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Abstract: 
Predicting functions of proteins and alternatively spliced isoforms encoded in a genome is one of the important applications of 
bioinformatics in the post-genome era. Due to the practical limitation of experimental characterization of all proteins encoded in a 
genome using biochemical studies, bioinformatics methods provide powerful tools for function annotation and prediction. These 
methods also help minimize the growing sequence-to-function gap. Phylogenetic profiling is a bioinformatics approach to identify 
the influence of a trait across species and can be employed to infer the evolutionary history of proteins encoded in genomes. Here 
we propose an improved phylogenetic profile-based method which considers the co-evolution of the reference genome to derive 
the basic similarity measure, the background phylogeny of target genomes for profile generation and assigning weights to target 
genomes. The ordering of genomes and the runs of consecutive matches between the proteins were used to define phylogenetic 
relationships in the approach. We used Escherichia coli K12 genome as the reference genome and its 4195 proteins were used in the 
current analysis. We compared our approach with two existing methods and our initial results show that the predictions have 
outperformed two of the existing approaches. In addition, we have validated our method using a targeted protein-protein 
interaction network derived from protein-protein interaction database STRING. Our preliminary results indicates that 
improvement in function prediction can be attained by using coevolution-based similarity measures and the runs on to the same 
scale instead of computing them in different scales. Our method can be applied at the whole-genome level for annotating 
hypothetical proteins from prokaryotic genomes.  
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Background: 
Predicting the functions of uncharacterized proteins from their 
sequence is one of the major goals of bioinformatics. Large-scale 
genome projects and high-throughput experiments are 
generating enormous amounts of data. The central challenge of 
bioinformatics however, is to derive biologically valid 
information to understand the function of proteins. The concept 
of protein function is highly context-sensitive and typically acts 

as an umbrella term for all types of activities that a protein is 
involved in, be it cellular, molecular, metabolic, structural or 
physiological mechanisms. Proteins play a crucial role in 
mediating function in different contexts by interacting with 
other biological macromolecules or small molecules [1-3]. The 
functions of proteins in different cellular or pathological 
contexts were previously deciphered through biochemical 
experiments. However, irrespective of the validated functional 
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data, these approaches have low throughput because of the 
experimental effort required in analyzing a single gene or 
protein. Due to such limitation of experimental methods for 
functional characterization, a large fraction of proteins in the 
protein sequence database remains un-annotated. 
Approximately 20%, 7%, 10% and 1% of annotated proteins in 
the Homo sapiens, Mus musculus, Drosophila melanogaster and 
Caenorhabiditis elegans genomes respectively, have been 
experimentally characterized [4]. The delay in the experimental 
characterization of the biochemical role of proteins resulted in a 
continually expanding sequence-function gap [3, 5]. This may 
further hinder the systematic understanding of the biological 
processes or molecular mechanisms mediated by them. To 
minimize such sequence-to-function gap various bioinformatics 
procedures have been proposed to predict the functional 
mechanisms associated with a protein and its role in mediation 
complex diseases including cancer [6-8]. In a typical function 
association experiment, researchers have been using nucleotide 
sequences in case of genes, or amino acid sequences in case of 
proteins to determine the function of genes or the 
corresponding proteins [9]. This approach relies on the fact that 
sets of genes that have sufficiently similar sequences may also 
perform the same function. The explosive growth of the amount 
of sequence information available in public databases has made 
such an approach particularly accurate. Phylogenomics 
approaches [10, 11] can be considered as a useful tool in 
functional genomics, personalized medicine and genomic 
medicine [12, 13] due to its predictive power. Several database 
and webservers that utilize the phylogenomic information for 
functional inference of related proteins are available. Multiple 
approaches are currently available to investigate the 
mechanisms leading to the accomplishment of a protein’s 
function and its therapeutic role. These procedures have 
generated a wide variety of useful data such as gene expression 
data sets [9, 14-17], phylogenetic data [6, 18-27] and protein 
interaction networks [7]. These data sets offer various insights 
into a protein’s function and related concepts. Recently, protein 
structural data was also analyzed in the perspective of 
phylogeny and the pathogenic role of functional variants were 
also assessed from evolutionary perspective to understand the 
role of non-synonymous variations and disease phenotypes 
[28]. In this study, we considered phylogenetic profiles [1-3] 
that come under phylogenetic data category for predicting the 
function of gene products [10, 11, 29]. The phylogenetic profile 
of a protein is a binary vector whose length is the number of 
available genomes. The vector contains a 1 in the ith position if 
the ith genome contains a homologue of the corresponding gene, 
and 0 otherwise. Phylogenetic profiles were used as a 
quantitative method to annotate proteins, derive evolutionary 
relationships [25, 30], examine functional transfer between 
whole genomes, predict functionally linked proteins [21, 27, 29, 
31, 32], correlate genotype and phenotype [30], predict 
metabolic activities [23] and conduct network analysis 
including network organization [22, 31, 33].  
 
In this paper we propose a new method using the weighted 
hypergeometric probabilistic approach to incorporate two 
important aspects of functional relatedness. We considered the 
co-evolution of the reference genome that gives the basic 
similarity measure, which is the background phylogeny of 
target genomes for profiles generation and the ordering of 
genomes was used to derive phylogeny. We compared our 

results with existing approaches such as weighted 
hypergeometric probability without runs, weighted 
hypergeometric probability with runs. Our work focuses on the 
Escherichia coli K12 genome where we considered 305 genomes 
for phylogenetic profiles generation. Functional interactions 
(protein-protein interactions in this context) were extracted 
from the STRING database for the validation of generated 
functional interactions [34]. Our experimental results show the 
accuracy achieved by incorporating the phylogeny in addition 
to the similarity measure for identification of functionally 
linked proteins that could include the same pathways or 
pathophysiological mechanisms. The concept of phylogenetic 
profiles was introduced and extensively used in function 
association in the seminal work by Pelligrini et al [6, 18].  Earlier 
work in the analysis of phylogenetic profiles can be briefed into 
three categories based on the measure used to compare pairs of 
proteins. During the initial stage of application of phylogenetic 
profiles in functional correlation studies, more emphasis was on 
various ways of comparing two phylogenetic profiles. These 
methods ignored the underlying phylogeny of the organisms. 
The underlying hypothesis was that proteins, which function 
together in a pathway or a protein complex, are likely to have a 
similar evolutionary path [6, 18]. Enault [35] proposed an 
approach for relaxing phylogenetic profiles particularly for the 
annotation of bacterial genomes. The modification suggested 
here is to use the normalized BLAST score [36] denoting the 
best match for a protein in a genome, instead of using a 0 or 1. 
Wu et al. advocated the use of more general measures of 
similarity for pairs of phylogenetic profiles [20]. Three 
popularly used measures of similarity, namely the Hamming 
distance (D), Pearson’s Correlation Coefficient (r) and mutual 
information (MI) were evaluated for the task. The second 
category of work used the underlying phylogeny of organisms 
and also the relative positions of the genomes while generating 
phylogenetic profiles. Vert and others proposed the use of 
support vector machines (SVM) for learning protein functions 
from their phylogenetic profiles [19, 37, 38]. However, instead 
of the common kernel functions such as linear kernels used in 
SVMs, a tree kernel is proposed to calculate the similarity of the 
profiles in higher dimensional space used by SVM. Narra et.al 
used the extended real-valued profiles to the above approach 
[39]. Here, all the internal nodes of the phylogenetic tree were 
also assigned scores equal to the average scores at their child 
nodes. An extended profile can be constructed for each protein 
by a post-order traversal of the tree. Recently, Kotaru and Joshi 
proposed a method for classification of phylogenetic profiles 
using supervised machine learning method which supports 
vector machine classification along with radial basis function as 
kernel for identifying functionally linked proteins [40]. In 
evaluation using three-fold cross validation on the same data, 
performance of the radial basis kernel is similar to polynomial 
kernel. In case of some functional classes application of both 
kernels together were better than linear and tree kernel [19], 
and over all radial basis kernel have shown to outperform the 
polynomial kernel [39], linear kernel and tree kernel [19]. The 
third category of work is an approach that considers only an 
ordering of genomes and not a full phylogenetic tree. Cokus et 
al. proposed a method based on similar kind of metric, which 
considers ordering of genomes and clustering optimization 
using swiveling technique [41, 42]. They showed that such an 
approach superior to the first class of metric that considered 
only co-evolution because the current method considers both 
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co-evolution and phylogeny. One drawback such method was 
while calculating the runs probability in the conditional 
probability, rather than considering the runs of the proteins, the 
similarity was taken as the right side of conditional probability. 
 
Methodology: 
The phylogenetic profile of a protein can be described as a 
string that encodes the presence or absence of the protein from 
the reference genome in every sequenced target genome. It is a 
binary vector whose length is the number of sequenced target 
genomes. The vector contains 1 in the ith position if the ith 
genome contains a homologue of the corresponding gene, else a 
zero [6, 18, 41]. The homologue of the genes is obtained using 
the BLASTP (protein-protein Basic Local Alignment Search 
Tool) algorithm [36]. Phylogenetic profiles were generated 
using 305 prokaryotic genomes using proteome sequences 
downloaded from NCBI database http://www.ncbi.nlm. 
nih.gov/ [43]. Profiles were computed for each target organism 
using BLASTP searches (using an e-value 0.01) [36] to define the 
presence and absence of homologs across the genomes. All the 
4,195 genes encoded in the genome of Escherichia coli K12 were 
used as query for sequence searches they have the most 
comprehensive annotations and therefore allow us to accurately 
assess the performance of methods. We believe similar to 
previous methods that used phylogenetic profiles for gathering 
functionally similar proteins in a high-throughput manner from 
sequence approach, the proposed approach can be applied to 
other fully sequenced genomes.  
 
A modified weighted hypergeometric probability method 
The proposed method considers both similarity and 
background phylogeny. Briefly the whole methodology is as 
follows: identifying the order of the genomes using the 
hierarchal clustering and optimal leaf ordering algorithm; then 
calculating the two probabilities of the similarity and runs 
between a given pair of proteins; and finally calculating the 
total score which gives the functional relatedness between the 
pair of proteins using the above two probabilities. This is 
similar to the model Cokus et al [41]. The proposed method was 
formulated based on two basic hypotheses. The first basic 
hypothesis is based on the similarity between the two given 
proteins. The second hypothesis is based on the runs of 
consecutive matches both the proteins span. Here, a run was 
defined as the maximal non-empty string of consecutive 
occupancy matches between two phylogenetic profiles. For 
calculating runs the ordering of genomes is important because 
the number of runs generally changes as target genomes were 
permuted. The ordering of genomes is established such that the 
order reflects the evolutionary relationships among the target 
genomes [44]. Further for hierarchal clustering, we used the 
target genomes’ phylogenetic profiles. For calculating the 
distance matrix, we used Jaccard dissimilarity to measure the 
distance between two genomes. Complete linkage was used 
here to define the pairs using the largest distance between 
objects in the two clusters. Here, we used the ordering of the 
genomes that are the leaves of the tree generated from 
clustering. We have used the complete dendrogram obtained in 
the above step to infer the co-clustering pattern. Hierarchal 
clustering is generally topological in nature and there is an 
ambiguity about the ordering of genomes, we used optimized 
swiveling approach to handle such ambiguities. . A detailed 
explanation of the concept of runs, ordering of genome and 

optimal swiveling is available elsewhere (See Cokus et al [41]). 
In short, the two basic hypotheses of our proposed method are: 
1) The greater the similarity, the more the proteins that are 
functionally related [6, 18]; 2) The profiles with more runs are 
more likely to involve functionally related proteins than profiles 
in which all the matches are concentrated in one interval of the 
tree [41].  
 
The weighted hypergeometric similarity probability was 
defined as the probability of two phylogenetic profiles having a 
certain number of matches using an extension of the 
hypergeometric distribution that accounts for number of 
proteins in each genome. The basic assumption was based on 
biologically plausible hypothesis that protein pairs with more 
matches in their profiles are more likely to co-evolve. We used 
the same similarity probability defined by Cokus et al. [14]. The 
similarity probability for a pair of genes (Gene 1 and Gene 2) is 
defined as the number of genomes that have the first gene 
(Gene 1) is a >= 0, the number of genomes that have the second 
gene (Gene 2) is b >= 0 and the number of genomes that have 
both genes (Gene 1 and Gene 2) is c >= 0. The similarity P-
value, the number of genomes with both genes, is at least as 
large as c, given that a and b are defined using equation (1).  
 
P (c >= observed |a, b) = P(c >= observed, a, b)/ P (a, b) 
                                                     
Where a = number of genomes with Gene 1; b = number of 
genomes with Gene 2; c = number of genomes with Gene 1 and 
Gene 2.  
 
The weighted hypergeometric runs probability was defined as 
the probability of two profiles having a certain number of runs 
using an extension of the hypergeometric distribution that 
accounts for the number of proteins in each genome.  
 
The runs probability for a pair of genes (Gene 1 and Gene 2) 
was defined as the number of runs that have the first gene 
(Gene 1) in some number r >= 0, the number of runs that have 
the second gene (Gene 2) is s >= 0 and the number of runs that 
have both genes t >= 0 is the value of the unique entry of P that 
is P[r+1, s+1, t+1]. The runs P-value, then the number of 
genomes with both genes (Gene 1 and Gene 2) is at least as 
large as c given a and b is defined using equation (2).  
 
P (t >= observed |r, s) = P(t >= observed, r, s)/ P (r, s) 
 
Let k take values 0, 1…n and random variables Rk, Sk and Tk 
take values in 0…k and Rk be the number of runs that have the 
Gene 1, Sk be the number of runs that have Gene 2 and Tk be the 
be the number of runs that have both genes (Gene 1 and Gene 
2), restriction to genomes 0…k. To obtain the conditional 
distribution of Tn given Rn and Sn it is sufficient to calculate the 
joint distribution of Rn, Sn and Tn. P` represent a 3-dimensional 
table with three variables, and the runs P-value was derived 
using equation (3) 
 
P(t >=observed|r, s) = n/2Σt=tP`[r+1, s+1, t`+1] /n/2Σt=0 P`[r+1, s+1, t`+1] 
 
We further expanded the approach to score pairs of proteins 
using the following assumptions. If H is the weighted 
hypergeometric similarity P-value for a given pair of proteins 
encoded by Gene 1 and Gene 2 and R was the modified 
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weighted runs P-value for the same pair of proteins (Protein 1 
and Protein 2), then we scored the pair of proteins as H*R or, on 
a logarithmic scale score, defined it using equation (4). The 
lesser the score of a given pair of proteins, the more the pairs 
were considered as functionally related. The score was derived 
using equation 4.  
 
Score = log10H + log10R 
 
The proposed method was implemented in MATLAB 
(MathWorks, Massachusetts, USA) and validated using a 
benchmark data set; we have also applied the method to a 
specific example to illustrate the application. Source code in 
MATLAB is available from the corresponding authors upon 
request.  An outline of the methodology is provided in (Figure 
1). 
 

 
Figure 1: Brief outline of methodology  
 
Results: 
All pairs of proteins with a probability score > 0.5 were 
considered for evaluation in our study. A total of 100, 000 
protein pairs were evaluated and provided as Supplementary 
Material (Data submitted to Dryad (URL: 
http://www.datadryad.org/); Supplementary file (xls) 
doi:10.5061/dryad.m6t4j). The phylogenetic profiling approach 
that uses the weighted hypergeometric probability with runs 

proposed by Cokus et al. outperformed all the previous 
methods [41]. We compared our method with the weighted 
hypergeometric probability with runs, with a hypothesis that, if 
the results are comparable or better than these methods then it 
indicates that the proposed method could perform better than 
all the above methods. All the three methods were 
benchmarked against pairs derived from the STRING [8] 
database.  
 

 
Figure 2: Pairwise comparison of weighted hypergenometric 
probability method with runs (blue), weighted hypergeometric 
probability method with runs (red) and modified weighted 
hypergeometric method runs (proposed) (green). 
 
Validation of method based on comparison of benchmark pairs 
Figure 2 compares three methods, considering one method at a 
time. Each method assigns a P-value to every pair of genes 
(100,000 pairs). Gene pairs are then sorted in ascending order by 
the P-value. The graph in (Figure 2) was plotted as given x-axis 
value x, y was plotted as the mean (total score) of first x gene 
pairs after sorting based on P-value. Here, the total score is the 
score obtained from the STRING database. Data used to 
generate the plot is provided in the supplemental file. STRING 
is an integrated database of known and predicted protein-
protein interactions. A given interaction in the STRING 
database was derived from one or a combination of association 
methods: gene fusion, neighborhood, co-occurrence, 
experiments, databases, text mining and homology. Detailed 
explanation of scoring of protein-protein interaction reported in 
STRING database can be found elsewhere [34]. The score ranges 
from value 0 to 1. The greater value of the score indicates the 
strength of the functional relatedness between the proteins. 
From the graph it shows that the pairs obtained from the 
proposed - method modified weighted hypergeometric 
probability with runs (green line) – shown comparable or better 
performance than the other two methods weighted 
hypergeometric probability with runs (blue line) [41] and 
weighted hypergeometric probability without runs (red line) 
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[45]. The cumulative average considering the 10,000 pairs for 
the proposed method was 0.769, whereas the values of 
weighted hypergeometric probability with runs was 0.756 and 
for weighted hypergeometric probability without runs was 
0.753 Table 1 (see supplementary material); (Figure 2). The 
margin observed here between the two methods was 0.003; 
though it is a numerically low value, since it is an average on 
10,000 pairs. We noted that our approach (weighted 
hypergeometric probability with runs) is complementary or in 
the context of the analyzed genomes when compared to the 
existing method by a value of 0.013.   
 

 
Figure 3: Network degree distributions derived using two 
different methods  
 
Comparative analysis of degree distribution of interaction 
networks 
A network (an undirected graph with no multiple edges and no 
self-edges) was obtained from a computational method by 
ranking gene pairs by the P-values from that method and then 
collecting the top ranked 10,000 pairs.  The nodes are the genes 
mentioned in the kept gene pairs and an edge was placed 
between two different genes if and only if the gene pair 
consisting of the two genes was among the kept gene pairs.  The 
degree of a node was defined as the number of edges incident 
with that node. Figure 3 shows two histograms (with a 
logarithmic scale for frequency) of node degree, one (blue) for 
the network from the weighted hypergeometric with runs 
computational method and the other (red) for the modified 
weighted hypergeometric with runs computational method. We 
can observe that the proposed weighted hypergeometric with 
runs network (blue) contains many nodes with 90 or more 
edges, while the modified weighted with runs (red) have almost 
none. From the above graph, we can say that the network 
formed by the proposed method show sub-clusters clusters 
when compared to the pure weighted hypergeometric 
probability with runs. Large clusters of protein pairs are often 
not very useful for functional studies since they bring together 
proteins with a broad range of diverse functions. In contrast, 
small clusters can contain proteins with well-defined functional 

relationships and can be tested using targeted functional 
genomics or protein-protein interaction experiments.  
 
Application of modified hypergeometric probability method 
using nitrate reductase  
To illustrate an example using our method, we considered the 
subunits of nitrate reductase enzyme [46-48] from Escherichia 
coli K12. (Figure 4a) shows all the interactions of the six 
subunits of nitrate reductase, which are narY, narH, narZ, narV, 
narJ and narG, those that are present in the STRING database. 
Figure 4b shows the network containing all the interactions of 
the six subunits of nitrate reductase that are observed using our 
proposed methodology modified weighted hypergeometric 
probability with runs. Visualization was generated using 
Cytoscape [49]. These proteins belong together as they are 
subunits of a protein complex that catalyzes the reduction of 
nitrate to ammonia. In the network generated using our 
methodology, the interactions missing are narG-narZ, narZ-narJ 
and narJ-narG and these links had less scores implying less 
significant edges. The network obtained from the approach was 
similar to the existing interactions observed in the STRING 
database (version 8).  
 

 
Figure 4: a) shows the interactions of the six subunits of nitrate 
reductase, mediated by narY, narH, narZ, narV, narJ and narG 
derived from protein-protein interaction database STRING; b) 
shows the network based on protein pairs mediated by six 
subunits of nitrate reductase that were identified using our 
proposed methodology. 
 
Discussion: 
Rapidly lowering costs of next-generation sequencing 
methodologies are increasing the repertoire of gene and protein 
sequences in molecular databases. Various bioinformatics 
methods based on similarity measures, phylogenetic 
approaches, machine learning, protein-protein interaction, gene 
expression and integrative approaches are available for the 
prediction of functions of proteins encoded in a genome. In this 
manuscript we explored the possibility of using phylogenetic 
profiles to find the functional similarity of genes; a new 
probability based function association method using 
phylogenetic profiles was proposed and validated. We 
proposed a new approach using functional protein association 
network for identifying functionally linked proteins. We used 
the probabilistic approach to incorporate two important aspects 
of functional relatedness, which are similarity measure and the 
number of runs the profiles span given the ordering of 
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genomes. We tested the method using the 4195 phylogenetic 
profiles of Escherichia coli K12 generated using 305 genomes. The 
functional links obtained by our proposed method are validated 
using the STRING database functional links. We compared our 
results with hypergeometric probability with runs and 
hypergeometric probability without runs. The cumulative 
average of STRING score considering the top ranked 10,000 
pairs for the proposed method was 0.769; whereas the values of 
weighted hypergeometric probability with runs was 0.756 and 
for weighted hypergeometric probability without runs was 
0.753. Our proposed method weighted hypergeometric 
probability with runs has shown comparable or better results 
than existing method in our evaluation at the same time the 
method may need additional testing with independent datasets 
and statistical validation to estimate errors and homology bias 
that could be introduced during sequence search in generating 
phylogenetic profiles. For example we considered the top hit 
from the BLAST search in our analysis – including additional 
hits and filtering orthologs or paralogs may have further 
influence the performance of the method. Further the proposed 
method can be extended to an increasing number of target 
genomes.  
 
Conclusion: 
In the current era of rapidly increasing number of genomic and 
transcriptomic sequencing projects, assigning functions to 
individual gene products, fusion transcripts and novel protein 
isoforms and novel protein products will remain as a primary 
challenge in bioinformatics. We envision that bioinformatics 
approaches including the application of phylogenetic profile 
based methods could enhance function assignment in such 
scenarios.  
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Supplementary material: 
 
Table 1: Cumulative Average of Total Score for top 10,000 pairs 
Method Score 
Modified Hypergeometric Probability method with runs (Proposed) 0.769 
Hypergeometric Probability with runs 0.756 
Hypergeometric Probability without runs 0.753 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


