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Conventional spacecraft Guidance, Navigation, and Control (GNC) architectures have

been designed to receive and execute commands from ground control with minimal

automation and autonomy onboard spacecraft. In contrast, Artificial Intelligence

(AI)-based systems can allow real-time decision-making by considering system

information that is difficult to model and incorporate in the conventional decision-making

process involving ground control or human operators. With growing interests in on-

orbit services with manipulation, the conventional GNC faces numerous challenges in

adapting to a wide range of possible scenarios, such as removing unknown debris,

potentially addressed using emerging AI-enabled robotic technologies. However, a

complete paradigm shift may need years’ efforts. As an intermediate solution, we

introduce a novel visual GNC system with two state-of-the-art AI modules to replace the

corresponding functions in the conventional GNC system for on-orbit manipulation. The

AI components are as follows: (i) A Deep Learning (DL)-based pose estimation algorithm

that can estimate a target’s pose from two-dimensional images using a pre-trained

neural network without requiring any prior information on the dynamics or state of the

target. (ii) A technique for modeling and controlling space robot manipulator trajectories

using probabilistic modeling and reproduction to previously unseen situations to avoid

complex trajectory optimizations on board. This also minimizes the attitude disturbances

of spacecraft induced on it due to the motion of the robot arm. This architecture uses

a centralized camera network as the main sensor, and the trajectory learning module of

the 7 degrees of freedom robotic arm is integrated into the GNC system. The intelligent

visual GNC system is demonstrated by simulation of a conceptual mission—AISAT. The

mission is a micro-satellite to carry out on-orbit manipulation around a non-cooperative

CubeSat. The simulation shows how the GNC system works in discrete-time simulation

with the control and trajectory planning are generated in Matlab/Simulink. The physics

rendering engine, Eevee, renders the whole simulation to provide a graphic realism for

the DL pose estimation. In the end, the testbeds developed to evaluate and demonstrate

the GNC system are also introduced. The novel intelligent GNC system can be a stepping

stone toward future fully autonomous orbital robot systems.

Keywords: space robotics, artificial intelligent, Guidance Navigation and Control, on-orbit service, space

manipulator, pose estimation
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INTRODUCTION

With the increasing interest in orbital robotic manipulation for
on-orbit servicing missions, the future Guidance, Navigation,
and Control (GNC) systems are inclined to implement
intelligent on-board systems with greater autonomy to address
the challenges associated with the time-critical and highly
unpredictable scenarios. To clarify the definition of GNC for
future space robotic systems, we have included the manipulation
of the robotic arms together with the conventional spacecraft
GNC system, such as the Attitude and Orbit Control System
(AOCS). Both these systems should be seamlessly integrated in
order to fully utilize all available “sensing” information, which is
essential to deliver intelligent solution to the mission operations.

Conventional optimization and control methods have
evidenced great results for on-orbit manipulation with
rendezvous and docking in renowned mission scenarios (Virgili-
Llop and Romano, 2019). These achievements are based on the
accumulated work to study the service spacecraft’s dynamics
and kinematics with robotic arms in the free-floating condition
(Umetani and Yoshida, 1989; Dubowsky and Papadopoulos,
1993; Wilde et al., 2018). The coupled dynamics of the spacecraft
and manipulator system make the planning and control problem
extremely difficult and computationally expensive. This makes
the free-floating mode less useful and risky for real space
missions. To date, all of the recent research on planning and
control of free-floating spacecraft are limited to simulation and
laboratory environments.

Using Artificial Intelligence (AI) technology in the GNC
systems provides the opportunity to carry out real-time on-board
decision-making in an unforeseen and a time-critical situation
with the autonomous optimization of the on-orbit manipulation
for the both co-operative and non-cooperative targets. More
accurately, in this research, AI refers to machine learning.
Machine learning, especially Deep Learning (DL), has depicted
tremendous progress and achievement to resolve complicated
optimization problems in robotics (Goodfellow et al., 2016).
Two specific fields are useful for spacecraft GNC systems:
(1) Learning-based Computer Vision (CV) algorithms that
determine an object’s 6 degrees of freedom (DOF) information
(ESA, 2019b). (2) Learning-based methods that solve non-linear
multi-body planning and control problems (Pierson and Gashler,
2017). Both fields are active, and some of the recent research
use simulation and on-ground experiments to demonstrate the
feasibility of using the relevant space applications.

Despite the huge potential the emerging AI technique shows
in improving the autonomy and efficiency of the GNC system, to
the best of knowledge of the authors, there are no missions that
use AI for GNC-related tasks. The space industry already realized
these benefits and aimed to introduce AI to space, especially for
the GNC systems. Many foresee the future with fully intelligent
GNC spacecrafts, which organically carry out objectives without
human intervention that has been widely discussed (Truszkowski
et al., 2009; Starek et al., 2016; Nanjangud et al., 2018). However,
developing and using such a fully intelligent system for space
is still considered far-fetched because of the reality of the low
Technology Readiness Levels (TRLs) for both hardware and

software and the unsettled questions in the associate laws and
regulations in AI.

Here, we show an intermediate and novel solution as a
conceptual architecture to replace some of the conventional
functional blocks with state-of-the-art AI algorithms for CV
and robotic arm trajectory planning. The authors believe the
major contribution of this research is the introduction of a novel
intermediate intelligent visual GNC system with state-of-the-
art AI components for spacecraft with robotic arms. The AI
components are as follows:

• A DL-based method to exploit two-dimensional (2D) images
for target identification and close-proximity range relative
guidance and navigation.

• A computationally inexpensive learning-based motion
planning algorithm for free-floating spacecraft with robotic
arms.

This paper is organized as follows: section Introduction gives
the introduction regarding the background information about
the research. In section The Intelligent GNC System Design,
we provide the overview of the proposed visual GNC system
architecture and hardware design. Sections Deep-Learning
Method For Target Pose Estimation, and section Learning-Based
Method For Robotic ARM Manipulation and Control convey
the detailed design of the two AI components, respectively: a
DL-based target identification and a pose estimation method
based on 2D images and a learning-based motion planner for
free-floating space manipulation with the optimization about
spacecraft’s attitude. These two state-of-the-art AI packages can
potentially increase the autonomy of on-orbit service missions
that comprises manipulation. In section Testbed Setups and The
Demonstration Missiion, a demonstration mission to showcase
the proposed AI GNC system is presented. The mission is
to capture a 16U malfunctioning CubeSat by using a service
spacecraft with a 7-DOF robotic arm. The testbeds and a detailed
simulation are exemplified and explained. The benefits and
limitations of the AI GNC system are also discussed in the end
of this section. Finally, in section Conclusion and Future Works,
we conclude the study discussing various ongoing developments
and direction for future research.

THE INTELLIGENT GNC SYSTEM DESIGN

Overview of the Intelligent Service
Spacecraft
The main spacecraft platform used for this concept development
and simulation is similar to the Surrey Space Center’s
RemoveDebris microsatellite (Forshaw et al., 2016). Besides,
it has a 7-DOF articulated robotic arm attached for custom
manipulation tasks. The spacecraft’s primary task is to detect,
approach, and service orbiting targets. The technology and
hardware are all considered as scalable. The proposed AI GNC
system is based on this hardware design with the essential
subsystems that include:

• A main monocular camera for navigation and 360◦ sub-
cameras for no dead-zone awareness,
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FIGURE 1 | The design of the intelligent orbital service spacecraft—AISAT: it comprises a monocular camera network and a 7-DOF (degrees of freedom) robotic arm

as key components for the intelligent visual Guidance, Navigation, and Control (GNC) subsystem. The spacecraft also has a dexterous gripper for target capture and

S-band patch antenna for basic house-keeping and the intelligent system updating.

• A 7-DOF redundant robotic arm,
• Onboard computational hardware suitable for CV.

The system design of the spacecraft is illustrated in Figure 1.
The core concept is that the proposed intelligent AI-based GNC
subsystem uses the information provided by visual sensors to
carry out pose estimation and motion planning of robot arm.
Visual sensors including monocular cameras are no strangers
to space missions as they have been widely used as payloads
and sensors for Attitude Determination and Control System
(ADCS), such as star tracker and Naidr sensor. The proposed
AI GNC system uses monocular cameras for the visual feedback
including target identification and pose estimation. Monocular
camera approaches are relatively new and the cost-effectiveness
makes it more attractive for space missions than stereo cameras
and LiDARs, which have been demonstrated for the relative
navigation for space berthing and docking (Opromolla et al.,
2017). The monocular camera network proposed here consists of
five sub-camera systems located on each face of the microsatellite
bus. Each sub-camera system has a 50 mm (telescope) and an 18
mm (wide) lens with 120◦ Field of View (FOV) to cover both
mid- to long-range and close-proximate range targets detection
and pose estimation. These monocular cameras could also be
used as sun sensors and star tracker. The main camera locating
at the front-facing to the nominal orbiting direction of the
spacecraft is a single Hi-Res wide lens camera to maximize
the image quality in pixel clarity for long-range orbiting target
identification and pose estimation. The complete camera network
provides a 360◦ coverage for no dead-zone awareness. As for

the relative navigation algorithms, DL-based methods are the
new trend to replace marker-based methods, which usually
suffer from reduced robustness in harsh lighting conditions
(Pasqualetto Cassinis et al., 2019). The 7-DOF articulated robot
arm in the combined AI GNC system is inspired by the European
Robotic Arm (ERA) (Boumans and Heemskerk, 1998). High-
DOF robotic arms are more challenging to operate but offer
redundancy to generate wider trajectory options for machine
learning. Overall, Figure 2 illustrates the proposed mission at
its close-proximity operation range after the orbit rendezvous
finished. The mission aims to demonstrate the AI components
and show the feasibility of the intelligent GNC system. For
safety concerns, the mission design still consider ground-based
interventions involved. Therefore, the ground communication
should remain stable during the manipulation.

The Intelligent GNC System Architecture
The intelligent space missions envision a top-level and real-
time decision-making process for unforeseen events from pre-
trained knowledge. The identification of the target is the
minimum information that is required for the intelligent GNC
system to plan and execute the corresponding actions. The AI
GNC system introduced in this article uses the identification
of the target for defining the mission and relative orbit
navigation. Nevertheless, the proposed intelligent GNC system
differs from the existing concept of spacecraft autonomy that
focuses on orbital determination and control, such as task
planning and re-planning for Earth observation, communication
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relays, and formation flying. Their primary objectives are
predefined, and the performance is optimized and merited with
existing models to be executed automatically in space (Tipaldi
and Glielmo, 2018). The conventional spacecraft mission analysis
is usually carried out on the ground or in-space if astronauts
are involved. In contrast, the intelligent system could make
decisions onboard and the task the spacecraft can carry out
constraint by the Intelligent PlatformHardware Capacity (IPHC)
of the space platforms. Table 1 shows the IPHC of the essential
subsystems for the achievable intelligent space missions. The
automatic task planning and re-planning with multiple decision-
making algorithms could be potentially used as the backbone
of the intelligent decision making, for example, the methods
discussed by Chien et al. (2005). Figure 3 shows the ideal on-
board intelligent decision-making flow chart. However, high-
level intelligent decision-making is still considered of high risk;

FIGURE 2 | The conceptual mission for capturing and servicing a

non-cooperative but known 16U CubeSat.

TABLE 1 | Intelligent Platform Hardware Capacity (IPHC) links the combination of

robotic hardware with the potential type of missions.

Robot

manipulator

Robotic

sensor

Robot

connector/Gripper

In-space assembly Essential Essential Essential

On-orbit servicing Essential Essential Essential

Active Debris removal Non-essential Essential Non-essential

Intelligent orbit planning

and maneuver

N/A Essential N/A

Autonomous berthing

and docking

Non-essential Essential Essential

thus, the stable ground communication that can monitor and
intervene the mission is preferred as an intermediate solution.

To picture the differences, the system flowcharts in Figure 4

show the comparison of the conventional spacecraft GNC
systems and the proposed intelligent GNC spacecraft. The
intelligent GNC system can determine the target states and
perform orbital maneuver, attitude control, and robotic arm
control adaptively to the situation in situ without the needs of
ground commands. The system can off-load the pressure for
the on-board telecommunication system to conserve energy and
reduce the cost associated with the ground operations, which
are inevitable for the conventional GNC systems. Furthermore,
in contrast to the conventional GNC systems where the control
systems are usually managed by different subsystems with
limited data exchange and decision-making, the intelligent GNC
system can exploit all sensor information to use pre-trained
neural networks to deliver the optimized control results. Such
a system demands the standardized communication networks
across all sensors, and a more powerful logic unit for handling
raw sensor data and processing globally optimized control
schemes to simultaneously manage orbital control, spacecraft
attitude control, and the robotic arm control. From this
comparison, the major technical challenges for the intelligent
GNC architecture have been identified are as follows: (1) low
computational power hardware in space radiation environment
and limited energy supply; (2) robustness of the pre-trained
neural networks for real space missions. The first challenge
is less problematic for LEO missions as the commercial-off-
the-shelf (COTS) components could be used with limited
radiation coating and the performance of the radiation-resistant
DSP/FPGA computers are also improving. The second challenge
is more general for any AI-based system. The way to address
this challenge is to provide more robust and divergence data
for the network training and carrying out extensive testings
before flight.

DEEP-LEARNING METHOD FOR TARGET
POSE ESTIMATION

This section discusses the relative pose estimation of the
target spacecraft or object using a monocular camera and
a keypoint-based DL framework. In orbital robotic missions
involving autonomous close proximity operations, the primary
information required is the knowledge on the relative state of
the chaser spacecraft with respect to the target object/spacecraft
or vice versa. To perform relative navigation, a multitude of
sensor options available to gather necessary input information.
However, vision-based navigation using monocular cameras

FIGURE 3 | The decision-making flow chart for the intelligent Guidance, Navigation, and Control (GNC) system. The achievable tasks are based on the hardware

constraints and the task is selected based on the target’s identify and features.
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FIGURE 4 | The transition from (A) conventional spacecraft Guidance, Navigation, and Control (GNC) subsystem with robotic arm to (B) the Artificial Intelligence (AI)

GNC subsystem. The AI GNC system uses centralized sensor information with primarily 2D images as inputs to the AI computer with pre-trained neural networks to

control the spacecraft and robotic arm at the same time.

is more preferred than other approaches because of its
simplicity, low power consumption, and availability of space
hardware at a comparatively lower price. Monocular cameras

are traditionally used to perform autonomous spacecraft
guidance and navigation in the far-range, while in the mid-
and close-range rendezvous operations the ground control is
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FIGURE 5 | Sample photo-realistic visuals of CubeSat model in orbit generated using the OrViS simulator.

usually kept in the loop to perform any major operations.
The space imagery is characterized by high-contrast images
with sharp changes in shadows, and low signal-to-noise ratio
makes vision-based navigation in space extremely difficult, thus
making the traditional feature-based or model-based approaches
vulnerable to false state estimates or high computational
requirements. The rise of DL has pushed the boundaries of
image classification and image segmentation tasks in the field
of CV to a near human-level accuracy. The growth of hardware
and the availability made the DL tools readily available for
research activities that pushed the algorithms to more robust
and efficient.

The use of DL for pose-estimation has been around for some
years in robotics, whereas in space, it is relatively new and
evolving. In recent years, there is a growing interest in achieving
autonomous visual navigation in orbit in this process many
research works evolved in the field of DL-based pose estimation
for spacecraft relative navigation. Some of the important
research works are summarized below and this includes methods
that offer state-of-the-art performance in benchmark datasets.
Sharma and D’Amico (2019) proposed Spacecraft Pose Network
(SPN) using a combination of classification and regression
approaches to computing the relative pose. Chen et al. (2019)
proposed estimation of the relative pose with deep landmark
regression, where it involves both object detection and 2D
landmark regression. Proenca and Gao (2020) proposed a hybrid
approach for pose estimation and the network architecture
has two branches with one dedicated for location and the
other for orientation estimation. A simple regression was used
for location estimation, and the probabilistic soft classification
was used for orientation estimation. Gerard (2019) proposed
a segmentation-driven approach to computing the pose of the
target object.

To train a DL model, it is essential to have a good quality
dataset. Acquiring the space imagery of the target is either
expensive or in most cases datasets with labeled ground truth

is not readily available, and the viable alternative is to generate
synthetic datasets using the photo-realistic simulators. We
developed a visual simulator based on the state-of-the-art game
engine Unreal Engine 4 (UE4), named OrViS (Orbital Visual
Simulator), and it allows obtaining photo-realistic images and
depth masks of the target in orbit. The details of the simulator
were presented in Proenca andGao (2020) and the sample images
of the target CubeSat in orbit generated from the OrViS simulator
are shown in Figure 5.

To perform relative pose estimation for rendezvous with
the non-cooperative spacecraft, we developed two approaches,
non-keypoint-based approach presented in Proenca and Gao
(2020) and keypoint-based approach presented in Rathinam
and Gao (2020). A keypoint-based framework is discussed in
this work because it offers better performance and accuracy.
The keypoint-based pose estimation framework is shown in
Figure 6 and it involves three major steps: they are object
detection, keypoint-estimation, followed by perspective-n-point
(PnP) projection for the pose computation. To perform object
detection, a faster R-CNN using ResNet-50 architecture as a
backbone was trained using the transfer learning approach.
During the training process, the models were loaded with
the pre-trained models from COCO dataset and the last
few layers of the network were fine-tuned to identify the
bounding box locations of the target CubeSat. The networks
were trained on one NVIDIA Quadro P4000 8GB GPU. The
training parameters include the input image size of 320 with
a batch size of 8, a learning rate of 5e−3, SGD with a
momentum of 0.9, and a weight decay regularization of 5e−4.
Input image augmentations, such as random rotation, random
translation, coarse dropouts, Gaussian noise, random brightness,
and contrast were randomly added to make the training model
more robust. The training converges quickly around 30 epochs
for both the models.

The second part of the framework is keypoint estimation,
which involves 2D landmarks regression and it uses the
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FIGURE 6 | Framework for spacecraft pose estimation using keypoint-based deep learning approach.

HigherHRNet network from Cheng et al. (2020). The network
was modified to train the 12 keypoints of interest that are
located around the 6U CubeSat. During the training process,
the model was trained using the cropped images from the
ground truth bounding box locations (initially used for the
object detection) and the input data includes the cropped image
along with the keypoints locations and their corresponding

point visibility. The network architecture we used has 32

channels in the highest resolution feature maps and provides
an output at two different scales, 1/4 and 1/2. The input
image size was set to 512, which results in the output heatmap

sizes of 128 and 256, from which we can infer the keypoint
locations. An Adam optimizer is used with a learning rate of

1e−3 and momentum of 0.9. Image augmentation performed

on the input image includes random rotation ([−30◦, 30◦]),
random translation up to ([−30%, 30%]), coarse dropouts,
Gaussian noise, random brightness, and contrast. For keypoint

regression, the training time is quite extensive and the network
provides required performance after 300 epochs of training and
the image augmentation plays a key role in identifying the

right keypoints. With the known 2D and three-dimensional
(3D) correspondences, PnP algorithm is used to compute the

camera pose. To avoid the false correspondences among the
derived keypoints, and to eliminate the outliers, a RANSAC-

based outlier rejection is also used while estimating the
camera pose.

A brief analysis of the algorithm’s performance in comparison

to the state-of-the-art DL-based spacecraft pose estimation
methods using different datasets is presented in detail in
Rathinam and Gao (2020). The algorithm will be extensively

tested and validated on the re-configurable orbital robotics
testbed at the University of Surrey using the real CubeSat
model with the lighting conditions similar to that of space. The

hardware testing process will include using commercially off-the-
shelf sensor components and low-power computing board (such
as Nvidia Jetson) similar to perform DL-based state estimation
on-board the spacecraft.

LEARNING-BASED METHOD FOR
ROBOTIC ARM MANIPULATION AND
CONTROL

We propose a robot arm having 7 DOF. Themain reasons behind
this proposal are as follows:

1. The presence of the redundant DOF ensures multiple
trajectories from the same start to the same target pose and
an optimality criteria (min power, min attitude disturbance,
etc.) can be set to chose a trajectory.

2. Possible to carry out a variety of tasks just like a human arm.
3. Software control remains the same, whereas hardware (like

dimensions of the links, motor max torque) can be different
depending on the task (like assembly or debris removal).

It is known that computationally expensive control strategies are
largely discouraged in space. Hence, a learning-based trajectory
generation technique is detailed, which learns the trajectories
offline by encoding trajectories as a Gaussian probabilistic
distribution. The trajectories can be reproduced by sampling and
conditioning the Gaussian. We use a method called Probabilistic
Movement Primitives as described in the work of Shyam et al.
(2019). The twomain differences between Shyam et al. (2019) and
the current work are as follows:

• A model predictive controller (MPC) is used to generate
trajectories instead of human demonstrations,

• Incremental learning to improve accuracy.
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Expert human demonstrations is capable of producing jerk-free
trajectories, but in this work, MPC is preferred because micro-
gravity hardware experiments are quite expensive and no such
facilities were available to carry out human demonstrations. The
key equations that describe the learning process are reproduced
from Shyam et al. (2019) as follows: the trajectories are assumed
to be independent and identically distributed Gaussian with a
mean and co-variance matrix.

yt =

[

qt
q̇t

]

=

[

φt

φ̇t

]

w+ ǫy (1)

p(τ |w) =
∏

t

N (yt|φtw,6y) (2)

where yt represent the robot state at time t [angular position
(qt) and angular velocity (q̇t)], φt is radial basis function, w
is the weight vector, and ǫy is the error in the observations
with zero mean and variance 6y. After collecting enough
demonstration data, the weight vector w can be found out by
using a ridge regression.
The demonstrations can be carried out offline in a high fidelity
simulator (for instance, MuJoCo, Todorov et al., 2012) and
can be used to find out the parameters of the Gaussian. Since
simulators assume ideal conditions, it is quite important to
monitor the performance in actual operating conditions. Hence,
the variability arising due to unforeseen circumstances can be
mitigated using the incremental learning algorithm 1 proposed
here. Usually, targets coordinates are specified in task space.
Hence, inverse kinematics is needed to convert the task space
co-ordinates to joint space parameters of the robot. It is known
that a Gaussian can be conditioned to pass through desired
observations, as shown in Equation (3).

µ[cond]
w = µw−new + L(x∗t − φtφtφt

Tµw−new)

6[cond]
w = 6w−new − Lφtφtφt

T6w−new (3)

where L is

L = 6w−newφtφtφt(6
∗
x + φtφtφt

T6w−newφtφtφt)
−1 (4)

and6∗
x is the desired accuracy to which the desired state (x

∗
t ) is to

be reached. So the whole trajectory learning and adaptation can
be summarized as follows:

• Incrementally learn the parameters of the Gaussian as
illustrated in Algorithm 1,

• Get the target coordinates from the vision system and convert
it into joint space parameters of the robot,

• Sample out trajectories from Gaussian and condition it
(Equation 3) to reach the target.

Shyam et al. (2019) also provide a comparison of motion
planning using learning from demonstrations against
conventional optimization methods and discusses the advantages
of the proposed method.

Algorithm 1: Algorithm for incremental trajectory learning.

Data: Trajectory dataset, Dmpc = Xi..N from the MPC
Input: Number of basis functions, update frequency(Z) and

learning rates (αw & αsig)
Output: mean, µw and covariance 6w for the weight vector

for trajectory sampling
1 for each trajectory from MPC do

– compute the basis function, 8
– Compute weight vector wi = (8T8 + λI)−1 8TXi

2 µw = 1
N6N

i wi

3 6w = 1
N6N

i (wi − µw)(wi − µw)
T

4 After deployment collect actual trajectory datasets,
Da = Xi..M

5 ifM%Z is 0 then
6 repeat step 1 for new dataset

7 find µw−new = 1
M6M

i wi

and 6w−new = 1
M6M

i (wi − µw)(wi − µw)
T

8 update µw = µw + αw ∗ µw−new and
6w = 6w + αsig ∗ 6w−new

9 Set Da = 0

10 Go back to 4

TESTBED SETUPS AND THE
DEMONSTRATION MISSION

The Testbeds
We have developed two testbeds for testing the proposed AI
GNC system- digital and physical to demonstrate the intelligent
visual GNC system. The digital tested, as shown in Figure 7A,
is developed in the Robot Operating System (ROS) framework
with Gazebo dynamic simulator. The collection of ROS packages
can simulate sensors and two robotic arms simultaneously for
fast and safe benchmarking of the proposed GNC system. The
Gazebo setup acts as a digital twin to the physical testbed, as
shown in Figure 7B. The physical testbeds located at the STAR
LAB are the third-generation space robotic testbed that uses
multi-DOF robotic arms and a 2-DOF traverser to simulate the
relative motions between the service spacecraft and the target
(Hao et al., 2019).

The physical testbed consists of two UR5 robotic arms—the
service arm and the target arm. The service arm sits on top
of a 2-DOF traverser, demonstrating the longer approaching or
berthing motion between the service spacecraft and the target.
The target arm offers the 6-DOF motion capability to off-load
and drive the target mounted as the end-effector to follow
the desired trajectory and pose as in space. The space lighting
condition in the digital testbed is realized by channeling the same
relative pose information to the graphic rendering engine in a
synchronized link. The high-fidelity space lighting condition is
demonstrated in the physical hardware testbed using a light-
absorbing 45% polyacrylic + 55% cotton fabric as shown as the
background in Figure 7B and halogen lamp with the sunlight
spectrum and the proper brightness. The illuminance (lux) of
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FIGURE 7 | The STAR-LAB’s testbeds for orbital space robotic Guidance,

Navigation, and Control (GNC) systems (A) is the digital simulation testbed

build in ROS gazebo environment; (B) the design and setup configuration of

the STAR-LAB orbital robotic testbed in monochrome format is shown.

the light source is less relevant as it is a thermal critical property.
Taking advantage of the pre-calibration of the hardware locations
and pose of the physical testbed as well as using the ROS
transfer function broadcaster with factorial calibrated Unified
Robot Description Format (URDF), the whole setup can provide
ground truth reference of the position and orientation of the
target and the end-effector of the service arm. Besides, the setup
is implementing the Qualysis 301 camera systems for high-
precision tracking.

One of the major benefits of using the ROS framework is the
industrial driver support and control solutions for interactive
robotic arms like UR5. The control interface offers trajectory
or velocity tracking for the target arm. Using this, the CubeSat
target is controlled to follow the desired trajectory or velocity as
free-flying in orbits. For circular orbits in this demo mission, the
desired relative trajectory or velocity waypoints can be estimated
by the Clohessy and Wiltshire (CW) equations. For elliptical
orbits, the Tschauner and Hempel (TH) equations provide the
solution. Hao et al. (2019) provides more information about the
STAR LAB’s third-generation orbital robotics tested. The testbeds
will be used to evaluate the GNC system with real-time and
hardware-in-the-loop capability.

The Demonstration Simulation
The demonstration mission is conceived for on-orbit
manipulating and servicing a malfunctioning 16U CubeSat
in low Earth orbits. This research only focuses on the intelligent
visual GNC demonstration in the final approaching and

TABLE 2 | Orbital properties of the service spacecraft and the target 16U

CubeSat for the demonstration mission.

Circular orbit altitude (km) Inclination (◦) LATAN (h)

Service spacecraft 599.95 98 10:30:00

Target 6U CubeSat 600 98 10:29:50

close-approximate manipulation range without the initial
approach and post-capture servicing phases. The starting
orbits of both spacecraft for the final approach and close-
approximate manipulation are circular sun-synchronous orbit
with 10 s Local Time of Ascending Node (LTAN) apart as
listed in Table 2.

The Intelligent Target Identification and Pose

Estimation
The Intelligent Space Camera Array System (ISCAS) plays
an essential role throughout the GNC algorithms of on-orbit
manipulation. Figure 8A is the starting position of the two
orbiting vehicles that are far apart initially. The mission starts
when the target CubeSat appears in the ISCAS as a potential
object. The pre-trained neural network on-board is actively
determining the object and if the object is known, then it carries
out a search in the onboard database for some basic information
of the object. As introduced in section The Intelligent GNC
System Design„ the valuable information for the intelligent
GNC system includes orbital information for relative navigation,
health and recent housekeeping data, and any potential service
requirement for the target. Figure 8B illustrates that the ISCAS
keeps working on the target identification and pose estimation.
This CV process should be active during the flight mission,
thus requiring efficient CV algorithms and tensor cores. Figure 9
shows the detailed simulation result of the target identification
and pose estimation by using the proposed method. The target
CubeSat is identified and highlighted in the red frame and the
keypoints are labeled. The keypoints are then used to locate the
origin of the target and generate pose information.

As for the intelligent GNC solution proposed in this research,
the packages act as the front-bone for the spacecraft rendezvous
and docking to provide mid- to long-range target identification,
close-proximity range pose, and position information of the
target. For mid- and long-range orbit rendezvous in this
intelligent approach, it is recommended to use the conventional
approaches as an intermediate solution. Hence, for low Earth
orbits like the mission demonstrated here, the conventional
in-front rendezvous with a higher, more elliptical orbit for
the service spacecraft is preferred for simplicity. However, as
the novel AI-based approach introduced here is a transitional
approach toward full autonomy, this mission is designed to use
the back and lower circular orbit rendezvous, which usually
provides a better safe margin at the cost of slower approaching.
Furthermore, from the concept demonstration, both the target
and the service spacecraft have circular orbits that enable the
testbeds to implement the C-W equations to deliver high-fidelity
relative motion. A decision-making link is required between the
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FIGURE 8 | The simulation of the intelligent orbital Guidance, Navigation, and Control (GNC) operations: (A) the starting position of the simulation, (B) target

identification and continuously pose estimation of the target within the camera array range, (C) final approaching with adjusted orbital and attitude control to an idea

manipulation-ready state, (D) initiate the planned optimized trajectory to dock the end-effector to the pre-grasping point, (E) the end-effector arrives the dedicated

located and executing grasping and rigidization, (F) plan and move the target CubeSat to for servicing. The animation is rendered in real-time in the Eevee engine with

the actual relative position of the service spacecraft and the target, robotic arm trajectory points with kinematics, and time-synchronized camera readings in the

render engine.

pose estimation and the manipulator control modules. As shown
in Figure 10, the demonstration uses a centralized decision-
making unit that could be either handled by the conventional
remote operations or onboard logic unit.

The Learning-Based Free-Floating Manipulator

Control
Once the rendezvous and velocity matching are finished, the
multi-DOF robotic arm is executed to move the end-effector
to the target position in the close-proximity. Figures 8C,D

shows the actuation of the robotic arm following the optimized
trajectory while maintaining the minimal rotation to the service
spacecraft in the free-floating mode. The attitude requirement
for this demonstration is to minimize the attitude drift away
from the nominal flying condition, at which the S-band patch
antenna pointing toward to the Nadir. The maximum attitude
drift should remain within the half-power beamwidth (HPBW)

lobe, which is a bubble shape and has a HPBW of ±50◦ as
shown in Figure 11 for this particular S-band patch antenna.
This attitude range can ensure the spacecraft remains stable
communication link with the ground station even during the
manipulation. As mentioned before, conventional probabilistic
robotic arm planning methods cannot control the free-floating
platform as the dynamics of the free-floating base is coupled
with the movement of the robotic arm. To date, very limited
number of research has investigated the coupled dynamics and
kinematics problem (Nanos and Papadopoulos, 2017) and the
planning methods are expensive and difficult to be used for
the free-floating spacecraft attitude optimization with high-DOF
robotic arms. In addition, the monocular cameras cluster system,
which has 360◦ coverage, has no attitude pointing margin as
needed for the conventional Attitude Determination and Control
System (ADCS) sensors. For example, spacecraft with star tracker
needs to avoid direct sunlight toward the sensor.
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FIGURE 9 | Results from the trained model (both object detection and keypoint estimation) along with computed pose from PnP.

FIGURE 10 | The two aforementioned Artificial Intelligence (AI) packages are connected through a decision-making block, which can use a conventional method as

an intermediate solution.

The following dynamic simulation result shows the motion of
the 7-DOF manipulator and the free-floating spacecraft giving
the trajectory generated by the proposed learning-based planning
method. The dynamic simulation carried out in MATLAB-
SIMULINK environment and the result is shown in Figure 12

with the relative velocity between the target and the spacecraft
is zero at the beginning of the simulation. The URDF file and
optimized trajectory generated by the learning-based method
are provided as available data along with this paper. Note that
the URDF differs from the AISAT concept design shown in the
rendering because the URDF file is customized for the offline
trajectory sampling. The same file is also used for the dynamic
simulation carried out in MATLAB-SIMULINK to evaluate the
free-floating spacecraft attitude drift. However, the Eevee engine
uses the modified trajectory and model from the URDF file to
demonstrate the concept in the rendering. Figure 13 presents
the optimized trajectory from the proposed method with unified
time interval. It shows a relative rapid motion in the beginning,
and then followed by a slower arm movement while the overall
moment of inertia of the system is increasing due to the extension

of the 7-DOF arm. The supplementary animation shows how
this trajectory tries to maintain the spacecraft attitude when it
controls the 7-DOF manipulator. The bottom level controller
used for this dynamic simulation is a centralized PID controller
for all joints. Supplementary Material with this article also
includes the spline refined joint space array of the trajectory to
reproduce the result.

Figure 14 shows the spacecraft attitude change during the
manipulation. By considering the attitude pointing requirement
for the S-band patch antenna HPBW, the result shows an overall
high margin in the attitude requirement to maintain a high-
quality communication link. This result implies that the learning-
based trajectory planning method is a viable solution to solve the
complex high-DOF dynamic and kinematic planning problem
with attitude optimization. Finally, Figures 8E,F illustrates
the grasping phase and the pose-capture servicing phase,
respectively. Those two phases are out of the scope of this
paper. Ideally, grasping and pose-grasping require the service
spacecraft to actively stabilized its attitude and to damp the
impact oscillation in order to reduce the collision risk.
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FIGURE 11 | The attitude requirement for proposed free-floating spacecraft is to minimize the angular drift within the half-power beamwidth (HPBW) during

manipulation period to maintain stable communication.

Benefits and Limitations
The benefits of using the proposed AI enhanced GNC system for
future space missions are listed as follow:

• Increased GNC autonomy: The proposed system could
potentially allow future spacecraft to use 2D images to
identify and determine the pose of the orbiting targets in real
time for autonomous navigation and control. However, the
conventional GNC system usually requires the cooperation
from the target or ground analysis before executing the
navigation and control.

• Low-cost visual sensors: The proposed method only uses
monocular cameras for the GNC system. Space qualified
monocular cameras are relative inexpensive and have a solid
flight heritage. They are also easy to use and less power hungry
than other potential 3D sensors like LiDAR.

• Manipulation trajectory planning with free-floating
spacecraft attitude constraint: The proposed method of
sampling the trajectory of the manipulator with complying
attitude requirements could address the problems of the
spacecraft attitude drifts, which is considered as a major
problem of using free-floating spacecraft for space robotic
operations. Conventional trajectory planning methods require

computationally expensive optimization problem to be solved
for the multi-DOF robotic arm on a free-floating platform.
This will be difficult for onboard computers.

This novel GNC system with the emerging AI components
could potentially increase the reliance on software as opposed
to hardware. This method could be implemented on increasingly
complex space missions in future without the need to introduce
expensive and novel hardware. The AI software can be potentially
implemented with software updates and reduce the mission cost
as hardware R&D and tooling, which are the expensive barriers
for the space industry.

Nevertheless, using AI for spacecraft with manipulator comes
with many costs and introduces new challenges to the traditional
spacecraft mission design and flight software Verification and
Validate (V&V), such as risk control, computational power,
and system stability. Although AI algorithms have been widely
adopted for CV and data science applications where the end-user
is human, those algorithms are still considered as high risk for
industrial engineering applications, particularly for the space
industry that has extremely low-risk tolerance. However, we
believe the trustworthiness and reliability will be gradually
improved with more research and technology demonstrations
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FIGURE 12 | Time series of the free-floating spacecraft reaching the CubeSat

position with the trajectory sampled from learned probabilistic distribution. This

trajectory has minimized impact to the attitude of the free-floating spacecraft.

being carried out in the future. One of the methods can be
used to address the design stability issue for the AI system is
to define a safe threshold for each of the GNC components.
For example, during the pose estimation, we can set a higher
threshold for object detection and keypoint estimation, through
which lower accuracy estimations can be filtered out to maintain
more reliable estimated poses. Another risk associated with the

orbital manipulation is collision. Once we estimate the target’s
relative pose, since it is a known target one can easily perform
collision avoidance by using the existing target CAD models.
In addition, the proposed method needs the onboard computer
to effectively implement and execute the AI algorithms, which
usually demand high computing power. This challenge is soon
likely to be addressed from the recent research initiated by ESA
and NASA to develop radiation-proof high power computing
unit and immigrate existing AI packages into the existing space
qualified computer (Lentaris et al., 2018; ESA, 2019a).

CONCLUSION AND FUTURE WORKS

This research shows a preliminary exploration and an overview
of the feasibility of using emerging machine-learning techniques
for space missions that involve on-orbital manipulation, which is
essential for on-orbit service missions. The novel intelligent GNC
system proposed in this paper aims to be an intermediate solution
between the conventional spacecraft GNC architecture and the
fully intelligent system that can utilize all sensor information
to independently plan and execute GNC tasks to achieve
meaningful objectives for on-orbit servicing. The proposed
system can potentially boost the autonomy of the spacecraft GNC
system for autonomous on-orbit target manipulation. The core
concept of the intelligent GNC system is using the centralized
camera network solely to feed 2D images of the target into
the pre-trained neural network for target identification, pose
estimation, and then use another learning-based method to
plan the multi-DOF manipulator to capture the target while
minimizing the drift of the free-floating spacecraft from its
nominal flying attitude. As the system uses target identification
with known targets database searching for long- and mid-range

FIGURE 13 | Motion trajectory sampled from learned probabilistic distribution to minimize the rotation of the free-floating spacecraft.
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FIGURE 14 | The normalized attitude drift (in rads) of the free-floating spacecraft relative to the Nadir during the manipulator operation in the simulation. The attitude

drift is within the S-band patch antenna half-power beamwidth (HPBW) for stable ground communication.

relative navigation, the proposed intelligent GNC system serves
as a bridge to offer limited onboard intelligence for task planning
and decision-making. The use case is developed around an on-
orbit servicing mission for a 16U CubeSat as the known target
to demonstrate the concept. The outline of the mission with the
simulation results of each of the core components of the proposed
intelligent GNC system are presented and discussed to show the
system’s feasibility and potential at the conceptual level.

The common limitations and concerns of using AI algorithms
for engineering applications inevitably apply to space missions
as well, such as V&V, reliability, and explainability. To overcome
the trustworthiness issues, more hardware-in-the-loop testings
and demonstrations with actual engineering implementations
are necessary. The testbeds developed for this research are
also presented in this paper. They will be used to verify and
showcase the GNC system to increase the TRLs, and hopefully
discover potential avenues for research. Another possible future
agenda is to consider reinforcement learning methods that have
shown some promising results for “visual to actuation” as a
potential step toward the fully intelligent GNC system for on-
orbit servicing.
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