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Abstract

It is standard practice to model site-to-site variability of substitution rates by discretizing a

continuous distribution into a small number, K, of equiprobable rate categories. We demon-

strate that the variance of this discretized distribution has an upper bound determined solely

by the choice of K and the mean of the distribution. This bound can introduce biases into sta-

tistical inference, especially when estimating parameters governing site-to-site variability of

substitution rates. Applications to two large collections of sequence alignments demonstrate

that this upper bound is often reached in analyses of real data. When parameter estimation

is of primary interest, additional rate categories or more flexible modeling methods should

be considered.

Introduction

The inclusion of site-to-site rate variability in evolutionary models for DNA sequences better

reflects underlying biology and has been shown to almost universally improve model fit.

Therefore, the use of such models has become commonplace. The earliest practical models for

allowing nucleotide substitution rates to vary across sites [1] assumed a gamma distribution of

rates controlled by a single shape parameter, α. Methods incorporating the continuous gamma

distribution proved to be too computationally expensive when applied to larger data sets, and

this fact led to the development of methods based on discretizing the continuous distribution

into a small number, K, of equiprobable rate categories [2]. This “discrete gamma” approach

proved to be an effective compromise of biological realism and computational complexity, and

it has evolved into the de facto standard technique for modeling the evolution of molecular

sequences. Yang [2, 3] showed that in terms of measures of model fit, there is typically little to

be gained by using more than a few rate categories. Coupled with the fact that the computa-

tional expense increases linearly as additional categories are added, the community rather

quickly converged on choosing K = 3 to 5 categories. While the computational cost of choosing

larger values of K was once significant, that is no longer the case for most data sets- even very

large ones. In this work we demonstrate that while there may be limited value for using more
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rate categories in terms of model fit, adding these additional categories offers important

improvements in terms of statistical bias and robustness when a primary goal is to actually esti-

mate the parameter values of the underlying rate distributions. Specifically, we demonstrate

that the choice of K places a mathematical upper bound on the variance of the rate distribution

when standard discrete gamma techniques are employed. This bound has important conse-

quences when we estimate quantities such as the coefficients of variation of synonymous and

nonsynonymous substitution rates. Using two large collections of data sets we show empiri-

cally that this bias is not simply of theoretical concern, but can have substantive practical

impacts on our analyses and inferences.

Results and discussion

As noted above, the most common approach for modeling site-to-site variability of substitu-

tion rates is by using a discretized version of a continuous probability distribution, most often

the gamma. We begin this section by proving a general mathematical result showing that the

discretization process imposes an upper bound on the variance of the distribution. This result

applies not only to the case of the discretized gamma, but to any discrete distribution with

equiprobable rates.

Consider a non-negative discrete-valued random variable X with mean μ and K equiproba-

ble possible values 0� X1� X2 . . .� XK, where Pr{X = Xi} = 1/K. It follows that

VarðXÞ :¼ EðX2Þ � m2

¼ 1

K

PK
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X2
i � m

2

� 1
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The inequality of the third line holds because all Xi are non-negative. Indeed, all higher

moments of the discrete distribution are subject to similar bounds:

EðXnÞ :¼ 1

K

PK
i¼1

Xn
i

� 1
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n

¼ Kn� 1ð
PK
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Consequently, if the true variance of a continuous distribution exceeds the upper bound

imposed by choice of K, estimates derived from the discretized version of that distribution

will necessarily be negatively biased. The coefficient of variation (CV) of X, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞ

p
=EðXÞ, is an important quantity in studies of rate variation and the neutral theory

(cf [4]). Application of the variance result above demonstrates that its estimates are bounded

above by
ffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p

if derived using standard equiprobable discretization techniques.

The most common model for site-to-site rate variation is the gamma distribution with unit

mean and shape parameter α, and the estimate of α is typically used to quantify the amount of

site-to-site variability. One can estimate the variance (or CV) of this distribution in several

ways. Some quantities, such as variance, are simple functions of α. If they are derived by

Impact of discretized models on estimates of substitution rate variability

PLOS ONE | https://doi.org/10.1371/journal.pone.0229493 March 2, 2020 2 / 6

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0229493


plugging an estimate of α into the desired function, the upper bound bias problem is largely

avoided. However, using such a plug-in estimate implies that we assume the continuous

gamma distribution accurately describes the distribution of rates across sites. In addition to

those robustness issues, there is also evidence that the α estimate itself is negatively biased [5,

6]. The more common approach, and the one we use in this work, estimates these quantities

directly from the discretized distribution (i.e., directly from the Xi) and can lead to significant

bias. Such a situation arises whenever there is no simple functional relationship between α and

the quantity of interest, or when one prefers not to rely on a fully parametric description of the

rate distribution. One common application would be empirical Bayes analysis to infer rates at

individual sites [7].

The technique of discretizing a continuous distribution offers substantial computational

advantages over modeling approaches using the full continuous distribution, and it adds only

a small number of parameters to be estimated (the single shape parameter α in the case of the

gamma). However, this parametric choice also imposes restrictions on the overall shape of the

rate distribution. For instance, it eliminates the possibility of bi-modal or U-shaped distribu-

tions. It is possible— but rarely implemented— to avoid this by using a general discrete distri-

bution (GDD, [7, 8]). In such an approach the user chooses a number of categories of rates for

their data, and then the values of those rates and their frequencies are estimated. Thus, with

each additional category one adds two parameters to be estimated– the rate itself, and the frac-

tion of sites evolving with that rate. In what follows we also consider the performance of this

GDD approach for parameter estimation, in order to highlight the underappreciated estima-

tion bias of certain distributional quantities that is the result of using today’s “default” models

of rate variation.

In Fig 1 we plot the estimated CVs of synonymous (horizontal axis) and nonsynonymous

(vertical axis) substitution rates obtained using both the discrete gamma and the GDD proce-

dures. These estimates come from collections of 721 mitochondrial gene alignments (left) and

1, 000 nuclear gene alignments (right). For the discrete gamma approach, the discretization-

induced upper bound is reached for many alignments, primarily when estimating the CV of

the nonsynonymous rate distribution. As the number of categories K increases from 3 to 10,

progressively fewer alignments yield estimates that reach the upper bound: 13.7% for K = 3,

but only one for K = 10 in the mtDNA genes. For the nuclear genes those values are 4.1% for

K = 3 and none for K = 10. (In all cases a handful of estimates fall very close to the upper

bound without actually reaching it).

While increasing the number of categories greatly reduces the number of data sets reaching

the upper bound, use of the GDD for estimation completely eliminates this problem. It is

immediately evident upon comparing the left (discrete gamma) and right (GDD) plots that

use of the discrete gamma significantly reduces the range of both synonymous and nonsynon-

ymous CV estimates, even when the upper bound is not reached. A reasonable response to the

behavior seen in these plots is to suggest that one should always use GDD- it eliminates the

upper bound issue, and even for 10 rate categories (where the upper bound is rarely reached)

the distributions of discrete gamma CV estimates are visibly compressed relative to those in

the GDD plots. This is not bad advice, but one must also take into consideration the impacts

on computation time and on statistical variability. The computational burden of switching

from discrete gamma to GDD is real, but typically not prohibitive with modern computing

and datasets of typical size. In the analyses presented here, for example, shifting from a 4 × 4

discrete gamma approach to a 4 × 4 GDD resulted in about a 25% increase in computing time.

Adding categories to the discrete gamma distribution is far more costly, with the move from

3 × 3 to 10 × 10 increasing compute times 8- to 10-fold. In terms of statistical variability, add-

ing categories to the discrete gamma does not add any parameters to the model, since the
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Fig 1. Impact of the number of rate categories and choice of estimation procedure on estimates of CV. For each of 13 mtDNA genes for 56

metazoan orders (721 total alignments, left plots), and for 1, 000 nuclear gene alignments (right plots) from the Selectome database, the estimated

coefficients of variation (CV) for nonsynonymous rates (vertical axis) and synonymous rates (horizontal axis) are plotted for an increasing number of

rate categories, K = 3, 4, 5, 7, 10. The plots in the left half of the figure show estimates obtained using the standard discrete gamma approach, while those

in the right half were found using the GDD. The solid lines in each subplot mark the maximum possible CV estimate for the discrete gamma approach,
ffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p

. Observe that as the number of rate categories increases, fewer estimates reach the upper bound for the discrete gamma; estimates for the GDD

have no such constraint, regardless of the number of rate categories. Please note that the axes do not use a linear scale.

https://doi.org/10.1371/journal.pone.0229493.g001
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additional categories are simply helping to provide a better approximation of the likelihood

surface. When categories are added to the GDD analysis, however, two parameters (a rate and

its frequency) are added with each additional category. Thus, one could rather quickly find a

number of parameters in their model that are doing little more than adding unnecessary vari-

ability to estimates. On the positive side, the GDD plots reveal that a relatively small number of

categories is typically sufficient to capture most of the range of the CV estimates.

To summarize, when one’s primary objective is to obtain accurate parameter estimates, the

current standard of using the discrete gamma with a small number of rate categories is likely

to yield negatively-biased estimates for many data sets as a result of the upper bound imposed

by this approach. Increasing the number of categories is beneficial as it reduces the impact of

the upper bound problem, and using the GDD with four or five categories is even more sound

practice. If accurate estimation of parameters such as the CV is not central to the study, or if

rate variation is a nuisance parameter— as is often the case in phylogenetic inference— then

the standard discrete gamma approaches with four or five rate categories will likely suffice.

Materials and methods

The results discussed above and displayed in Fig 1 are based on analyses of two large collec-

tions of data sets. From GenBank we compiled a set of complete mtDNA genome sequences

representing 56 metazoan orders. We limited our collection to orders with at least 5 taxa pres-

ent, and selected a phylogenetically representative set of 25 taxa for orders where larger num-

bers were available. This process yielded a total of 721 total mtDNA data sets. Since the nature

of molecular evolution varies between nuclear and mitochondrial genomes, we also selected 1,

000 alignments from the Selectome database [9]. The mtDNA sequences were aligned at the

gene level using the MUSCLE [10] algorithm as implemented in Mesquite v. 2.74 [11]. The

individual gene alignments were then concatenated using FASconCAT [12], and these parti-

tioned alignments were used to create trees with MrBayes v3.2.1 [13]. Trees for each gene

within a genome alignment were forced to be the same, but each gene was given its own evolu-

tionary parameters. The nuclear gene alignments and trees provided by Selectome were used

without modification.

All DNA sequence alignments and trees used in this study are available for download at

https://github.com/srwis/variancebound. Analyses of these data files were carried out with

HyPhy [14], using the dNdSRateAnalysis batch file [15] available at https://github.com/veg/

hyphy/. The discrete gamma estimates were obtained using that batch file’s option 1: [Syn:

Gamma, Non-syn:Gamma]; the GDD estimates were found using option 3: [Independent

Discrete].
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