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Abstract

Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation
sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in
vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow
down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the
phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The
polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those
residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular
location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites.
The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate
potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for
Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A,
and protein kinase C families (avaiable at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can
serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of
other post-translational modification substrates.
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Introduction

Protein phosphorylation is a kind of post-translational modification

which plays key roles in many cellular processes. A protein kinase

catalyzes the protein phosphorylation process, in which the c
phosphate on ATP or GTP is transferred to the substrates. Protein

phosphorylation has the following characteristics: 1) phosphorylation

requires a protein kinase to catalyze the reaction. There are currently

518 known kinase genes in the human genome [1]. These kinases are

divided into 134 families according to the sequence of their catalytic

domain [1]. 2) Phosphorylation usually takes place on particular

amino acids of the substrate protein. In eukaryotic cells, it occurs

mainly on Serine (S), Threonine (T) or Tyrosine (Y). 3) The

phosphate on substrates can be removed by phosphatases, so the

phosphorylation process is reversible: it is determined by the balance

between protein kinases and phosphatases.

This reversible character allows the phosphorylation process to

work like a switch in a living cell. When there is an external input

signal, protein kinases activate specific substrates. After singla wanes,

the activated substrates will be ‘‘shut down’’ by phosphatases, the

substrates return to their original state and wait for the next signal. A

normal biological function in vivo usually involves a series of

phosphorylation processes [2]. In an eukaryotic cell, about 30–50%

of the proteins can be phosphorylated [3]. To regulate so many

proteins simultaneously, there must be a mechanism that can control

the protein phosphorylation process precisely. Protein kinases play

important roles in this mechanism. They recognize specific substrates

and determine the exact time and place for phosphorylation to occur.

Thus, the identification of the involved kinases and their phosphor-

ylation sites are the first step to understand mechanisms.
32p-labeling and mass-spectroscopy are common experimental

methods to identify phosphorylation sites, however, both of them

are costly and time consuming if applied in an unbiased fashion.

Thus, using computational methods to screen for putative sites

prior to experimental verification can narrow down the efforts on

experimental work. Many computational methods for identifying

phosphorylation sites have been developed. In 1998, Kreegipuu et

al. found that the primary peptide sequences around phosphor-

ylation sites have strong signals for a collection of known

phosphorylation sites. These signals can be used to identify

possible phosphorylation sites [4]. In 1999, Blom et al. utilized the

information of the peptide sequences in the proximity of the

potential phosphorylation sites to develop the first phosphorylation

site prediction method based on an artificial neural network

algorithm [5]. After that, many advanced machine-learning

algorithms had been introduced to predict the phosphorylation
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sites, such as logistics regression [6], support vector machine

(SVM) [7] and conditional random field [8]. In our previous work,

we developed a kinase-specific phosphorylation site prediction

algorithm by the log-odds ratio approach based on the peptide

sequences surrounding the potential phosphorylation sites [9].

Although most of existing methods predict phosphorylation sites

based solely on the primary sequences around the phosphorylation

sites, the primary sequences cannot fully determine whether the

phosphorylation will occur. There are at least three mechanisms that

can affect the phosphorylation process in vivo [2]: 1) Kinases interact

with amino acids around phosphorylation sites directly. Take kinase

PKA as an example, the glutamic acid at position 170 and 230 of

PKA kinase can interact with the second arginine downstream of

phosphorylation sites on substrates [10]. 2) Protein kinases (e.g. Kinase

MAPK) can interact with their substrates through docking sites far

away from the phosphorylation sites [11]. 3) Protein kinases (e.g.

Kinase PKA) interact with their substrates through an intermediate

scaffold protein [12]. Both mechanisms 2) and 3) reduce the

dependency of protein phosphorylation on the peptide sequences

around the phosphorylation sites. It is even more complicated when

considering the higher level structure of the protein. If a peptide

sequence can be recognized by a kinase but is buried inside the

proteins high-level structures, the kinase still can not interact with it. It

remained to be evaluated whether using information in addition to the

primary sequence (e.g. subcellular location, functional domains and

high-level structures) can increase the prediction accuracy.

Till recently, some efforts have been made in this direction. In

2007, Gnad et al. integrated protein secondary structure into

phosphorylation site prediction [13]; and Linding et al. took the

protein-protein interaction information into consideration [14].

Both of them showed increase in predictive power and reduce in

false positives. Some other functional features may also be relevant

for predicting phosphorylation sites. In our previous study, we found

that although one protein kinase can recognize various proteins,

these substrates have significant similarity in terms of their biological

functions [9]. Take the CDK kinase family as an example: in a GO

analysis, terms like DNA binding and transcriptional regulation are

enriched in their substrates. This observation is consistent with the

previous reports that sequential activation of different kinases in the

CDK family regulates DNA replication, cell division and transcrip-

tion processes [15,16,17,18,19]. Besides, the subcellular localization

of a protein can also affect the phosphorylation process substan-

tially; because kinases and their substrates cannot meet and interact

with each other if they are not localized to the same cellular

compartment. Several papers have discussed this issue [7,20], but

no one took advantage of the subcellular location information for

prediction. Furthermore, the proteins functional domains might

also contain some useful information for phosphorylation.

In this study, we try to integrate primary sequences with functional

features, including KEGG pathways, GO terms, protein-protein

interactions and protein functional domains, to predict phosphory-

lation sites. The final results indicated that for most of the kinase

families, integration of functional features can improve the prediction

performance, especially for the GSK3 kinase family, in which we can

achieve about 10% improvement in accuracy. Finally, we scanned the

human proteome for the kinase-specific phosphorylation sites using

this new strategy. These identified putative phosphorylation sites can

serve as a set of reliable candidates for experimental validation.

Methods

Data preparation
Positive training dataset. The phosphorylation sites were

extracted from the Phospho.ELM Database (Version 8.2) [21,22].

This dataset has been used as a benchmarking dataset to evaluate the

performance of phosphorylation site prediction methods [23,24].

Phospho.ELM contains experimentally verified phosphorylation

sites of proteins from eukaryotic cells. Version 8.2 contains 4687

protein entries covering 19649 phosphorylation instances. For each

entry, it provides information about substrate proteins with the exact

positions of the residues that are experimentally verified to be

phosphorylated by a given kinase. Since we considered protein

functional information in this study, we extracted a dataset

containing only human phosphorylation sites containing 11038

entries. For each phosphorylation site, we extracted the 9-mer

sequence, including the central residue and the 24 to +4 amino

acids surrounding it. The prediction was performed in a kinase-

specific way and the known phosphorylation sites of each kinase

family/subfamily were extracted separately. The kinase families

containing at least 50 experimental phosphorylation sites were used

in this study, they are: Ataxia telangiectasia mutated (ATM), Cyclin-

dependent kinases (CDK), Casein kinase 2 (CK2), Glycogen

synthase kinase 3 (GSK-3), Mitogen-activated protein kinases

(MAPK), cAMP-dependent protein kinase (PKA), Protein kinase B

(PKB) and Protein kinase C (PKC).

Background protein set. The background protein set

contains all the human proteins of Swiss-Prot database (version

56.0).

Background set and Negative training dataset. It is well

known that protein phosphorylation is a dynamic event and

depends heavily on conditions [2]. Many sites that are not

reported as phosphorylated in one experiment may be

phosphorylated in other tissues or conditions. For some other

proteins which are currently not reported as phosphorylated, the

reason might be that they are not expressed at the same time or in

the same tissue with the protein kinase. It is hard to collect a set of

protein sequences which can be safely regarded as non-

phosphorylatable. The available method usually uses reported

phosphorylation sites in phosphorylated proteins as positive

samples, and unreported possible phosphorylation sites (usually

Serine, Threonine or Tyrosine) in phosphorylated proteins as

negative samples. This is not appropriate, since what we usually

want is to predict phosphorylation sites for proteins without known

phosphorylation sites. So a leaning machine trained based only on

the sites of known phosphorylated proteins might have a bias.

To estimate the performance of different kinds of features, we

randomly selected the negative dataset from the background set.

The background set was constructed from all S/T centered 9-aa

peptides extracted from proteins of the background protein set

excluding those known as phosphorylation sites. It is true that

some unknown phosphorylation sites might be included in the

negative dataset. Although phosphorylation occurs very fre-

quently in cells, compared to the large amount of peptide

sequences, the amount of phosphorylation sites of a specific

kinase is still small. So the non-phosphorylated amino acids for

the corresponding kinase family should dominate the negative

dataset.

Sequence level features. In addition to primary sequences

around phosphorylation sites, protein secondary structure has

been found to be informative in phosphorylation site prediction

[13]. So we also integrated the protein secondary structure and

accessibility features. Because the known protein structure

information is very limited; we predicted the protein secondary

structure and accessibility from the primary protein sequences

using SABLE [25]. Since secondary structure and accessibility

features were predicted from the primary protein sequences we

took both the protein structure and the primary sequences around

phosphorylation sites as sequence level features.

Hit Phospho-Sites by Heterogeneous Information
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Functional level features. Besides sequence level features,

we aimed to find out functional information which could improve

the performance of phosphorylation site prediction. We used

following data sources: 1) KEGG pathways which were downloaded

from the KEGG database (version 2009/09/16). 2) Biological

Process, 3) Molecular Function and 4) Cellular Component

annotation files from the GO database (version 1.120). 5) Protein-

protein interactions (PPI), which were downloaded from the

STRING database (version 8.0). Protein functional domain

information were extracted from 6) the Pfam (version 23.0) and 7)

InterPro (version 18.0) Databases.

Over-represented and under-represented feature analysis
Functional data contains huge number of features for each

protein. To reduce the dimensionality of feature space, we only

used the over-represented or under-represented features for the

substrate proteins in each kinase family. Two sided hypergeo-

metric tests were used to detect over-represented or under-

represented terms in the study set compared to the background

protein set. Here the study set is the substrates of each kinase

family. P-values derived from hypergeometric distributions were

corrected by Bonferroni correction for testing on multiple terms.

Terms with Bonferroni corrected p-values less than 1e-2 were

taken as significant. The calculations were performed using the R

package for statistical computing [26].

Scoring the protein
In previous studies, the identification of phosphorylated proteins is

usually by the prediction of phosphorylation sites. Here we want to

find out whether the phosphorylated proteins can be discriminated

from the non-phosphorylated ones based only on the functional

features. A simple log-odds ratio approach was used. For binary

feature i (i = 1, 2, …, n, where n is the number of significant

functional features for the kinase family), its value xi for the candidate

protein is measured from the functional annotations of the protein.

We estimated its probability f(xi) in phosphorylated proteins from the

positive training set and its probability g(xi) in all proteins from the

background protein set. As described above, the background protein

set was constructed from all the human proteins in the Swiss-Prot

database. The log-odds score for feature i of the candidate protein is

defined as the log ratio of the two conditional probabilities:

S(xi)~ log 2
f xið Þ
g xið Þ

� �

The log-odds for all features can be summed up as the final score

for a protein. It measures the log-odds for it belongs to the

phosphorylated class versus the background. By summation, we

implicitly assumed that all features are independent from each

other. But indeed, some of the enriched functional features here

should be correlated with each other, for example some annotations

in KEGG might be similar to those in GO Biological Process. So we

used a modified log-odds ratio score. The central consideration is

that the higher the similarity of a feature is to all remaining features,

the lower its weight should be. The similarity between two features r

and s was measured by the Jaccard distance, which is equal to the

percentage of nonzero coordinates that differ:

drs~
# xrj=xsj

� �
\ xrj=0
� �

| xsj=0
� �� �� �

# xrj=0
� �

| xsj=0
� �� � ,

where j is the sample size.

For each feature i, the weight w is the sum of all its similarities to

the remaining n21 features:

w~
Xn{1

k~1

dik:

So the contribution of each feature to the final becomes

Sw xið Þ~ 1
wz1
� S xið Þ.

The final score for each protein is given by Sall~
Pn
i~1

Sw Xið Þ.

Feature representation
To transform protein sequences into numeric vectors, each amino

acid is represented as a 20-bit binary tuple (each bit is an indicator for

one of twenty amino acids). For example, serine (S) is expressed as a

20-dimensional vector [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]T and

threonine (T) is expressed as vector [0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,1,0,0]T. Therefore, if the window size of a candidate sequence

is 9, the dimension of the feature vector representing it is 20*9.

There are two kinds of structure-related features: secondary

structure and accessibility. For each amino acid of the query

sequence, SABLE provides three kinds of secondary structure:

(HRhelix, ERbeta strand, CRcoil). Since the phosphorylation

sites are preferentially in the coiled sites [6], we divided these three

structures into two groups: coil and not-coil. And transform protein

structures into binary numbers with both Helix and beta strand

represented by 0 and coil represented by 1. For the accessibility

features, SABLE provides a score ranged from 0 to 9 (0Rfully

Buried, 9Rfully Exposed). From the prediction results we found

that the scores of our candidates ranged from 0 to 6, so we used a 7-

bit binary tuple to represent the relative solvent accessibility

features. For example, 0 is represented by [0,0,0,0,0,0,0]T , 1 is

represented by [0,1,0,0,0,0,0]T, and 6 is represented by

[0,0,0,0,0,0,1]T.

For all the over-represented or under-represented functional

features detected by the Hypergeometric test, if the candidate has

the feature it was represented by 1, otherwise it was assigned 0.

Training and testing with Support Vector Machines
SVMs were used to evaluate the effects of different kinds of

features. High sequence similarity between training and testing sets

may cause a bias, so we discarded highly homologous sequences

(over 70% identity) in the positive dataset before cross-validation

to reduce this bias. After removing the highly homologous

sequences, sample size for each kinase family was listed in

Table 1. It is hard to construct a precise negative phosphorylation

site set. Here the negative dataset was randomly selected from the

background set with the same sample size as the positive training

set. To avoid high sequence similarity in the negative set, during

the random selection process, if the selected sequence was over

70% identical with the previous selected sequences, it was

removed. The process went on until the required sample size

was achieved. To evaluate the prediction performance, a five-fold

cross-validation was used in this study. In this process, 4/5

randomly chosen positive samples were used as the training set

and the remaining 1/5 were used as the test set. The five-fold

cross-validation tests were performed 1000 times and the final

evaluation was based on average of these 1000 performances.

Since the number of functional features was huge (more than 20

thousand) and the sample size was very small (around 100), only

the over-represented or under-represented functional features

determined by the hypergeometric tests were used to train the

binary classifiers. To avoid selection bias, the set of significant

Hit Phospho-Sites by Heterogeneous Information
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features were re-selected based on samples only in the training set

in each cross-validation round.

To evaluate the effect of various kinds of functional features

separately, we constructed different feature groups by adding one

functional feature at a time to the sequence features; and also

considered combined effects by including them all. The feature

groups used in evaluation were: 1) sequence and structure features

only; 2) sequence, structure plus significant KEGG features; 3)

sequence, structure plus significant GO Biological Process features;

4) sequence, structure plus significant GO Cellular Component

features; 5) sequence, structure plus significant GO Molecular

Function features; 6) sequence, structure plus significant Pfam

domain features; 7) sequence, structure plus significant InterPro

domain features; 8) sequence, structure plus significant STRING

PPI features; 9) sequence, structure plus the combination of all

functional features. So for each round of five-fold cross-validation,

nine SVM training and testing processes were performed one at a

time. The libSVM [27] package was used here for an individual

kinase family with the radial basis function kernel.

Table 1. The number of known phosphorylation site for
different kinase families.

Kinase family
#Known phosphorylation
site

ATM (Ataxia telangiectasia mutated) 55

CDK (Cyclin-dependent kinases) 237

CK2 (Casein kinases 2) 206

GSK-3 (Glycogen synthase kinases 3) 53

MAPK (Mitogen-activated protein kinases) 211

PKA (cAMP-dependent protein kinase) 210

PKB (Protein kinases B) 74

PKC (Protein kinase C) 259

doi:10.1371/journal.pone.0015411.t001

Figure 1. Background protein set (white) and known phosphorylation substrate (grey) score distributions for a) CDK and b) MAPK
kinase families. The horizontal axis is the log-odds ratio score and the vertical axis is the percentage of proteins with corresponding scores.
doi:10.1371/journal.pone.0015411.g001

Hit Phospho-Sites by Heterogeneous Information

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e15411



Results

Scoring proteins with over/under-represented functional
features

Using the hypergeometric test, we found over-represented and

under-represented functional features for different kinase families.

Take the substrates of the CDK family as an example, we found

that the CDK substrates are enriched in the Biological Processes

‘‘cell cycle’’, ‘‘cell division’’, ‘‘mitosis’’ and ‘‘cell proliferation’’.

Consistent with this result, it is well known that the CDK kinase

family is a primary regulator of the cell cycle [15,16]. The CDK

substrates are also found to be enriched in the Cellular

Components ‘‘cytoplasm’’ and ‘‘transcription factor complex’’.

Most of the significant Cellular Components are over-represented,

except for ‘‘integral to membrane’’ which is under-represented. It

indicated that the CDK substrates may less likely to be located in

the membrane. For the PPI networks, 964 proteins are found in

the over-represented sub-networks that interact with the CDK

substrates. The top 10 ranked ones were CDK1, CCNA2,

CCNB2, CDK2, CCND3, CCNB3, CCNA1, CCNG1, PCNA

and AURKA. For the functional domain data, no enriched

domains were found from InterPro, and three functional domains

from Pfam were found to be enriched for CDK kinase substrates.

We evaluate the discriminative power of significant functional

features using a simple log-odds ratio approach. For each protein,

log odds of observing each feature in the phosphorylated over non-

phosphorylated class is summed up. The higher the score is, the

more likely the protein can be phosphorylated. With this strategy,

we scored both the background protein set and the known

phosphorylated proteins. We find that score distributions are

significantly different for phosphorylated and background

proteins across all the kinase families. As examples, the score

distributions for the CDK and MAPK kinase families are shown

in Figure 1. Most of the proteins in the background protein set

(shown as white in the figure) have scores less than 0, while most

known phosphorylated proteins (shown in grey) have positive

scores. The Kolmogorov-Smirnov test suggested the difference

is significant for these two families (p = 7.66*e-36 and 6.84*e-41,

respectively). The distributions for the remaining six families

can be found in Supplementary Figure S1, with p-values of

8.07*e-19 for ATM, 1.59*e-28 for CK2, 4.04*e-15 for GSK3,

1.04*e-36 for PKA, 8.44*e-25 for PKB and 6.64*e-44 for PKC.

These results indicate that the functional features were

informative for distinguishing phosphorylated and non-phos-

phorylated proteins.

Overall influence of functional features in classification
performance

In the performance evaluation, an ideal solution to perform an

unbiased comparison is by running cross-validations on all

methods using the same dataset. SVMs [28] are an efficient

algorithm for solving two-class classification problems in high-

dimensional spaces and has been successfully applied in phos-

phorylation site prediction [7]. Here we try to evaluate the overall

influence of functional features on classification performance by

SVMs. The training and testing workflow was displayed in

Figure 2. In this process, all the SVM classifiers were constructed

under the same conditions except that different feature groups

were used.

Figure 2. Workflow of the cross-validation test for each kinase family. Before cross-validation, known phosphorylation sequences with
higher than 70% sequence identity are removed. Then 4/5 of the positive samples are used as training data and the remaning 1/5 as testing data.
Over-represented or under-represented functional features for the substrates of each kinase are got by hypergeometric distributions only based on
the training data. The negative samples were randomly selected from the background set. To avoid high sequence similarities in the negative set, in
the random selection process if the selected sequence has over 70% sequence identity with the previous selected sequences, it will be removed. The
negative sample sizes were the same as the positive sample sizes and the proportion of the training and testing sets were still 4/5 and 1/5. Finally, for
the same sample sets, different feature groups were integrated together and trained/tested one at a time. Here ‘‘sequence’’ represents sequence and
structure features; ‘‘KEGG’’ represents sequence, structure and significant KEGG features; ‘‘GO BP’’ represents sequence, structure and significant GO
Biological Process features; ‘‘GO CC’’ represents sequence, structure and significant GO Cellular Component features; ‘‘GO MF’’ represents sequence,
structure and significant GO Molecular Function features; ‘‘PFAM’’ represents sequence, structure and significant Pfam domain features; ‘‘IPR’’
represents sequence, structure and significant InterPro domain features; ‘‘STRING’’ represents sequence, structure and significant STRING PPI features;
‘‘ALL’’ represents an integration of all the above features.
doi:10.1371/journal.pone.0015411.g002
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The results of the cross-validation for each kind of functional

group were listed in Table 2. The size of negative sample set was

the same as the positive sample; the prediction accuracy in Table 2

was simply the percentage of correct predictions among both

positive and negative samples. We refer this single value as the

prediction accuracy below, since it is easy to compare. We used the

gain of prediction accuracy as the measure of the power to include

additional functional features. When ranked by the increase of

prediction accuracy when adding all functional features (the

‘‘minus’’ column in Table 2) we can see that functional features are

most powerful for the GSK3 kinase family. When the effects of

each functional group are checked in detail we see that the

Cellular Component features from the GO database contribute

most to the improvement. For the PKC kinase family, which also

has about ten percent increase in accuracy, the protein-protein

interaction information from the STRING database are the most

powerful. For the CK2 family, the Cellular Component and

Molecular Function features from the GO database, and the PPI

information from the STRING database seem to all be useful in

the performance enhancement. However, the functional features

are not effective for every kinase familie. For the ATM kinase

family, the performance dropped by about 1 percent.

The known phosphorylation sites were limited and some of

them are on the same protein. If two sites on the same protein are

divided into the training and testing sets, this may cause over-

estimate for the effect of the functional features. So we redid the

above experiments by dividing the known phosphorylated proteins

into training and testing sets first and then extracting their known

phosphorylation sites as the training and testing samples. With this

strategy, the five-fold cross-validation was also performed 1000

times. The final experiment results are listed in Table 3. Though

the enhancement in prediction accuracy weakens, it was still

significant for some kinase families.

From the results of Table 2 and Table 3, we can see that the

importance of functional features is different for various kinase

families. For the GSK3 family, which has the most enhancement,

the Cellular Component in GO was the most informative.

Checking the enriched cellular component functions of GSK3,

we found that six GO terms are enriched for the substrates of the

GSK3 kinase family: GO:0005737 (cytoplasm), GO:0005654

(nucleoplasm), GO:0030424 (axon), GO:0005667 (transcription

factor complex), GO:0005829 (cytosol) and GO:0005634 (nucle-

us). For the PKC family, the PPI information in the STRING

database was the most informative. For the CK2, MAPK, CDK,

PKA and PKB families, no single feature predominate the

contribution.

For the ATM family, adding the functional features resulted in a

worse performance. From the results of different functional

groups, we can see that the adding of KEGG, BP, CC, MF,

IPR and PFAM have little influence on the performance; poorer

Table 2. Prediction performance of different feature groups by dividing phosphorylation sites.

Kinase all sequence minus kegg bp cc mf ipr pfam string

GSK3 87.44 76.58 10.86 81.65 79.10 88.77 79.41 76.58 77.20 81.17

PKC 88.08 78.29 9.79 80.93 79.14 81.82 80.12 78.29 78.52 86.18

CK2 87.69 82.42 5.27 84.36 82.42 84.69 85.12 82.42 82.42 85.67

MAPK 92.93 89.10 3.83 91.70 90.17 89.79 89.19 89.10 89.07 91.04

PKA 90.86 89.00 1.86 89.41 89.04 89.53 89.07 89.00 88.98 89.83

PKB 91.90 90.60 1.30 93.19 91.17 90.89 90.47 90.59 90.56 90.35

CDK 94.96 93.68 1.28 94.35 94.42 94.54 93.65 93.68 93.68 94.61

ATM 95.97 97.27 21.30 97.09 96.73 96.84 97.16 97.27 97.24 95.92

The prediction accuracy was simply the percentage of correct predictions among both positive and negative samples. Here ‘‘all’’ means sequence, structure plus the
combination of all functional features; ‘‘sequence’’ means sequence and structure features only; ‘‘minus’’ equals to ‘‘all’’ minus ‘‘sequence’’; ‘‘kegg’’ means sequence,
structure plus significant KEGG features; ‘‘bp’’ means sequence, structure plus significant GO Biological Process features; ‘‘cc’’ means sequence, structure plus significant
GO Cellular Component features; ‘‘mf’’ means sequence, structure plus significant GO Molecular Function features; ‘‘ipr’’ means sequence, structure plus significant
InterPro domain features; ‘‘pfam’’ means sequence, structure plus significant Pfam domain features; ‘‘string’’ means sequence, structure plus significant STRING PPI
features.
doi:10.1371/journal.pone.0015411.t002

Table 3. Prediction performance of different feature groups by dividing phosphorylated proteins.

Kinase all sequence minus kegg bp cc mf ipr pfam string

gsk3 83.10 77.69 5.42 80.30 77.85 87.24 78.52 77.69 77.68 78.99

pkc 83.65 78.26 5.39 79.81 78.61 81.50 79.04 78.26 78.36 83.46

ck2 84.70 82.43 2.26 83.34 82.10 84.14 84.29 82.43 82.43 83.83

mapk 90.45 89.24 1.21 91.27 89.38 89.91 89.02 89.23 89.03 90.56

cdk 93.99 93.58 0.41 93.93 93.73 94.30 93.53 93.58 93.58 94.24

pka 89.13 88.75 0.37 89.09 88.66 89.02 88.73 88.75 88.71 88.80

pkb 90.89 91.16 20.27 92.92 91.18 90.97 90.75 91.15 91.13 89.54

atm 92.01 97.55 25.54 97.46 96.85 96.84 97.35 97.55 97.46 94.45

The meaning of values and shortened forms are the same as those in Table 2.
doi:10.1371/journal.pone.0015411.t003
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performance was mainly caused by adding the STRING

information. Similarly, for the PKB family, the poorer perfor-

mance also resulted from adding the STRING information. From

the results of Figure 1 and Supplementary Figure S1 we can see

that, as with the other six kinase families, both the ATM and PKB

kinase families can be discriminated via their phosphorylation

status based on functional features. Then why do these two

families have worse performances after adding functional features?

A common characteristic for these two kinase families is that both

of them have smaller sample size (Table 1). The poorer

performances for both ATM and PKB are caused by the inclusion

of STRING information which typically has larger number of

features than those in other feature groups. The small sample size

with large number of features might cause over-fitting and further

bad performance on the test set. With the availability of more

phosphorylation training data, we believe the performance for

these two kinase families should be as good as the other kinase

families. The GSK3 kinase family also has a very small sample

size. Its good performance may be explained by the fact that the

sample set is easily separated into two classes.

Identifying kinase-specific phosphorylation sites by
integrating multi-functional information

From the above analysis we find that functional features are

useful for most of the kinase families. In Figure 1, we can also see

that some proteins in the background set have a higher score than

the known phosphorylation substrates. These proteins are very

similar to the known substrates based on features such as pathways,

cellular components and PPI information, so they should have a

higher probability to be phosphorylated. To get a set of more

accurate candidates, we selected the proteins whose scores are

higher than the median of the scores of known substrates. The

results in Table 2 and Table 3 demonstrated that SVM classifiers

trained by functional features are powerful for the CDK, CK2,

GSK3, MAPK, PKA and PKC kinase families. We then scan their

possible phosphorylation sites in the candidate set by the SVM

classifiers trained using all the known phosphorylation sites, and a

negative dataset with the same sample size selected from the

background set for these kinase families. The putative phosphor-

ylation sites for CDK, CK2, GSK3, MAPK, PKA and PKC kinase

families are avaiable at http://cmbi.bjmu.edu.cn/huphospho, and

the corresponding summary are listed in Table 4. Based on the

prediction results, the CDK substrates have the highest phosphor-

ylation site density; on average one CDK substrate has nearly five

phosphorylation sites. It has been found that many CDK substrates

contain multiple clustered phosphorylated sites. This characterisitc

had been successfully used in the identification of CDK phosphor-

ylation sites in Saccharomyces cerevisiae [29].

Discussion

The aim of this study was to evaluate the contribution of

functional features in phosphorylation site prediction. Protein

phosphorylation is a dynamic process which plays key roles in

many cellular processes. It is clear that the recognition of

phosphorylation sites should be related to many functional features.

In the previous studies, the prediction of phosphorylation sites was

mainly based on sequence features. Many researchers have pointed

out that the cellular component may contain additional information

for phosphorylation site prediction, since the phosphorylation

cannot happen if the kinase and its putative substrate are not in

the same component. The results in this study support this point in

that the Cellular Component features are a powerful predictor of

phosphorylation status for some kinase families. Besides Cellular

Component features, the PPI information was also an effective

predictor. A protein kinase usually binds both its substrates and

ATP in the phosphorylation process, so the PPI information should

provide additional information. It is expected that the Molecular

Function and Biological Process should be more powerful for

phosphorylation site prediction, since some known phosphorylation

proteins may be annotated by the GO terms related to

phosphorylation. But the final result indicated that these two are

not so powerful for all the kinase families. This eliminates the

possibility that the enhancement of functional features is caused by

known phosphorylation related annotations of the test samples.

This work demonstrates that prediction of phosphorylation site

can be more accurate for most kinase families if we incorporate

more biological knowledge in the classification model. Such

biological knowledge includes, for example, whether the candidate

and the corresponding kinase interact with each other which can

be obtained by experiments such as immune-precipitation and the

yeast two hybrid systems. It is also informative as a priori if a

protein can be phosphorylated at all which identified by a

common phosphorylation antibody or mass-spectroscopy. All

these and other types of biological knowledge, when properly

coded into a classification model, are promised to further enhance

the prediction performance. Besides phosphorylation, all other

kinds of post-translational modifications are functionally related,

so our strategy should also be extended to predict other kinds of

post-translational modification status.

Supporting Information

Figure S1 Background protein set (white) and known phosphor-

ylation substrate (grey) score distributions for ATM, CK2, GSK3,

PKA, PKB and PKC kinase families. The horizontal axis is the

log-odds ratio score and the vertical axis is the percentage of

proteins with corresponding scores. (DOCX)

Table 4. Summary of putative kinase-specific human phosphorylation sites.

Kinase family Number of candidate sites
Number of predicted phosphorylated
proteins

Number of predicted phosphorylation
sites

CDK 47787 482 2357

CK2 112246 825 2209

GSK3 47499 104 178

MAPK 71194 113 174

PKA 80764 770 2499

PKC 78895 85 102

doi:10.1371/journal.pone.0015411.t004
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