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Skin biopsy images can reveal causes and severity of many skin diseases, which is a significant complement for skin surface
inspection. Automatic annotation of skin biopsy image is an important problem for increasing efficiency and reducing the
subjectiveness in diagnosis. However it is challenging particularly when there exists indirect relationship between annotation terms
and local regions of a biopsy image, as well as local structures with different textures. In this paper, a novel method based on a recent
proposed machine learning model, named multi-instance multilabel (MIML), is proposed to model the potential knowledge and
experience of doctors on skin biopsy image annotation.Wefirst show that the problemof skin biopsy image annotation can naturally
be expressed as a MIML problem and then propose an image representation method that can capture both region structure and
texture features, and a sparse Bayesian MIML algorithm which can produce probabilities indicating the confidence of annotation.
The proposed algorithm framework is evaluated on a real clinical dataset containing 12,700 skin biopsy images. The results show
that it is effective and prominent.

1. Introduction

Skin diseases are common in our daily life. Most of the skin
diseases are not harmful to our health, while some kinds
of them would lead to serious problems for our health. For
example, malignant melanoma is a highly aggressive skin
cancer which looks just like some harmless nevi in some
cases. Pemphigus mostly characterized by the development
of blisters on the skin is a rare skin disorder that leads to
severe infection without effective treatment. Consequently,
rapid recognition and correct diagnosis are important to the
grave skin diseases as well as neoplasms, bullous dermatoses,
sexually transmitted diseases (STD), and so forth. However,
it is a great challenge for doctors specializing in dermatology
since there are more than 3,000 kinds of diseases in this
field, and what is worse is that the number of patients in
dermatology is increasing rapidly [1], leading to great burden

for doctors to precisely inspect large amount of cases every
day.

Generally there are two categories of skin imaging
inspection methods. The first is skin surface imaging. A
doctor could be confident of making a diagnosis through
observation and routine examination on the skin surface
in some cases. However, in many other cases, especially in
cases of skin cancer, a doctor is not easy to make a diagnosis
decision when only skin surface information is available. The
second is skin biopsy imaging, which is the imaging of slice
of skin tissue under microscope. Skin biopsy images reflect
the pathological changes behind skin lesions at a microscopic
level. It is widely accepted that histopathology is the gold
standard of diagnosing a skin disease [2]. Skin biopsy imaging
can provide valuable information of what happens under skin
surface. To reach correct annotation or diagnosis, a doctor
needs not only professional knowledge and rich experience
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Widespread parakeratosis, absence of a granular layer,
psoriasis-like hyperplasia in epidermis, upward elongation of the
dermal papillae, dilation of the capillaries in the papillae, and
dermal inflammatory cell infiltration consisting of sparse
lymphocytes and histocytes around the blood vessels.

Hyperkeratosis, acanthosis, horn-like pseudocysts that can be seen in
prickle cell layer, and inflammatory cell infiltration consisting of sparse
lymphocytes and histocytes in the upper dermis.

Incrustation of the follicular orifices, spongiosis present between
follicle wall cells, massive lymphocytes and eosinophils infiltration
within and around the hair follicles, and increase and dilation of the
capillaries in the dermal papillae.

Hyperkeratosis with follicular plug formed, acanthosis with
irregular elongation of the epidermal rete ridges, degeneration of
the basal cells, and massive lymphocytes and histocytes infiltration
around the cutaneous appendages and the blood vessels in the
upper dermis.

Figure 1: Example of skin biopsy images and their corresponding description in plain text.

in inspecting skin lesions, but also deep understanding of
skin histopathological imaging. While analyzing skin biopsy
images consumes more time and requires more skills, dif-
ferentiating normal/lesion regions or similar skin diseases
becomes great challenges for doctors. Meanwhile, current
skin biopsy image inspection is heavily relied on experience
and professional knowledge of histopathological laboratory
experts, which are subjective and unstable. To obtain a stable
and reproducible diagnosis result, a computer-aid diagnosis
(CAD) system is necessary.

Hence it is meaningful to develop computational meth-
ods for automatic feature recognition and annotation of skin
biopsy images.However, there are some significant challenges
due to the complex structures and textures of biopsy images
and indirect relationship between historic diagnosis records
and images. First of all, in dermatological practice, when
annotating biopsy skin images, doctors only give plain text
description for a patient attached to several skin biopsy
images. The plain text description involves a set of standard
dermatological annotation terms and some linked words to
show key features reflected by the biopsy images, as shown
in Figure 1. However, in fact, the dermatological terms only
reflect certain local regions instead of the whole image. See
Figure 2 for details. Only one or more small local regions

is responsible for a certain dermatological term. However,
the correspondence between dermatological terms and local
regions is unknown in current datasets. Thus we cannot
model this correspondence directly.

Another challenge is that, even for the same term, its
corresponding local regions may be significantly varied in
size, shape, texture, lightening, inner structure, or the relation
between local regions with different terms. In addition, we
should be aware of the fact that sublayers of a skin tissue
are strictly ordered, leading to some correlations between
local visual regions as well as the corresponding features [3].
All these challenges make the task more difficult to tackle
compared with traditional machine learning ones.

Several attempts have been reported publicly to build
models or classifiers for skin image automatic annotation
or recognition. A portion of them have attempted to design
different color space-based feature extraction methods and
to apply different machine learning models to achieve good
performance for different kinds of skin diseases [4–6].
However, a large amount of these methods have to face the
problem of manually labeling lesion regions. In order to
build a training dataset comprising both normal and lesion
skin images, we are required to pick out normal and lesion
regions for each skin image. Meanwhile, a large number
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Figure 2: Dermatological terms and their corresponding regions.

of histopathological image analysis methods have also been
reported for classification or grading of biopsy images [7–10].
But few of them attempted to model the indirect relationship
between histopathological features and parts of a biopsy
image.

Moreover, many previous methods required specialized
knowledge to choose a proper color space representation
and a model, which is not feasible in most cases. Recently,
Bunte et al. [11] proposed a machine learning framework to
combine several color space representationmethods through
a weighting procedure. Zhang et al. [12] proposed to convert
the skin biopsy image feature recognition problem into a
multi-instance (MI) learning problem and then solve it by
current well-studiedMI algorithms, which is the first attempt
to tackle the skin biopsy image annotation problem within
machine learning framework. In their paper, they applied
a famous graph cutting algorithm, named nnormalized cut
[13], to generate visual disjoint regions and then apply image
feature extraction algorithm for each local region, so as to
turn each image into a MI sample. However, they simply
trained an individual MI learner for each target feature
to be recognized, discarding the correlation between target
features, which is not sufficient from a medical point of view.

In this paper, we attempt to tackle the skin biopsy
image feature extraction problem under a recently pro-
posed machine learning framework, multi-instance multi-
label (MIML) learning. We first show that the problem is
naturally a MIML learning problem. Then we propose a
sparse Bayesian MIML learning algorithm with a Gaussian
prior as the main model, which is able to model a posterior
distribution of the target features giving images as input.
We evaluate the proposed algorithm on a real dataset from
the department of dermatology and venereology of a large
local hospital. The evaluation results show that the proposed
algorithm framework can effectively annotate the concerning
terms of skin biopsy images superior to existing methods.

Table 1: 15 considered annotation terms and their occurence
frequency.

Number Name Rate
𝑇1 Retraction space 28.65%
𝑇2 Papillomatosis 22.71%
𝑇3 Follicular plug 1.8%
𝑇4 Hypergranulosis 32.15%
𝑇5 Horn cyst 4.14%
𝑇6 Basal cell liquefaction degeneration 6.48%
𝑇7 Thin prickle cell layer 2.61%
𝑇8 Infiltration of lymphocytes 9.12%
𝑇9 Hyperpigmentation of Basal cell layer 36.99%
𝑇10 Nevocytic nests 18.56%
𝑇11 Munro microabscess 7.72%
𝑇12 Acanthosis 19.05%
𝑇13 Absent granular cell layer 23.24%
𝑇14 Parakeratosis 6.81%
𝑇15 Hyperkeratosis 11.30%

2. Materials and Methods

2.1. Materials. We aim at building a machine learning model
for annotating a given skin biopsy imagewith a set of standard
dermatology terms. The skin biopsy images are digitally
stored. The size of each image is 2048 × 1536 pixels with 24𝑘
colored. The image files are fed to the model that outputs a
binary vector to indicate whether the terms are annotated.
We consider totally 15 annotation terms which appeared in
the electronic records and regarded important for diagnosis
in this study. Table 1 lists 15 terms and their occurrence ratios
in the whole evaluation dataset.

In our evaluation dataset, each patient has at least
one skin biopsy image of the target skin tissue, associated
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Figure 3: Normalized cut with 𝑘 = 11.

with a plain text description given by an expert. We only
select an image for each patient and assume that each
selected image contains all terms in the text description.
Then we can convert the text description into a binary
vector through simple word-matching procedure. Thus the
original problem becomes a multilabel binary classification
problem.

We further formally define the problem as follows. Let
𝐷 = {(𝑋

1
, 𝑇
1
), . . . , (𝑋

𝑛
, 𝑇
𝑛
), 𝑋
𝑖
∈ 𝐼, 𝑇

𝑖
∈ 𝑊} be a set of

images associated with the annotated terms, where 𝑋
𝑖
is an

image, 𝑇
𝑖
= {𝑡
1
, . . . , 𝑡

𝑚𝑖
} is a set of terms associated with the

image, and 𝐼,𝑊 stand for the whole set of images and terms,
respectively. The problem is to learn a function 𝑓 : 𝐼 → 𝑊

with a training image set𝐷 such that when given a test image
𝑋
𝑡
it can give the posterior probability of each term in𝑊 to

be annotated to𝑋
𝑡
.

To represent the key features of a given image, different
feature extraction methods have been proposed and devel-
oped and in various fields of image understanding research
[7]. However, a large body of feature extraction methods
previously applied in histopathological image analysis, which
extract global features, is not suitable for our biopsy image
annotation task. Because in our problem there are 𝑚 to
𝑛 relationships between notation terms and local regions
within images, methods extracting global features are not
able to express local features corresponding to each region of
interest.

If a given image can be cut properly to generate mean-
ingful regions, the above correspondence can be directly
modeled. The proper cutting of a given image should
generate regions attached with terms as few as possible.
Such regions are relatively simple and easy to be described.
In histopathological image analysis, several image cutting
methods have been applied in different tasks. Caicedo et al.
[4] proposed a bag-of-words approach for histopathological
image annotation.They divided an image into blocks of equal
size to generate a codebook for feature representation. Ji et al.
[14] and Li et al. [15] applied the almost same block-cutting
method to generate MI samples from given images. Another
region generating method that should be mentioned is based
on block clustering proposed by Chen and Wang [16]. They
generated regions by clustering 2D waveform transformation

coefficiencies of each block. Thus similar blocks can be
gathered into a single cluster. In their work clusters were
regarded as regions and it generated discontiguous regions,
not regions in common sense.

However, such cutting approaches cannot generate
regions of medical meaning as we need. As shown in our
previous work [12], the model that is built upon such
region generatingmethods cannot properly capture the direct
medical knowledge and experience for annotating biopsy
images. An experienced doctor would annotate an image by
directly inspecting some local visual disjoint regions within
the image. Following this observation, we apply the same idea
to cut a given image into 𝑘 visual disjoint regions through
the normalized cut algorithm proposed by Shi and Malik
[13]. The number of regions should be set before running the
algorithm. Figure 3 shows the result of normalized cut for an
skin biopsy image with 𝑘 = 11.

It should be noted that there is not any optimal 𝑘 for
the annotation problem, since the concept of local region
is not an actual cutting of an image. A smaller 𝑘 leads to
larger regions, which may contain more than one term, while
fragment regionsmay be generated if 𝑘 is large. Hence we add
a region size constraint when running the cutting algorithm.
A generated region should contain at least 1500 pixels to avoid
too much fragments, along with a relatively large 𝑘. Thus we
can get as much as possible regions but avoiding too much
fragments.

To further express each generated region as a vec-
torial representation, we propose a feature representation
method that can capture both texture and structure features
of regions. The method combined the features extracted
through the method introduced in our previous work [8, 12]
and features from a graph view of the image. Briefly saying,
for the first part of the features, the method performs a
waveform transformation for each equal-sized block within
each region and combines the waveform transformation
coefficiencies to form a 9-ary real vector for each region.
To make the paper self-contained, we present some details
of the extracted features. The first three features 𝑓

1
, 𝑓
2
, 𝑓
3

are means of 𝐿, 𝑈, 𝑉 values of all pixels within a region.
The next three features 𝑓

4
, 𝑓
5
, 𝑓
6
are mean DWT coefficients

HH, HL and LH of all blocks. The last three features are
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Figure 4: Feature extraction for local regions.

the 1st, 2nd, and 3rd order normalized criteria [17] of the
whole region.

For the second part of the features, we represent a
region as a graph in which nodes are centroids of clusters
of pixels and edges are the relationship between nodes
with real weights. We apply a heuristic algorithm [5] to
seek the centroids of local similar pixels. Then a Delaunay
triangulation method [18] is applied to the set of centroids
to add edges. Graph representation methods are widely used
in histopathological image analysis for it is able to capture the
structure of a tissue [7, 9, 10, 19]. Figure 4 illustrates the main
steps of our region feature extraction procedure.

There are three types of graph features considered in our
feature representation. The first is average degree of nodes
belonging to each cluster in the graph. It can be simply
obtained by averaging the degrees of all nodes belonging
to the same cluster. The degree of a node is the number
of edges. The second is average clustering coefficient (ACC)

[20], which measures the average connectivity of a node and
its neighbors. The ACC for node 𝑖 is defined as

ACC
𝑖
=

2𝐶
𝑖

𝑑
𝑖
(𝑑
𝑖
− 1)

. (1)

In (1), 𝐶
𝑖
is the number of edges between node 𝑖 and its

neighbors and 𝑑
𝑖
is the degree of node 𝑖. The neighborhood

between each pair of nodes is measured by the Euclidean
distance. We calculate the values of ACC for nodes belonging
to different clusters. We compute the average ACC of all
nodes in the graph and nodes in the same cluster. Hence there
are 𝑝 + 1 average ACC where 𝑝 is the number of clusters.
The third is the diameter of the graph, which is defined as the
shortest path of the longest path between pair of nodes on the
graph. In our work 𝑝 = 4, there are 4 average degrees, 4 × 3
different types of node connection, which results in 12ACCs,
and finally a diameter value of the whole graph. Totally we get
a 17-ary feature vector.
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Figure 5: Padding pixels.

Since the generated regions are irregular in shape,
padding pixels (in black) must be excluded from our feature
extraction procedure. To do this, for the texture features,
blocks that have at least one black pixel are discarded. Since
the block in our method is of 4 × 4 pixels, it leads to a rough
border of the original region which would not significantly
affect the texture features. For graph features, it is not a
problem since the black pixels would of course be clustered
into a single cluster. Thus we can simply discard such black
cluster to get rid of padding pixels. Details of the above idea
were presented in our recent work [8]. Figure 5 illustrates
the processing of padding pixels in our feature extraction
procedure.

Thus, a skin biopsy image is decomposed into a MI
example (bag), in which visual disjoint regions are instances.
Moreover, we can define a binary vector to indicate whether
an annotation term is associated with a given image. An
annotation term can be regarded as a label associated with an
image. Hence the biopsy image annotation problem can be
naturally considered as a multi-instance multilabel (MIML)
problem. Based on the relationship between regions and
terms from clinical experience, we tackle the problem under
the standard MI assumption which was firstly introduced
by Dietterich et al. [21], assuming that a sample was labeled
positively if at least one instance in it is positive and negative
otherwise.The standardMI assumption has beenwidely used
in bioinformatics study [22] and it is also suitable for this
work.

2.2. Methods

2.2.1. Sparse Bayesian MIML Learning Framework. In the
previous subsection, we have shown that the problem is nat-
urally a MIML problem. Now we propose a novel algorithm
to solve this problem effectively. The general idea is that
we first randomly construct a set of basic MIML learners
and then learn a sparse weights vector under the relevant
vector machine (RVM) [23] framework to combine the basic
learners together. The learning framework prunes off many

learners by automatically driving the corresponding weights
to zero so as to get a sparse solution. The motivation of
this work is the consideration of time complexity of building
a good MIML learner. A weighted ensemble method is
adopted, and the weights are determined by RVM method.
The method does not require basic learners of good quality.
It can find an optimal combination of learners of low quality
at relatively low cost.

2.2.2. Generating Basic Learners. We make use of a recently
proposed Bayesian MIML learning model [24] for the gener-
ation of MIML basic learners. The method directly models
a predictive distribution of terms conditioning on training
data with a Gaussian process (GP) prior. We introduce a set
of unobserved real-value functions 𝑓 = {𝑓

1
, . . . , 𝑓

𝑠
} ranging

from [0, 1], where 𝑠 is the number of target labels. The value
of 𝑓 for a given instance (region) indicates to which extent it
should be annotated with the 𝑠 concerning terms. Under the
standard MI assumption, the bag label can be determined by
a max or soft max function over 𝑓

𝑖
on all instances in the bag

[25].
We formally describe the procedure of basic learner

construction as follows. The goal is to model the predictive
probability of the concerning annotation terms 𝑇, giving the
training set𝐷, a prior𝐾GP, and a test sample 𝑥, which can be
expressed as 𝑝(𝑇 | 𝐷, 𝑥, 𝐾GP

). The prior𝐾GP can be given by
a kernel function through a Gaussian process. The likelihood
function associated with latent functions 𝑓 on 𝐷 can be
expressed as

𝑝 (𝑇 | 𝐹) =

𝑠

∏

𝑖=1

𝑛

∏

𝑗=1

𝑝 (𝑡
𝑖
| 𝐹
𝑖𝑗
) , (2)

where 𝐹
𝑖𝑗
is the value of applying 𝑓

𝑖
to all instances in bag 𝑥

𝑗

and 𝐹 is a matrix containing all values of applying all 𝑓 on𝐷.
Since 𝐹 is unknown, we impose a prior for 𝐹 to avoid

overfitting when evaluating it. Following Bonilla et al.’s work
[26], a Gaussian prior for 𝐹with zero mean and covariance is
defined as follows:

𝑝 (𝐹) = 𝑁(𝐹 | 0, 𝐾
GP
⊗ 𝐾) . (3)

In (3),𝐾 stands for the grammatrix for some kernel functions
(e.g., RBF or poly kernel) in instance space and 𝐾GP in fact
indicates the relationship between terms to be annotated.
In [24], they adopted a marginal likelihood maximization
method to find the optimal 𝐾GP, which is expensive. In this
work, we do not directly work out the optimal solution for
𝐾

GP. On the contrary, we randomly generate 𝐾GP
𝑄 times

and then learn a vector of weights to obtain an optimal
combination.

With 𝐾GP, we can further derive the posterior distribu-
tion given a training dataset𝐷 as

𝑝 (𝐹 | 𝐷, 𝑇) =
𝑝 (𝑇 | 𝐹) 𝑝 (𝐹)

∫ 𝑝 (𝑇 | 𝐹) 𝑝 (𝐹) 𝑑𝐹
. (4)

Notice that the second𝑝(𝑇) = ∫𝑝(𝑇 | 𝐹)𝑝(𝐹)𝑑𝐹 is a constant
value since 𝑇 is constant and 𝐹 is integrated out. Thus it can
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be ignored. Because 𝑝(𝑇 | 𝐹)𝑝(𝐹) is not a Gaussian [26], we
use some approximation methods to evaluate it. Following
Nickisch and Rasmussen’s work [27], we apply the Laplace
approximation to convert 𝑝(𝑇 | 𝐹) into a Gaussian near its
true mode. According to [26, 27], we can directly write down
the mean and variance of the approximation distribution for
𝑝(𝑇 | 𝐹). Meanwhile we notice that 𝑝(𝐹) is also a Gaussian,
which leads to a Gaussian distribution for 𝑝(𝐹 | 𝐷, 𝑇).

The predictive probability can then be derived from the
likelihood, prior, and posterior distribution aforementioned.
We have

𝑝 (𝑡
𝑖
| 𝐷, 𝑇, 𝑥) = ∫max (𝐹

𝑥
) 𝑝 (𝐹
𝑥
| 𝐷, 𝑇, 𝑥) 𝑑𝐹

𝑥
, (5)

where 𝑥 is a test bag (image) and 𝐹
𝑥
is a vector of applying

all 𝑓 to all instances in 𝑥. The first term on the right-
hand side reflects the standard MI assumption, meaning that
the largest value among 𝑓 determines the probability to be
annotated with the corresponding term. For computational
convenience, we often use soft max function instead of max
in (5), given by ln∑

𝑖
𝑒
𝑎𝑖 . The predictive distribution is also a

Gaussian and can be solved directly as follows:

𝑝 (𝑡
𝑖
= true | 𝐷, 𝑇, 𝑥) = ∫ ln(

∑
𝑗
𝐹
𝑥𝑗

󵄨󵄨󵄨󵄨𝐹𝑥
󵄨󵄨󵄨󵄨

) 𝑝 (𝐹
𝑥
| 𝐷, 𝑇, 𝑥) 𝑑𝐹

𝑥
.

(6)

The right-hand side of (6) is a Gaussian, which can be
determined through a EM-like procedure [27]. An important
thing should be noticed is that (6) has a parametermatrix𝐾GP

that controls the relationship between terms.
The time complexity of the above procedure can be

analysed as follows. Suppose we generate a set of 𝑄 basic
learners and |𝑇| annotation terms. For each learner, there
is a random sampling procedure for 𝐾GP which requires
𝑂(|𝑇|
2
) operations; training aMIML learner requires𝑂(|𝑇|×

|𝐷|
2
), where |𝐷| denotes the number of instances in training

dataset.

2.2.3. Sparse Bayesian Ensemble. Since the cost of calculating
the optimal 𝐾GP is very high, we randomly set them 𝑄 times
to obtain a set of different learners and then apply a weighted
ensemble procedure as follows:

𝑓ens (𝑥) =
𝑄

∑

𝑖=1

𝑓
𝑖
(𝑥) . (7)

A RVM-like algorithm [23] is adopted to find the optimal
weights to combine them.The main reason for using RVM is
twofold. On one hand it is purely based on Bayesian theory
which is consistent with our basis learner. On the other hand,
RVM can give a sparse solution which is preferred in large
data analysis and fast annotation. Figure 6 shows the main
steps of the proposed algorithm framework.

The target model is a weighted ensemble of a set of basic
learners. To get a sparse representation, we impose an ARD
prior [28] on the weights 𝑤 which is a Gaussian with zero
mean and different variances 𝛼

𝑖
for each weight 𝑤

𝑖
. In RVM’s

Biopsy image
NCut

2D-DWT

Regions

Graph

Feature vector MIML samples

Gaussian prior GP-MIML
learners

Sparse Bayesian
learning (RVM)

Random
sampling Sparse weights

Target learner

Figure 6: Main steps of the proposed algorithm.

optimization procedure [23], a large body of variances would
be driven to infinity leading the corresponding weights to
zero. Hence a large body of weights would be pruned off from
the model and final a sparse model is obtained. Formally,
let 𝑤 = {𝑤

1
, . . . , 𝑤

𝑄
} be a set of weights associated with

𝑄 learners. A Gaussian prior with zero mean and different
variances is imposed on 𝑤. Tipping’s work [23] indicated
that when applying a maximum a posterior (MAP) learner to
learn an optimal𝑤, a large body of𝑤would be driven to zero.
Following this idea, we apply RVM algorithm on 𝑤 given the
training dataset𝐷.

Please note that the weighted ensemble may not follow a
Gaussian distribution.This is because∑

𝑖
𝑤
𝑖
is not guaranteed

to be 1. A normalization procedure should be applied to
obtain a normalized combination

𝑤
𝑖
=

𝑤
𝑖

∑
𝑗
𝑤
𝑗

. (8)

By applying RVM, a smooth learner can be obtained
which captures the general features of the whole training
dataset. RVM adopts an iterative procedure to find optimal
weights.

3. Results and Discussion

3.1. Results. We present the evaluation result of the proposed
algorithm on a real dataset gathered from a large local
hospital. The setting of basic learner generation is the same
as [24] and the setting of RVM follows Tipping’s original
implementation [23].Theproposedmethod is comparedwith
some existing approaches in histopathological image analysis.
Since some of them are not consistent with the MIML setting
in our work, we would implement them on a more general
foundation for image analysis.

3.1.1. Dataset and Data Preprocessing. The evaluation was
carried out on a real skin disease clinical dataset from a large
local hospital.The dataset has been reconstructed to get rid of
irregular patient information and low quality biopsy images.

The biopsy images in the evaluation dataset are taken
by a Leica DFC290 digital camera with 20x, 40x, and 100x
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microscope objective lenses. The images are taken in RGB
color space and stored in JPEG format. For convenience, we
only keep images at 40x magnification ratio. It contains 4,123
patients with 12,700 images. The images are 2048 × 1536
pixels with 24𝑘 colors. For computational efficacy, they are
rescaled to 800×600 pixels.There are three 40x biopsy images
for each patient on average. We consider 15 features to be
annotated, corresponding to 15 standard terms, as shown in
Table 1, and then convert the plain-text description into a 15-
ary binary vector in which each element indicates whether
the corresponding term exists in the diagnosis record in plain
text, as shown in Figure 1. Since most doctors use standard
terms and link words in their description, training dataset of
good quality can be obtained in this way.

Each image associated with a patient is converted into
a bag through normalized cut and then a feature extraction
method combined with waveform transformation and graph
representation. For normalized cut, the number of regions
𝑘 must be set manually. In our evaluation we set 𝑘 =

11 which means an image would be converted into a bag
consisting of 11 instances. A further discussion on the setting
strategy of 𝑘 is presented in the next section. Different images
of the same patient are associated with the 15-ary binary
of the patient. We denote the dataset generated through
the above procedure as 𝐷1. For waveform transformation,
each region should be divided into blocks of size 4 × 4
pixels. Blocks containing at least one black pixel would be
discarded. For graph representation, the number of clusters
𝑝 is set to 5, assuming that there are 5 different tissues in
each image on average. In node identification algorithm,
circles containing less than 20 pixels would not be taken into
account.

Since there are other compared methods that are not
consistent with the MI setting, we generate another three
data representations, namely, 𝐷2, 𝐷3, and 𝐷4, for these
methods. Data representation 𝐷2 is based on the equal-
sized block cutting method proposed in [4]. We first cut
each image into 4 × 4 blocks and apply a scale-invariant
feature transform (SIFT) descriptor [29] to extract features
and use histogram to express it as a feature vector. 𝐷2 is
a bag-of-words [14] image representation which is widely
used in image understanding. Dataset 𝐷3 is an equal-sized
block MI sample representation proposed in [15]. The main
procedure is similar to 𝐷2, but it directly regards each block
with SIFT representation as an instance. Hence in 𝐷3 there
are totally 30, 000 instances in each bag. Finally dataset𝐷4 is a
clustering based representation. It clusters equal-sized blocks
represented in real value vector and regards each cluster as
an instance. Details of this method can be found in [16].
Table 2 lists the above data representation and their consistent
methods for comparison.

Note that these datasets are only different in their prepro-
cessing steps. In Table 2 we can see that method𝑀4 can be
fed with 𝐷1 and 𝐷3, for𝑀4 is a MIML learning algorithm
naturally consistent with MI data representation. However
𝐷3 cannot be fed to𝑀1 because the idea of𝑀1 is to regard
each visual disjoint region instead of equal-sized block, as an
instance. Different definitions of instance are originated from
the difference of underlying idea of the problem. A single

Table 2: Data representation and their consistent methods.

Method Reference Dataset
𝑀1: our method This work 𝐷1

𝑀2: MIBiopsy Zhang et al. [12] 𝐷1

𝑀3: bag of features Caicedo et al. [4] 𝐷2

𝑀4: MIMLSVM Li et al. [15] 𝐷1, 𝐷3

𝑀5: DDSVM Chen and Wang [16] 𝐷4

Table 3: Evaluation criteria for multilabel learning.

Name Equation
ℎ𝑙𝑜𝑠𝑠 Evaluate the number of misclassified label pairs

one-error Evaluate the portion that a label of highest
probability is not a correct label

𝑐𝑜V𝑒𝑟𝑎𝑔𝑒 Evaluate the average distance to go down to find
the proper label for a given image

𝑟𝑙𝑜𝑠𝑠
Evaluate the average fraction of label pair that are
misordered in the ranking list

block may not contain medically acceptable features, which
is not consistent with our MI framework.

3.1.2. Evaluation Criteria. We adopt five different criteria
to evaluate the performance of the proposed method and
the compared methods. The first is accuracy, a zero-one
loss function evaluating whether a single term is correctly
annotated. It can be applied to evaluate the performance
of methods that annotate only one term each time. Since
the proposed method is a MIML one, it can be regarded
as a multilabel learner. Several evaluation criteria have been
proposed in multilabel learning and MIML learning study
[30]. Introducing such criteria is necessary for our evaluation.
Formal definition of the four multilabel evaluation criteria
can be found in [30]. Table 3 lists five criteria used in our
evaluation.

3.1.3. Evaluation Result. For the methods shown in Table 2,
we use the same setting for evaluation. The evaluation is
launched through a supervised learning manner. The whole
dataset (with 12,700 images) is divided into training set and
test set at a ratio 3 : 7. To avoid learning bias, the occurrence
ratios of the concerning terms inTable 1 were kept the same as
the training set. For method𝑀1, we use a modified GPMIL
andRVM implementationwhichwere originally proposed by
Kim et al. [31] and Tipping [23].

The first evaluation focuses on the annotation accuracy.
Recall that we have 15 concerning annotation terms. Table 4
gives the results of annotating each term by differentmethods
in Table 2.

It should be noted that the output of method𝑀1 is a 15-
ary real vector indicating the probabilities of annotating 15
terms. In this part of evaluation, we simply use an indicator
function which outputs 1 if the probability is not less than 0.5
and 0 otherwise. Figure 7 shows some outputs of𝑀1 and𝑀5,
in which the probabilities of the concerning terms are shown,
as well as the groundtruth annotation terms.
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Table 4: Annotation result evaluated by accuracy.

Term 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

𝑇1 78.2% 76.1% 70.6% 75.9% 68.3%
𝑇2 80.3% 75.9% 76.1% 74.5% 73.8%
𝑇3 77.7% 79.5% 77.8% 76.2% 68.5%
𝑇4 81.3% 81.2% 80.5% 82.4% 81.2%
𝑇5 69.3% 66.5% 67.9% 70.1% 67.4%
𝑇6 76.3% 75.0% 71.7% 74.2% 72.3%
𝑇7 77.8% 77.4% 76.5% 75.8% 75.9%
𝑇8 85.1% 85.2% 84.6% 83.8% 80.9%
𝑇9 87.3% 86.8% 81.4% 83.0% 78.2%
𝑇10 75.9% 75.4% 74.5% 73.8% 72.0%
𝑇11 69.9% 71.5% 68.9% 70.7% 69.6%
𝑇12 78.0% 76.1% 73.2% 75.8% 73.2%
𝑇13 79.2% 80.1% 77.2% 78.8% 72.5%
𝑇14 80.6% 81.2 77.2% 81.9% 73.5%
𝑇15 87.9% 86.4% 82.6% 83.1% 80.2%

111409

120036

120056

M5 M1 Groundtruth

T1, T2, T4, T6

T8, T12

T3, T4, T8, T11, T13
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T3: 65%

T4: 88% T7: 57%
T12: 55%
T15: 61%
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T14: 82%

T1: 91% T2: 56%
T6: 57% T8: 82%
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Figure 7: Sample outputs of methods𝑀1 and𝑀5.

For each row in Table 4, the best accuracy is highlighted.
It can be seen that 𝑀1 achieved the best performance in
annotating most terms, which shows the effectiveness of
our method. However, for some terms, for example 𝑇4 and
𝑇5, method 𝑀4 performed better than 𝑀1 and 𝑀2. We
think this is because our graph cutting representation is not
consistent with these terms, while the more general grid
cutting representation is better.

The second evaluation focuses on the performance of
annotating several terms simultaneously. Note that, in previ-
ous part of evaluation, accuracy of annotation was evaluated
term by term; hence the overall accuracy of annotating all
concerning terms may not be as high as the individual
ones. We adopt four criteria listed in Table 3 to show the
performance of annotation of all terms at the same time.
Some criteria rely on the ranking of terms. We can get a
natural ranking for the proposed method since it gives the
probabilities for all terms. For other methods to be compared

in our evaluation, we use the ranking strategy similar to
[30]. Note that methods𝑀2,𝑀3, and𝑀5 are not multilabel
classifiers. Hence we only compare𝑀1,𝑀4with𝐷1 and𝑀4
with 𝐷3. Figure 8 shows the performance evaluated by the
above four criteria.

According to Table 3, the smaller results of the four
criteria indicate the better performance. From Figure 8, it
can be seen that method 𝑀1 achieved best performance
compared to other methods in a multilabel classification
setting at different training data ratios. For method 𝑀4,
different data representations 𝐷1 and 𝐷3 lead to different
performances. It can be seen that𝐷1 is better than𝐷3 inmost
cases. Since the intuition of 𝐷1 and 𝐷3 is totally different,
it may be concluded that the representation 𝐷1 is more
consistent with the term set and the models.

Finally we evaluate the sparsity of the proposed model.
We vary the ratios between training data and test data and
plot them with the nonzero-weighted basic learners after
RVMprocedure. In this case the set of basic learners contains
200 learners; that is, 𝑄 = 200. Figure 9 shows the result.

From Figure 9 we can see that RVM procedure can prune
off about 2/3 learners, which yields a sparse ensemble learner.
Figure 10 shows the corresponding annotation accuracy of
different training set sizes. It can be seen that large training
set would lead to high accuracy. Figure 9 indicates that the
number of nonzero-weighted learners is stable at different
training set sizes. The performance of the proposed method
obeys the basic principle of machine learning; that is, more
training data means model of high accuracy. For illustration,
Figure 10 shows the relationship between accuracy and the
size of training set for terms 𝑇1, 𝑇6, and 𝑇9.

3.2. Discussions. Some important issues areworth addressing
here. First, we must answer why MIML rather than MI
framework is consistent with our task. MIML learning prob-
lem can be decomposed into several MI learning problems
if we assume labels are independent of each other. When
coming to our annotation problem, it is observed that there
are correlations between annotation terms, including the
cooccurence of some terms or the absence of other terms.
Furthermore, some annotation terms may appear at the
same time for some diseases. To capture the correlations
mentioned above,MI learning frameworkwhich regards each
annotation term independently is not sufficient. However,
MIML learning framework is able to capture the relationship
between annotation terms, as well as regions, which is
superior to MI framework.

Second, our proposed regions generatingmethod is based
on normalized cut, which generates visual disjoint regions
for a given image. The number of regions generated by
normalized cut must be manually set. A small 𝑘 would lead
to large regions that may contain different terms. A large
𝑘 would lead to fragment regions associated with the same
term, as shown in Figure 11. However, in either case, MIML
learning framework works according to the standard MI
assumption [21, 32]. The former case is equivalent to an
instance corresponding to more than one term. The latter
case is equivalent to several instances corresponding to the
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Figure 8: Evaluation result of four criteria.
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Figure 9: Sparsity and number of basic learners.

same term. Though the quantity of 𝑘 would not affect the
effectiveness of MIML, too small 𝑘 would affect the effect of
feature extraction. A region contains different terms cannot
be expressed as a real feature vector distinguishing between
each term at the same time. Hence, in our work, we use
a relative large 𝑘 according to medical experience to avoid
a region containing more than one term and too much
fragments.
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Figure 10: Accuracy and the size of training set.

Third, a Bayesian model can generate probability for each
concerning annotation term, which makes it available to
build a more powerful model for automated skin disease
diagnosis. Annotation terms can be regarded as latent vari-
ables between skin biopsy images and diseases, meaning that
𝑝(𝑤 | 𝐼) = ∑

𝑡∈𝑇
𝑝(𝑤 | 𝑡)𝑝(𝑡 | 𝐼) for independent and identi-

cally distributed (i.i.d.) terms, where 𝐼, 𝑡,𝑇, respectively, stand
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Figure 11: The result of normalized cut with different settings of 𝑘.

for diseases, images, a certain term, and the set of terms. And
for non-i.i.d. terms, we can separate the terms into dependent
term groups and apply almost the same equation as in the
i.i.d. case. The method proposed in this paper can effectively
evaluate 𝑝(𝑡 | 𝐼), and 𝑝(𝑤 | 𝑡) can be obtained directly from
clinical experience. Hence, it is meaningful in CAD system
design and implementation.

Finally, we discuss themulti-instance assumption implied
in this work. We use the standard MI assumption [21] when
considering the relationship between regions and terms.
The standard MI assumption does not directly consider
the impact of the number of regions and the relationship
between regions to the terms. Fromclinical observation,most
annotation terms canmainly be determined by a single region
if the generated regions are not too small. Large region may
contain more than one term, but it is also consistent with the
standard MI assumption and this can be solved due to the
power of MIMLmodels.Though our proposedMIMLmodel
in fact considers such relationship, a simple assumption of the
problem may lead to simple model.

4. Conclusions

In this paper we propose a MIML framework for skin
biopsy image annotation. We adopt a famous graph cutting
algorithm named normalized cut to transfer a biopsy image
into a MI sample, in which each region is regarded as an
instance. To effectively express features of biopsy images, each
region is expressed as a 9-ary real vector. To reduce themodel
complexity and training time, we propose a novel sparse
Bayesian MIML learning model, which applies a RVM-like

algorithm to obtain a sparse weighted combination for a set of
basic learners. We also make use of the well-studied Bayesian
MIML learner as basic learners. Evaluation of a real clinical
dataset shows that the proposed model can achieve good
performance and reach a medical acceptable result. We have
achieved an annotation accuracy up to 85% in our evaluation
dataset.

The proposed annotation framework directly models
doctor’s experience of annotation biopsy images. Different
from previous work, it is explicable since it can give the
correspondence between local visual disjoint regions and
the terms associated with them. Future work will focus on
studying the relationship between biopsy images and the final
diagnosis given the annotation term set as latent variables.
And the feature fusion algorithm towards an effective feature
representation is another research direction.
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