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ABSTRACT Enterotoxigenic Escherichia coli (ETEC) is an important diarrheagenic
pathogen. We report here the high-quality whole-genome sequences of 21 ETEC
strains isolated from patients in the United States, international diarrheal surveil-
lance studies, and cruise ship outbreaks.

Enterotoxigenic Escherichia coli (ETEC) infections are the leading cause of travelers’
diarrhea and the most common cause of diarrhea among children in developing

countries (1). ETEC causes approximately 210 million infections and 380,000 deaths per
year (2). ETEC infections in humans are characterized by the production of either or
both heat-stable (ST) and heat-labile (LT) enterotoxins (3). Here, we report the avail-
ability of high-quality genome sequences for 21 ETEC strains generated by PacBio
sequencing. Each of the 21 genomes contained one chromosomal sequence, and 17 of
these were determined to be circular with overlapping ends that were trimmed from
one end.

ETEC genomic DNA was extracted using Archive Pure according to the manufac-
turer’s protocol (5 Prime, Gaithersburg, MD, USA). The genomic DNA was sheared to
20 kb using needle shearing. These libraries were further size selected using BluePippin
(Sage Scientific, Beverly, MA, USA). The sheared DNA was used to generate large
SMRTbell libraries using the standard library protocols of the Pacific Biosciences DNA
template preparation kit (Pacific Biosciences, Menlo Park, CA, USA). All strains were
sequenced using one single-molecule real-time (SMRT) cell, except strain 9276-90,
which used two. The finished libraries were bound to proprietary P6 v2 polymerase and
sequenced on a PacBio RSII system using C4 chemistry for 360-min movies. Sequence
reads were filtered and assembled de novo utilizing the PacBio Hierarchical Genome
Assembly Process version 3 (4).

Table 1 lists the accession numbers, detected serotype (genotypic), assembly met-
rics, and reference (if available) for each ETEC whole-genome sequence. A single
chromosomal sequence was obtained for all genomes with an average coverage of
102.6� (range, 42.3� to 188.6�). The average G�C content for each chromosomal
sequence was 50.68%, ranging from 50.37% to 50.82%. The chromosomal sequences
are circular with overlapping ends for all but four genomes. The single chromosomal
sequences for isolates 90-9276, 90-9269, F5176C6, and 00-3279 could not be circular-
ized because of unresolved or collapsed repeats. Each ETEC genome contained
between one and five plasmids. Table 1 notes whether overlap was found to form
circular chromosomal or plasmid contigs.

Accession number(s). This whole-genome shotgun project has been deposited in

DDBJ/ENA/GenBank under the accession numbers listed in Table 1. The versions
described in this paper are the first versions.
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TABLE 1 Accession numbers and assembly metrics of 21 ETEC whole-genome sequences

E. coli strain no.
(reference) Serotype

Chromosomal GenBank
accession no.

Average
coverage (�)

Chromosome
size (bp)

Associated plasmid size (bp)
(GenBank accession no.)

2014EL-1345-2 O169:H41 CP024223 92.3 4,943,397a 145,086a (CP024227)
85,864 (CP024226)
27,947 (CP024225)
20,005 (CP024224)

ATCC 43886 or E2539C1 (5, 6) O25:H16 CP024256 148.1 4,914,654a 95,515a (CP024255)
107,732a (CP024254)

D181 (7) O182:H21 CP024252 101.6 4,891,230a 46,427 (CP024253)
99,099a (CP024250)
167,230a (CP024249)
35,752 (CP024251)

90-9281 (8) O128:H27 CP024243 117.5 4,978,613a 152,012a (CP024244)
90-9276 (8) O114:H49 CP024299 79.8 5,004,571 167,764 (CP024297)

110,577 (CP024298)
90-9280 (8) O114:H49 CP024240 188.6 4,966,338a 74,644a (CP024242)

104,674 (CP024241)
90-9269 (8) OUND:H4 CP024661 150.6 4,759,941 160,351a (CP024662)

12,610 (CP024663)
52,270a (CP024664)
96,720 (CP024665)
20,753 (CP024666)

90-9272 (8) O15:H11 CP024239 48.3 4,906,680a 274,465 (CP024238)
ATCC 43896 (or TX1) (9, 10) O78:H12 CP024278 107.7 5,088,038a 84,894a (CP024281)

52,655 (CP024280)
28,860 (CP024279)

M9682-C1 (11) O6:H16 CP024275 156.6 4,778,550a 100,184a (CP024277)
38,177 (CP024276)

B4103-1 (12) O27:H7 CP024245 83.1 4,708,118a 138,289a (CP024248)
68,864 (CP024247)
36,948 (CP024246)

F6326-C1 O169:H41 CP024263 78.1 4,934,701a 150,389a (CP024265)
72,060 (CP024264)

F5176C6 (13) O167:H5 CP024667 86.4 5,069,317 167,071a (CP024668)
110,612a (CP024669)
46,919a (CP024670)
31,494 (CP024671)

2014EL-1343-2 O25:H16 (genotypic),
O25:NM (phenotypic)

CP024228 91.4 4,848,034a 82,510a (CP024231)
73,915 (CP024230)
38,467 (CP024229)

F5656C1 (14) O6:H16 CP024260 63.8 4,733,683a 119,846a (CP024262)
45,056a (CP024261)

2014EL-1346-6 O6:H16 CP024232 98.8 4,872,840a 152,713a (CP024237)
226,119a (CP024236)
62,188a (CP024235)
40,223 (CP024234)
30,162 (CP024233)

F9792 (14, 15) O169:H41 CP024273 92.2 4,875,605a 145,089a (CP024274)
F5505-C1 O25:H16 CP024257 94.3 4,886,938a 94,817a (CP024259)

96,607a (CP024258)
F6699 O6:H16 CP024266 42.3 4,881,899a 95,350 (CP024268)

34,042 (CP024267)
F8111-1SC3 (14) O169:H41 CP024269 78.6 4,905,023a 147,766a (CP024272)

103,618 (CP024271)
35,769 (CP024270)

00-3279 O78:H12 CP024293 155.0 5,116,480 101,907a (CP024294)
103,995a (CP024295)
97,297a (CP024296)

aA sequence that is circular with overlapping ends.
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of trade names is for identification only and does not imply endorsement by the
Centers for Disease Control and Prevention or by the U.S. Department of Health and
Human Services.
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