approach for LUAD is surgical resection, but tumor
recurrence and metastasis limit the curative effect of resection, leading to
a poor prognosis of LUAD patients. In the United States, the five-year OS
rate of patients with metastatic NSCLC is less than 5% [3, 4]. Further-
more, despite great improvements in surgery, chemotherapy and radia-
tion therapy, the mortality and metastasis rates remain high. Extensive
evidence has shown that LUAD tends to metastasis at early stages;
however, specific and sensitive biomarkers for the early detection of
LUAD remain limited. Thus, identifying metastasis-related biomarkers
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that can accurately detect early-stage LUAD and even predict prognosis is
crucial.

EMT is a biological process by which cells lose their epithelial char-
acteristics and acquire mesenchymal characteristics. EMT has long been
thought to be an one-way process involving a complete switch from
epithelial state to mesenchymal state. However, it is becoming increas-
ingly clear that EMT comprises a variety of hybrid forms, a phenotype
known as "partial EMT" (P-EMT) [5, 6, 7]. Recent studies have demon-
strated that EMT is closely related to tumor initiation and tumor cell
migration [8]. EMT enhances cell migration, invasiveness and resistance
to therapies and imparts polymer transfer properties [9]. EMT is affected
bymany factors, such as SNAIL, CXCL13, TWIST1 and ZEB1 [10, 11]. The
SNAIL transcription factor superfamily plays an important role in the
regulation of EMT. EMT can be induced by inhibiting the expression of
the epithelial marker gene CDH1which encodes E-cadherin or increasing
the expression of EMT drivers, such as ZEB-1 and ZEB-2. The expression
of the repressor of cadherin can weaken the metastasis inhibitory
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function of E-cadherin [12, 13]. In hepatic cell carcinoma and invasive
lobular carcinoma, SNAIL1 of the SNAIL superfamily plays a role in
tumor invasion, metastasis and poor differentiation, and its expression
can be used as a predictor of poor patient prognosis [14, 15]. TWIST1 is a
transcriptional repressor of E-cadherin, which simultaneously induces
the transcription of N-cadherin and fibronectin and is associated with the
development of several tumors [16, 17]. The ZEB family is similar to the
SNAIL family as both consist of transcription factors with zinc finger
domains. To regulate EMT, these SNAIL, CXCL13, TWIST1 and ZEB1
factors prevent the interaction between E-cadherin and desmosomes and
upregulate N-cadherin and matrix metalloprotinases, causing epithelial
cells to lose their polarity and adhesion abilities. In melanoma and thy-
roid cancer, researchers have found that the overexpression of ZEB can
promote tumor cell invasion and metastasis [18, 19].

In this study, we downloaded the mRNA expression profiles, corre-
sponding clinical data of LUAD patients and EMT-related genes from
TCGA and dbEMT2.0 databases respectively. We comprehensively used
more than 1,000 EMT-related genes in the EMT database for the analysis
of this article, and screened more than 200 genes involved in the path-
ogenesis of LUAD. Then we developed a prognostic multi-gene signature
with a good predictability using TCGA cohort, which was verified in the
OncoSG cohort, compared with some other prognostic gene signatures of
LUAD, the signature constructed in this paper have higher accuracy.
Finally, enrichment analysis showed a strong correlation between EMT
process and immune infiltration in LUAD, which provide a new target for
immunotherapy. Therefore, the EMT-related gene risk signature can be
used as an important indicator for predicting the prognosis of LUAD
patients.

2. Materials and methods

Data collection and analysis: The RNA-seq data of LUAD patients
were downloaded from TCGA. Data were obtained from 525 LUAD pa-
tients, and 493 samples were selected for subsequent analysis after
removing 32 samples with missing prognostic statistics. The form of the
downloaded gene expression data was log2 (countþ1). The original data
were converted into raw read count values, and normalized read values
were used for the analysis. In addition, the RNA-seq data of 305 patients
were downloaded from the OncoSG portal (https://src.gisapps
.org/OncoSG_public/). Similarly, normalized read count values were
used for subsequent data analyses. The TCGA cohort was used as the
training set, and the OncoSG cohort was used as the validation set. The
data from TCGA and OncoSG are both available on their official websites.
The microarray data were downloaded from the NCBI GEO (Gene
Expression Omnibus) database and analyzed by GEO2R tool.

Identification of DEGs related to EMT: The R package “DESeq2”
[20] was used to identify DEGs (differentially expressed genes) between
LUAD patients’ tumor tissues and adjacent normal tissues. The DEG
screening criteria were set with a false discovery rate (FDR) < 0.01 and |
log2 fold change | � 1. We also used the online analysis website GEPIA
[21] (http://gepia.cancer-pku.cn/) to identify the DEGs in LUAD with
the same threshold as above. The intersection between DEGs calculated
by the two methods was used as the DEGs for further analysis. The
interaction prediction of these genes was performed using the STRING
database [22]. We downloaded 1012 genes related to EMT from the
online database dbEMT2 [23] (http://dbemt.bioinfo-minzhao.org/),
then the R package “VennDiagram” [24] was used to calculate the
intersection of DEGs and EMT-related genes for subsequent analysis.

Construction and verification of the EMT-based prognostic risk
model: Univariate Cox analysis of OS was applied to identify EMT-
related genes with significant prognostic values. LASSO Cox regression
analysis was performed to identify independent EMT-related genes with
prognostic significance and calculate the risk regression coefficient of
each gene. We then used the following formula to construct a prognostic
risk model: risk score ¼ sum (expression of each gene � corresponding
coefficient). The above analysis was conducted using R. All patients were
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divided into a low-risk group and a high-risk group on the basis of the
median of risk scores. The overall survival between the low-risk and high-
risk groups was compared by Kaplan–Meier analysis with the log-rank
test. The “survivalROC” R package [25] was applied to perform
time-dependent ROC curve analysis to assess the predictive accuracy of
the gene signature. Finally, the LUAD gene expression data in the OncoSG
database were used to verify the model constructed above.

Functional enrichment analysis of the 12-gene signature: The R
package “DESeq2” was used to identify the DEGs in the low-risk and
high-risk group with an FDR <0.01 and | log2 fold change | � 1. GO and
KEGG pathway enrichment analyses were performed on DEGs. Func-
tional enrichment analysis and visualization were conducted using the R
packages “clusterProfiler” and “GOplot” [26], and P-values were
adjusted using the BH method. GSEA (Gene Set Enrichment Analysis)
enrichment analysis was performed using the GSEA-P tool [27].

Evaluation of immune cell infiltration: The CIBERSORT method
was used to assess the proportion of immune cells in different risk groups
[28]. In total, we analyzed 22 human immune cell phenotypes in this
study, including naive and memory B cells, gamma delta T cells, mono-
cytes, plasma cells, and others.

Statistical analysis: All statistical tests were performed with R
(version 3.6.1). The t-test was applied to compare gene expression be-
tween LUAD tissues and adjacent normal tissues and compare age,
gender and tumor stage status in LUAD. The OS between low and high-
risk groups was compared by Kaplan–Meier analysis with the log-rank
test. All tests were two-tailed, and a p value <0.05 was considered
significant.

3. Results

Clinical characteristics of patients: We collected the RNA-seq data
and clinical information of 493 LUAD patients from the TCGA database to
construct a prognosis risk model based on EMT-related genes and ob-
tained the RNA-seq data and clinical information of 305 LUAD patients
from OncoSG, which were used to verify the risk model. The data in
OncoSG were collected from Lung Cancer Consortium Singapore. The
specific sample information is shown in Table 1.

Identification of EMT-related DEGs in the TCGA cohort: Through
t-SNE analysis of the data obtained from TCGA, we observed that the
tumor tissues and adjacent normal tissues from LUAD patients were
distributed in two different clusters (Figure 1A). We then identified the
genes that were differentially expressed between tumor tissues and
adjacent normal tissues both in our local analysis using R and online
analysis with GEPIA tool. As shown in Figure 1B, there were 2147
upregulated and 843 downregulated genes in our local analysis and in
common. The 2990 selected genes were compared with the dbEMT2.0
dataset, resulting in the identification of 93 upregulated EMT-related
genes and 158 downregulated EMT-related genes, totaling 251 genes
(Figure 1C). These genes were differentially expressed between tumors
and normal tissues (Figure 1D). In addition, we performed an enrichment
analysis of the identified 251 genes using MsigDB:HALLMARK and KEGG
databases. The results revealed that epithelial-mesenchymal pathways in
cancer, immune-related signals, such as TNF-α signaling via NFKB, and
inflammatory responses were significantly enriched (Figure 1E).

Screening of EMT-associated DEGs related to LUAD tumor stage:
The prognosis of LUAD is closely related to the stage of the tumor, and the
metastasis of the tumor is an important factor in determining the stage.
Recent studies have shown that EMT is closely associated with tumor
initiation and tumor cell migration [8]. Therefore, we performed a time
series analysis of these 251 genes to determine their relationship with
LUAD tumor stage. We found that there were six main expression trends
and 59 EMT-related genes were closely related to tumor stage (Supple-
mentary Table 1), which were shown in Figure 2. Therefore, we used
these tumor stage-related DEGs for further analysis.

Construction of the risk model of prognosis in the TCGA cohort:
We identified 26 DEGs that were strongly correlated with patients’ OS (P
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Table 1. Clinical characteristics of TCGA LUAD and OncoSG LUAD patients.

TCGA-LUAD cohort LCCS-LUAD cohort

Num of Patients 493 305

Gender (num, %)

Female 263 (53.3%) 149 (48.9%)

Male 230 (46.7%) 158 (51.1%)

Age at Diagnosis (num, %)

<¼49 98 (18.3%) 29 (9.5%)

50–59 148 (27.7%) 77 (25.2%)

60–69 148 (27.7%) 110 (36.1%)

70–79 114 (21.3%) 83 (27.2%)

>80 26 (5%) 6 (2.0%)

Tumor Stage (num, %)

Stage I 268 (54.4%) 136 (44.6%)

Stage II 118 (24.0%) 57 (18.7%)

Stage III 80 (16.3%) 91 (29.8%)

Stage IV 25 (5.1%) 19 (6.2%)

Not report 2 (0.4%) 2 (0.6%)

Radiation Therapy (num, %)

Yes 57 (11.6%) na

No 341 (69.2%) na

Not report 95 (19.3%) na

Histological grade

Well-differentiated na 17 (5.6%)

Moderately-differentiated na 134 (43.9%)

Poorly differentiated na 30 (9.8%)

Not report na 124 (40.7%)

Smoking History

Yes 412 (83.6%) 112 (36.7%)

No 67 (14.0%) 189 (62.0%)

Not report 14 (2.4%) 4 (1.3%)

Mutation Count

High (>51) na 149 (48.9%)

Low (<51) na 153 (50.2%)

Not Report na 3 (0.9%)

Survival Time

OS months (median) 36.3 21.4
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< 0.05) using univariate Cox proportional hazards regression analysis in
the training set (Figure 3A). Twelve of the 26 DEGs were low-risk genes,
and the other 14 DEGs were high-risk genes for OS in LUAD patients. The
co-expression analysis of these genes was shown in Figure 3B. Then,
LASSO Cox regression analysis was performed to establish the prognostic
model. Here, we determined a signature containing 12 genes, including
TYMS, ADAM12, GJB2, KRT8, LYPD3, ECT2, PSTPIP1, NDRG2, MAP3K3,
SMAD9, ADM and ID2, based on the best λ value (Figure 3C and D).
Further, we verified the expression of these 12 genes in GSE33532 [29],
GSE30219 [30] and GSE19804 [31] databases from the GEO database,
they are indeed differentially expressed in normal lung tissues and tumor
tissues of LUAD patients (Supplementary Figure 1). Then we obtained the
following risk score calculation model:

Risk Score¼ 0.08� geneExp (TYMS) þ 0.03� geneExp (ADAM12)þ 0.01�
geneExp (GJB2) þ 0.08 � geneExp (KRT8) þ 0.04 � geneExp (LYPD3) þ
0.01 � geneExp (ECT2) þ 0.09 � geneExp (ADM) – 0.14 � geneExp
(PSTPIP1) – 0.06� geneExp (NDRG2) – 0.05� geneExp (MAP3K3) – 0.09�
geneExp (SMAD9) – 0.06 � geneExp (I D2)

The median risk score value was used to classify patients into a high-
risk group and a low-risk group (Figure 4A). According to t-SNE analysis,
patients in the high-risk group and low-risk groupwere distributed in two
clusters (Figure 4B). In addition, as shown in Figure 4C, the OS decreased
with the increase of risk value. Similarly, the OS in the high-risk group
was significantly worse than the OS in the low-risk group (Figure 4D).
3

Finally, we evaluated the predictive performance of the risk model using
the time-related ROC curve, and the area under the curve (AUC) reached
0.798 at 1 year, 0.669 at 2 years and 0.695 at 3 years (Figure 4E). These
results demonstrate that our model can effectively predict the prognosis
of LUAD patients.

Verification of the 12-gene signature in the OncoSG cohort: To
test the validity of the model constructed with the TCGA cohort, we used
the gene expression data in the OncoSG LCCS cohort to calculate the risk
score of patients based on the formula constructed above, then divided
patients into high-risk group and low-risk group (Figure 5A). The results
obtained were similar to those in the TCGA cohort. The OS decreased
with the increase of risk value (Figure 5B). The t-SNE analysis revealed
that patients in different risk groups were distributed in two clusters
(Figure 5C). Similarly, patients in the low-risk group had a better overall
survival rate (Figure 5D). In addition, the time-related ROC curve anal-
ysis indicated that the AUC with those 12-gene markers was 0.798 at 1
year and 0.803 at 2 years (Figure 5E). This finding shows that our model
is not only applicable to the TCGA cohort, but it also has a high prog-
nostic ability in the OncoSG cohort.

Comparison with other signatures of LUAD: There are some
already published prognostic signatures for lung adenocarcinoma, but
the genes they used to build the model were not so strongly associated
with cancer development, and they didn't compare it with other signa-
ture. Therefore, We calculate the risk scores of patients in the two
additional databases, GSE30219 and GSE31210 [32], using the method
applied in this paper and the method mentioned in Liu et al [33] and
Huang et al [34], respectively. It can be clearly seen from the results that
the signature constructed in this paper has a better prediction effect,
while the signature in Liu et al only has a good predict performance in
GSE31210 data set, and the signature in Huang et al has a poor predict
performance in both data sets (Supplementary Figure 2). This is further
proof that the signature we built has more accurate predictive results and
it's more suitable to predict the prognosis of lung adenocarcinoma.

Independent prognosis value of the 12-gene signature: Further-
more, we explored whether the risk value can independently affect the
survival prognosis of patients. The results of the univariate Cox analysis
are shown in Table 2. Tumor stage, age, smoking status and risk value
were significantly related to prognosis in the TCGA cohort (Table 2). The
multivariate Cox analysis result showed that the risk score model was
significantly correlated with OS [hazard ratio (HR) ¼ 2.01, 95% confi-
dence interval (CI) ¼ 1.41–2.93, P < 0.01) in the TCGA training cohort.
We obtained similar results in OncoSG cohort, and the univariate Cox
analysis indicated that tumor stage and risk value were significantly
related to the prognosis of LUAD patients. The nomograms of this model
in the training set and the testing set are shown in Supplementary
Figure 3.

Functional Annotation of the Signature of 12 EMT-Related
Genes: To explore the biological functions and pathways related to the
risk model in LUAD patients, we conducted KEGG and GO analysis of the
DEGs between the high-risk group and the low-risk group. The results
showed that the DEGs were enriched in several EMT-related biological
processes, such as focal adhesion and cell-substrate adhesion (P < 0.001)
(Figure 6A, B and C). In addition, these genes were highly enriched in
immune-related pathways, including the IL-17 signaling pathway, regu-
lation of T-helper 1 cell cytokine production and cytokine secretion (P <

0.001). Through GESA analysis, we obtained results similar to those
above. EMT pathways, angiogenesis and TNFα signaling via NFKB were
significantly enriched (Figure 6D and E). Similar results were observed in
the OncoSG cohort (Supplementary Figure 4A).

Associations of EMT-related gene risk scores with immune cell
infiltration: The enrichment analysis showed in the Figure 6 revealed
that EMT-related gene risk scores were highly relevant to the immune
status. We calculate the enrichment scores of multiple immune cell
subpopulations using CIBERSORT.

Interestingly, CD8 T cells and naive B cells were significantly enriched
in the low-risk group. However, some immune cells, such as macrophages



Figure 1. Identification of candidate genes related to EMT in the TCGA cohort. (A) t-SNE analysis of TCGA cohort. (B) The Venn diagram analysis of DEGs in the local
and online tool analysis. (C) Venn diagrams used to identify DEGs related to EMT. (D) The expression heatmap of some DEGs between normal and cancer tissues. (E)
Enrichment analysis of 251 EMT-related DEGs using MsigDB: HALLMARK and KEGG databases.

Figure 2. Screening of EMT-associated DEGs related to LUAD tumor stage. (A) The expression trends of three example EMT-related genes that were upregulated in
tumor. (B) The expression trends of three example EMT-related genes that were downregulated in tumor. The correlation analysis was performed with the online tool
GEPIA. The method for differential gene expression analysis was a one-way ANOVA using the pathological stage as a variable for calculating differential expression.
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Figure 3. Establishment of the prognostic risk model in the TCGA cohort. (A) Univariate Cox analysis identified 26 EMT-related DEGs that were correlated with the
overall survival of LUAD patients. Red lines indicate high-risk genes, and black lines indicate low-risk genes. (B) Co-expression analysis of genes in the final signature.
(C) 1,000-fold cross-validation for tuning parameter selection in the least absolute shrinkage and selection operator model. (D) LASSO coefficient profiles of the most
useful prognostic genes. Each line indicates an individual gene in the LASSO model.

Figure 4. Prognostic analysis of 12-gene signature model in the TCGA cohort. (A) Distribution of risk scores in TCGA cohort. (B) t-SNE analysis of TCGA cohort. (C)
Distribution of OS status, OS and risk score in TCGA cohort. (D) Kaplan–Meier curve of OS for patients in the high-risk group and low-risk group. (E) The AUC of the
ROC curve over time in the TCGA cohort.
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and activated dendritic cells, were significantly enriched in the high-risk
group in the TCGA cohort (Figure 7, all adjusted P < 0.05). These results
were consistent with the previous functional enrichment analysis.
5

Immune infiltration analysis of the OncoSG cohort showed that in
addition to CD8 T cells, activated CD4 T cells and natural killer cells were
also enriched in the low-risk group (Supplementary Figure 4B).



Figure 5. Verification of the 12-gene signature in the OncoSG cohort. (A) Distribution of risk scores in the OncoSG cohort. (B) t-SNE analysis of OncoSG cohort. (C)
Distribution of OS status, OS and risk score in the OncoSG cohort. (D) Kaplan–Meier curve of OS for patients in the high-risk group and low-risk group. (E) The AUC of
the ROC curve over time in the OncoSG cohort.

Table 2. Univariate and multivariate Cox analysis of the 12-gene signature in the two LUAD cohorts.

Factors TCGA-cohort (Training) LCCS-cohort (Validation)

Univariate Cox analysis Multivariate Cox analysis Univariate Cox analysis Multivariate Cox analysis

HR (95% CI) p HR (95% CI) P HR (95% CI) p HR (95% CI) p

Gender

Male Reference Reference

Female 1.32 (0.74–1.87) 0.42 1.49 (0.84–2.81) 0.21

Age

Young (>60) Reference Reference

Old (<60) 1.36 (0.98–2.01) 0.05 1.21 (0.62–1.54) 0.23 1.53 (0.88–1.98) 0.14

Stage

Low (Stage i, stage ii) Reference

High (stage iii, stage iv) 1.98 (1.21–2.78) <0.01 1.67 (0.89–2.48) 0.01 2.05 (1.45–2.84) <0.01 1.85 (1.21–2.36) 0.02

Histological Grade

Well differentiated Reference

Poorly differentiated 1.35 (0.75–1.47) 0.122

Radiation Therapy

Yes Reference

No 1.12 (0.78–1.23) 0.51

Smoking History

No Reference Reference

Yes 1.32 (0.87–1.65) 0.05 1.54 (0.98–2.87) 0.12 1.52 (0.8–2.9) 0.21

Risk Score

Low risk Reference Reference

High risk 2.12 (1.14–2.95) <0.01 2.01 (1.41–2.93) <0.01 1.51 (1.21–2.08) <0.01 1.23 (0.98–1.52) 0.04
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4. Discussion

In this study, we used public LUAD gene expression datasets to
identify 12 EMT-related genes that can be used as prognostic predictors
of LUAD. For the first time, we established a 12 EMT-related gene sig-
natures and validated it in the OncoSG cohort, providing a novel prog-
nostic model of LUAD related to EMT. Significantly, this model showed
good prognostic value in TCGA and several other datasets. Besides,
6

compared with other published signatures in LUAD, the signature con-
structed in this paper has better stability and accuracy.

It is well known that LUAD is a malignant disease with high het-
erogeneity. Even for patients with similar clinical characteristics and
medical histories, their prognoses vary substantially. Previously, the
prediction of prognosis in LUAD patients was largely dependent on
clinical and pathological analysis, but these methods are insufficient. It
is difficult to detect tumor metastasis and recurrence in the early stages.



Figure 6. Functional analysis of risk model in TCGA cohort. (A–C) KEGG pathway, GO biological process and GO molecular function analysis of the DEGs between
high-risk group and low-risk group. (D–E) GESA analysis of the high-risk group and low-risk group.

Figure 7. Comparison of the immune-related cells' scores between different risks groups in the TCGA cohort. The scores of 16 immune cells and their different cell
states are displayed in boxplots.
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With the advances in molecular biology and genomics, significant
progress has been made in the prediction of tumor occurrence and
development from a more microscopic and genetic perspective [35, 36,
37]. For example, 16 genes related to the survival of NSCLC patients
were identified through the analysis of microarray data and risk scores,
and multiple genes, including DUSP6, MMD, STAT1, ERBB3 and LCK,
were selected as a gene signature. The results showed that five gene
markers were closely related to the OS rate (sensitivity ¼ 98%, reso-
lution ¼ 93%, forward prediction conversion rate ¼ 95%, reverse pre-
dictor variable ¼ 98%, overall accuracy ¼ 96%) [37]. In another study,
researchers conducted a meta-analysis of datasets from seven different
microarray studies of NSCLC to analyze DEGs related to the survival
time (below 2 years and more than 5 years). Kaplan–Meier analysis of
the OS rate in stage I of NSCLC patients with 64 gene expression
characteristics showed that there was a significant difference between
the OS rate in high-risk and low-risk groups [36]. However, most of
those genes were shown to be highly expressed in the early stages of
LUAD tumors. More importantly, these genes were not closely related to
tumor metastasis or recurrence, which suggests that these gene signa-
tures may fail in predicting the OS rate and recurrence-free survival of
LUAD patients. So we compare our signature with two other signatures,
which are constructed by glycolysis-related genes [33] and stem
cell-related genes [34]. As expected, the signature constructed by
EMT-related genes has a better stability and accuracy in predicting the
OS of LUAD patients.

Immune infiltration of tumors is tightly related to clinical outcomes in
LUAD [38]. Tumor-infiltrating immune cells (TIICs) affect the progres-
sion of cancer and are appealing therapeutic targets [39]. EMT has been
an active research area in cancer biology in the past few years, however,
the potential regulatory role between EMT and LUAD immunity is still
elusive.

We performed KEGG and GO enrichment analysis based on the DEGs
between high-risk group and low-risk group. Unexpectedly, our findings
suggest that several biological pathways correlated with immunity have
been enriched. The patients in high-risk groups in TCGA and OncoSG
cohort have a higher fraction of macrophage M0, macrophage M2 and
activated dendritic cells, on the contrary, CD8 T cell and memory CD4 T
cell enriched in the low-risk group. Tumor killer cells were significantly
reduced in the high-risk group, suggesting that EMT-related high-risk
genes inhibit the immune response to tumor cells to some extent. Simi-
larly, it has been reported that T cell differentiation in lung adenocarci-
noma is shaped by tumor mutations [40] and EMT signature is inversely
associated with T-cell infiltration in NSCLC [41]. So, the EMT-related
high-risk genes may be a potential target for adenocarcinoma immuno-
therapy. Besides, Over the past decades, substantial literature has linked
EMT to the pathophysiology of chronic obstructive pulmonary disease
(COPD) [42, 43, 44], which is a recognized strong independent risk
factor for the development of lung cancer. Our analysis results also
showed that smoking status was significantly related to the risk grade.
Abnormal phenotypes of M1/M2 macrophages in the small airway wall
have been reported in smokers and those with COPD [45], and our
analysis of immune infiltration showed that M0 and M2 macrophages
were enriched in the high-risk groups, indicating that EMT-related genes
may be involved in its progression of COPD by influencing the immune
process.

There are limitations to this study. First, this study mainly focused
on the role of EMT in predicting the prognosis of LUAD and did not
investigate many other oncogenic genes that are actively involved in
LUAD tumor cell proliferation and invasion. Secondly, the risk predic-
tion model designed based on different EMT status markers may be
more accurate in predicting the prognosis of patients because EMT is a
state composed of various intermediate states rather than just epithelial
and mesenchymal two status. Thirdly, this is a retrospective study
driven by a hypothesis, and all data were obtained from public data-
bases, therefore, the results still require relevant experimental and more
clinical verification.
8

5. Conclusion

In summary, our study established a novel LUAD prognosis model
based on EMT-related genes. This model has been demonstrated to be
independently related to OS in TCGA and several other cohorts, and the
prediction of our model is more accurate than some of the other gene
signatures of LUAD. More importantly, these genes can be detected by
RT-PCR, which is straightforward to use in a clinical setting. Our findings
provide important indicators for the prognosis prediction of LUAD pa-
tients and a potential target for adenocarcinoma immunotherapy.
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