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Abstract
Proper characterization of drug effects on Mycobacterium tuberculosis relies on the characterization of phenotypically

resistant bacteria to correctly establish exposure–response relationships. The aim of this work was to evaluate the potential

difference in phenotypic resistance in in vitro compared to murine in vivo models using CFU data alone or CFU together

with most probable number (MPN) data following resuscitation with culture supernatant. Predictions of in vitro and in vivo

phenotypic resistance i.e. persisters, using the Multistate Tuberculosis Pharmacometric (MTP) model framework was

evaluated based on bacterial cultures grown with and without drug exposure using CFU alone or CFU plus MPN data.

Phenotypic resistance and total bacterial number in in vitro natural growth observations, i.e. without drug, was well

predicted by the MTP model using only CFU data. Capturing the murine in vivo total bacterial number and persisters

during natural growth did however require re-estimation of model parameter using both the CFU and MPN observations

implying that the ratio of persisters to total bacterial burden is different in vitro compared to murine in vivo. The evaluation

of the in vitro rifampicin drug effect revealed that higher resolution in the persister drug effect was seen using CFU and

MPN compared to CFU alone although drug effects on the other bacterial populations were well predicted using only CFU

data. The ratio of persistent bacteria to total bacteria was predicted to be different between in vitro and murine in vivo. This

difference could have implications for subsequent translational efforts in tuberculosis drug development.
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Introduction

Tuberculosis (TB) is ranked as the leading cause of death

due to an infectious disease worldwide and has been

identified by the World Health Organization as ‘‘a global

priority for research and development’’ based on the high

lethality and the ‘‘seriously underfunded’’ TB drug research

and development [1]. Treatment of TB is associated with

both multi-drug treatment and extensive treatment dura-

tion, both of which represents difficulties with respect to

potential drug-drug interactions and adherence. Shortening

treatment time, by means of increased and faster kill of

persistent bacteria, is a key factor for increasing patient

compliance and decreasing the observed high relapse rate

and drug resistance development. Current research efforts

relating to optimization of existing treatment including

increased doses of rifampicin [2–6], which has proven

effect against persistent Mycobacterium tuberculosis (M.

tuberculosis) [7–9], and the re-evaluation of clofazimine

[10] are good examples of how improved understanding

and usage of modern approaches for pharmacokinetic and

pharmacodynamic (PKPD) characterisation has the poten-

tial to improve the treatment of TB. The introduction of

pharmacometric and quantitative systems pharmacology

(QSP) based methods for PKPD characterization have

provided powerful methods for development of new drugs
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and refinement of existing treatment. For disease areas as

TB, where the incitement for investing in drug develop-

ment is low, these methods are very important as they

represent rational and informative methods that has the

power of identifying the most efficient treatment regimens

to patients.

Characterization of drug effects on persistent M. tuber-

culosis bacteria relies on proper characterization of bacte-

rial growth in the absence of drug (natural growth). This is

done to establish a ‘‘baseline’’ from which drug effect then

can be defined. The growth of M. tuberculosis has been

suggested to exist in a multitude of growth states ranging

from fast growing to persistent (non-multiplying) states

[11]. It has further been shown that M. tuberculosis has the

ability to freely traverse between these states as a reaction

to environmental changes, such as oxygen level [12].

Targeting the persistent bacterial population is regarded a

crucial step and could slow the emergence of genetic drug

resistance but also shortening the lengthy and complicated

drug-susceptible TB treatment [13].

Originally developed using in vitro bacterial growth

data, the Multistate Tuberculosis Pharmacometric (MTP)

model quantifies the growth of M. tuberculosis as con-

sisting of three bacterial states, a fast-, a slow- and a non-

multiplying state between which the bacteria is allowed to

traverse [14]. The MTP model has been applied and proven

to be able to describe the growth of different M. tubercu-

losis strains in not only in vitro but different in vivo murine

systems [15, 16] and also in patients [17, 18]. Besides its

ability to describe the growth of M. tuberculosis it has also

been used to quantify drug effects (i.e. PKPD relationships)

in both pre-clinical and clinical settings for both mono

therapy [14–18] and when combined with the General

Pharmacodynamic Interaction (GPDI) model [19] for

assessment of different drug combinations of anti-TB drugs

and PD interactions [16, 20, 21]. Due to the ability of the

MTP model to capture both pre-clinical and clinical

observations it has also been used as the basis of transla-

tional efforts [22], predicting rifampicin drug effects in

short-term clinical studies based on in vitro quantified

rifampicin drug effects [23]. In addition, the GPDI

approach has been proven to be superior over conventional

statistical methods for assessing PD interactions [24].

What separates the MTP model from many other in-

silico models used for quantifying M. tuberculosis growth

and drug effects is the incorporation of the non-multiplying

bacterial i.e. the persistent sub-state in the model. The same

strategy of having a subpopulation of persistent bacteria

has been applied when studying Escherichia coli [25]. This

bacterial state represents bacteria that are not actively

multiplying and appears to lack the ability to segregate into

a new self-propagating unit. Bacteria in this state are not

culturable on solid media, and common methods such as

colony forming unit (CFU) counting is unable to quantify

viability or bacterial growth of such bacteria. They are

usually called non-multipliers or persisters. The importance

of these bacteria has been proven to be high as they are

suggested to make up a pool of persistent and phenotypi-

cally drug-resistant bacteria that is responsible for the

multi-drug dependency and extensive treatment time

associated with TB. Research relating to revival of per-

sistent and phenotypic resistant bacteria using resuscitation

promoting factors (Rpf), which are bacterial self-generated

stimulating proteins [26], has shown the existence of this

occult and under standard conditions non-culturable bac-

teria in vitro [7, 27–29], in vivo [7, 30] and in patient

sputum [31, 32]. In the work described here, persisters and

culturable bacteria are measured, by the most probable

number (MPN) following resuscitation with culture

supernatant.

The aim of this work was to evaluate the potential dif-

ference in phenotypic resistance in in vitro compared to

murine in vivo models with a model based framework

using CFU data alone or CFU together with the most

probable number (MPN) data for translational purpose.

Material and methods

In this work, predictions of phenotypic resistance i.e.

amount of persisters, characterised as non-multiplying

bacteria using the MTP model framework was evaluated

based on in vitro and murine in vivo bacterial cultures

grown without the presence of drug (i.e. natural-growth).

By utilizing data consisting of only CFU or both CFU and

MPN counts, the ability of the MTP model [14] to capture

both culturable i.e. CFU and total bacterial numbers i.e.

MPN supplemented with rpf was evaluated. Predictions of

in vitro phenotypic resistance was also evaluated based on

bacterial cultures grown with exposure to rifampicin.

Experimental data

Detailed experimental information on the setup of the

in vitro hypoxia model, the in vivo natural-growth exper-

iment and the resuscitation of dormant phenotypic resistant

bacteria can be found in the previously published experi-

mental work [7, 8, 32]. M. tuberculosis H37Rv was grown

without disturbance (i.e. without addition of oxygen and

nutrients) for 200 days. The natural-growth was assessed at

different time points (Fig S1). Rifampicin at 12.5, 25, and

50 mg/L was added to stationary phase cultures that grew

without disturbance for 100 days [7]. After five days of

exposure, the cultures was assessed for viability (Fig S2).

The M. tuberculosis H37Rv infected BALB/c mice was

studied for a total of 14 weeks to assess bacterial counts in
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absence of drug. Lung homogenates were cultured using

samples from four mice each sacrificed after 14 (2nd

week), 28 (4th week), 42 (6th week) days and samples

from 10 mice at 84 (12th week) and 98 (14th week) days

(Fig S3) [7]. The in vitro and in vivo grown MPN cultures

was subjected to culture supernatant containing RPFs to

resuscitate the dormant phenotypic resistant bacteria [7].

Bacterial numbers were in all systems quantified using both

CFU counting, capturing visible (culturable) bacteria and

MPN counting, representing the total bacterial number

after resuscitation.

All animal experiments were performed according to

the Animals Scientific Procedures Act, 1986 (an Act of the

Parliament of the United Kingdom 1986 c. 14; Home

Office Project licence Number 70/7077) with approval

from St George’s, University of London ethics committee.

The multistate tuberculosis pharmacometric
model

The MTP model [14] (Fig. 1) was fitted to natural-growth

data (i.e. no drug) from the in vitro and in vivo systems to

describe the natural-growth. The fast- and slow-multiply-

ing bacterial state was in the MTP model considered to be

visible as CFU whilst the non-multiplying state is repre-

senting persistent, differentially or non-culturable pheno-

typic resistant bacteria. The MTP model differential

equation system was written as:

dF

dt
¼ kG � log Bmax

F þ Sþ N

� �
� F þ kSF � S� kFS � F � kFN

� F
ð1Þ

dS

dt
¼ kFS � F þ kNS � N � kSF � S� kSN � S ð2Þ

dN

dt
¼ kFN � F þ kSN � S� kNS � N ð3Þ

where kFS ¼ kFSLin � t (linearly time dependent transfer rate)

and F, S, N are the model predicted bacterial number

(ml-1) in the fast-, slow-, and non-multiplying bacterial

states, respectively. The growth rate was described by the

parameter kG and Bmax describes the maximum carrying

capacity of the system. The transfer rate parameters

between the different states were denoted as k with sub-

scripts describing origin and end of the transfer.

The in vitro natural growth CFU and MPN observations

were fitted by re-estimating only the residual error. In vivo

CFU observations were fitted using the MTP model using a

step-wise evaluation of each parameters estimate compared

to the estimates of the original model [14]. Initially, a step-

wise evaluation of each parameter estimate was done

compared to the estimates of the original model [14]. This

was followed by a backwards deletion step evaluation of

estimating all parameters was carried out, evaluating sta-

tistical significance (p\ 0.05) in the parameter estimates

compared to those of the original publication [14].

Thereafter, the in vivo natural-growth MPN and CFU

observations were jointly fitted based on the parameter

estimates obtained from the CFU observations only model.

The MTP model using the MPN observations were adapted

to include all three bacterial states in the predictions,

defined as:

PREDMPN ¼ log F þ Sþ Nð Þ ð4Þ

as compared to the CFU predictions which only includes

the F and S bacterial, defines as:

PREDcfu ¼ log F þ Sð Þ ð5Þ

In a third step, using both the CFU and MPN observations,

all parameters were evaluated for statistical significance

(p\ 0.05) compared to the parameter estimates obtained

using only the CFU observations.

The CFU and MPN observations from the rifampicin

treated 100 days in vitro stationary phase bacterial cultures

(Fig S2) was in a first step evaluated using the rifampicin

drug effects estimates of from the original model [14]. A

step-wise estimation evaluation of the system specific

parameters kG, Bmax, F0 and S0 and the drug effect

parameters FGk, FDEmax, FDEC50, SDEMAX, SDEC50 and

NDk reported in the original publication [14] was then

Fig. 1 Schematic illustration of the Multistate Tuberculosis Pharma-

cometric model. F, fast-multiplying bacterial state; S, slow-multiply-

ing bacterial state; N, non-multiplying bacterial state; kG, growth rate

of the fast-multiplying state bacteria; kFS, time-dependent linear rate

parameter describing transfer from fast- to slow-multiplying bacterial

state; kSF, first-order transfer rate between slow- and fast-multiplying

bacterial state; kFN, first-order transfer rate between fast- and non-

multiplying bacterial state; kSN, first-order transfer rate between slow-

and non-multiplying bacterial state; kNS, first-order transfer rate

between non-multiplying and slow-multiplying bacterial state
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carried out using the CFU and MPN observations. Bmax

was estimated to a different value for the in vitro data with

drug to adjust the baseline. This parameter was labelled

Bmax, stationary. The drug effect models identified as signif-

icant in the original publication was also evaluated by

decreased and increased complexity, i.e. if a Emax function

was reported both a slope and a sigmoidal Emax function

was evaluated for statistical significance (as further

described in the Material and Methods section of original

publication [14]). Followed by a backwards deletion step

evaluation of estimating all parameters was carried out,

evaluating statistical significance (p\ 0.05) in the

parameter estimates compared to those of the original

publication [14].

Statistical analysis

All data analysis was performed in the software NONMEM

(version 7.3; Icon Development Solutions, Ellicott City,

USA, [https://www.iconplc.com/technology/products/non

mem]) [33]. R (version 3.3.3; R Foundation for Statistical

Computing [https://www.R-project.org]), was used for data

management, Xpose (version 4.6; Department of Pharma-

ceutical Biosciences, Uppsala University, Sweden [https://

xpose.sourceforge.net]) used for graphical assessment of

results [34]. PsN (version 4.7; Department of Pharmaceu-

tical Biosciences, Uppsala University, Sweden [https://psn.

sourceforge.net]) was used for running models and gener-

ating visual predictive checks (VPC) [35]. Numerical

model comparison and a run record was utilized and

maintained with the software Pirana (version 2.9.6; Pirana

Software & Consulting, Denekamp, The Netherlands,

[https://www.pirana-software.com]) [34]. Uncertainty in

model parameters was calculated using the Sampling

Importance Routine (SIR) as implemented in PsN [36].

Model evaluation was done by evaluation of goodness of fit

plots, precision in parameters, objective function value

(OFV), scientific plausibility and VPCs. The OFV given by

NONMEM, which approximates -2log(likelihood) of the

data given the model, was utilized in likelihood ratio

testing (LRT) to compare nested models. The difference in

OFV (DOFV) is approximately v2 distributed and depen-

dent on the significance level and degrees of freedom. For

this analysis, a significance level of 0.05 was used which

corresponds to a critical DOFV of 3.84 for one degree of

freedom.

Results

In this study, predictions of in vitro and in vivo phenotypic

resistance using the MTP model framework was evaluated

using M. tuberculosis H37Rv cultures subjected to culture

supernatant containing RPFs. The in vitro bacterial cultures

were grown both with and without rifampicin. Bacterial

numbers were quantified in all systems using both CFU

counting, which captures visible (culturable) bacteria, and

MPN counting, which represents the total bacterial

number.

The evaluation of the MTP model ability to predict

in vitro natural-growth MPN observations revealed that the

total bacterial number and persisters were predicted well if

the parameters were estimated using only CFU observa-

tions (Fig. 2) without re-estimation of transfer rates. The

evaluation of estimating the parameters of the MTP model

using both in vitro CFU and MPN observations showed no

significant statistical improvement as compared to using

the estimates of the original publication (Table 1), which

was based only on CFU observations. For the final model

describing the in vitro CFU and MPN observations (Fig. 2)

without rifampicin exposure, the only parameter estimated

was the residual error parameter, describing the unex-

plained variability of the predictions relative to the obser-

vations (CV% 17.5).

The evaluation of differences between the natural-

growth in vitro data from the cultures without rifampicin

presence and the 100 days stationary cultures subjected to

rifampicin resulted in a significant decrease in OFV of 23

points when estimating Bmax for the stationary rifampicin

Fig. 2 Visual predictive check (VPC) of in vitro log10 viable cells

using the final model. Closed circles represent CFU counts and filled

circles are MPN counts in culture filtrates. The red shaded area is the

95% confidence interval for the median of the simulated CFU counts

and the blue shaded area is the 95% confidence interval for the

median of the simulated MPN counts. The MTP model was only

based on CFU data and could well predict both CFU and total

bacterial burden (MPN) natural growth pattern in vitro (Color

figure online)
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treated cultures. This may have been due to differences in

inoculum between the experiments. The evaluation of

phenotypic resistance in the 100 day stationary in vitro

bacterial cultures subjected to rifampicin revealed that the

model was able to capture the CFU observations but to a

less degree the MPN observations based on the rifampicin

drug effect parameters and parametrization from the orig-

inal publication, which was based on CFU observations

only (Supplemental Fig. S4). The step-wise evaluation,

based on both CFU and MPN observations, of estimating

the rifampicin drug effect parametrization and parameter

estimates revealed that statistically significant improve-

ments of the model fit was observed when using an Emax

model for the effect on the non-multiplying state together

with a re-estimated Emax for the effect on the slow multi-

plying bacterial state. Changing any of the other rifampicin

drug effect parameters and/or parametrization from the

original publication was found to be not statistically sig-

nificant for describing the CFU and MPN observations

after rifampicin exposure. In Fig. 3, the predictions of both

the CFU and MPN observations from the rifampicin treated

stationary phase cultures, using the final MTP model based

on both CFU and MPN, are shown. The final exposure–

response model parameters related to the description of the

100 days stationary in vitro bacterial cultures subjected to

rifampicin are shown in Table 1. The final differential

Table 1 Parameter estimates of the final multistate tuberculosis pharmacometric (MTP) model describing in vitro data

Parameter Description Estimate [RSE (%)]

CFU only CFU ? MPN

Natural growth

kG
a;b (days-1) Growth rate of the fast multiplying state bacteria 0.206 fix 0.206 fix

Bmax
b (mL-1) System carrying capacity 242 9 106 fix 242 9 106 fix

Bmax;stationary (mL-1) System carrying capacity for stationary data 388 9 106 (34) 46 9 106 fix

kFSLin
b;c(days-2) Second-order time dependent transfer rate between fast- and slow-multiplying

state

0.166 9 10–2

fix

0.166 9 10–2

fix

kFN
b (days-1) First-order transfer rate between fast- and non-multiplying state 0.897 9 10–6

fix

0.897 9 10–6

fix

kSN
b (days-1) First-order transfer rate between slow- and non-multiplying state 0.186 fix 0.186 fix

kSF
b (days-1) First-order transfer rate between slow- and fast-multiplying state 0.0145 fix 0.0145 fix

kNS
b (days-1) First-order transfer rate between non- and slow-multiplying state 0.123 9 10–2

fix

0.123 9 10–2

fix

F0
b (mL-1) Initial fast-multiplying state bacterial number 4.11 fix 4.11 fix

S0
b (mL-1) Initial slow-multiplying state bacterial number 9770 fix 9770 fix

e (%) Proportional residual error 41.8 (4.2) –

Exposure–response relationships

FGk
b (L�mg-1) Linear drug induced inhibition of fast-multiplying state growth 0.017 fix 0.017 fix

FDEmax

b (days-1) Maximum achievable drug-induced fast-multiplying state kill rate 2.15 fix 2.15 fix

FDEC50

b (mg�L-1) Concentration at 50% of FDEmax
0.52 fix 0.52 fix

SDEmax
(days-1) Maximum achievable drug-induced slow-multiplying state kill rate 1.56 fix 2.11 (6)

SDEC50

b (mg�L-1) Concentration at 50% of SDEmax
13.4 fix 13.4 fix

NDk
b

(L�mg-1�days-1)

Linear drug induced kill of non-multiplying state 0.24 fix –

NDEmax
(days-1) Maximum achievable drug-induced non-multiplying state kill rate – 2.58 (16.4)

NDEC50
(mg�L-1) Concentration at 50% of NDEmax

– 39.42 (34.5)

e (%) Proportional residual error 274 (8.3) 79.3 (22.8)

Parameter values are presented as applied to colony forming unit (CFU) only and to CFU plus most probable number (MPN)

dataRSE = relative standard error reported on the approximate standard deviation scale

agrowth ¼ F � kG � log Bmax

FþSþN

� �
bfixed to previously published value [14]
ckFS ¼ kFSLin
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equations for the in vitro F, S and N bacterial sub-state with

rifampicin drug effect were defined as:

dF

dt
¼ F � kG � log Bmax

F þ Sþ N

� �
� EFG

RIF þ kSF � Sþ kNF � N

� kFS � F � kFN � F � EFD � F
ð6Þ

dS

dt
¼ kFS � F þ kNS � N � kSN � S� kSF � S� ESD � S ð7Þ

dN

dt
¼ kSN � Sþ kFN � F � kNF � N � kNS � N � END � N ð8Þ

where EFD represents the total effect of rifampicin on the F

bacterial state as described by a linear inhibition 1 � FGk �
CRIF of growth and an Emax type kill of the bacteria

according to
FDEmax �CRIF

FDEC50
þCRIF

, ESD represents the total effect of

rifampicin on the S bacterial state as described by a Emax

type kill of the bacteria according to
SDEmax �CRIF

SDEC50
þCRIF

and where

END represents the total effect of rifampicin on the N

bacterial state as described by a Emax type kill of the

bacteria according to
NDEmax �CRIF

NDEC50
þCRIF

.

The evaluation of phenotypic resistance in in vivo

murine using MPN observations revealed that the total

bacterial number was somewhat under predicted if the

parameters was estimated using only CFU observations

(Supplemental Fig. S5) which was a contrast to the in vitro

natural-growth data which was well predicted using only

CFU data. If the MTP model was allowed to be informed

by the MPN observations, i.e. re-estimating the parameters

using both CFU and MPN observations, both the CFU and

MPN in vivo observations were described by the model

(Fig. 4). The step-wise evaluation of re-estimating the

parameters using both CFU and MPN observations resulted

in that only the kSF parameter was found to be not statis-

tically significantly different from the estimation using

only the CFU observations. The overall improvement when

allowing for estimation, using both the CFU and MPN

observations, of all parameters except kSN was equal to a

decrease of 60 points in OFV. A VPC of the final model

describing both the CFU and MPN observations from the

murine in vivo system is shown in Fig. 4. The parameter

estimates from the final model using both CFU and MPN

observations are shown in Table 2 along with a comparison

of the parameter estimates obtained using only CFU

observations. The final differential equations for the murine

in vivo F, S and N bacterial sub-state were defined as:

dF

dt
¼ F � kG þ kSF � Sþ kNF � N � kFS � F � kFN � F ð9Þ

Fig. 3 Visual predictive check (VPC) of log10 viable cells from

in vitro treated with rifampicin. Open circles represents CFU counts

and filled circles are MPN counts in culture filtrates. The red shaded

area is the 95% confidence interval for the median of the simulated

CFU counts and the blue shaded area is the 95% confidence interval

for the median of the simulated MPN counts. The MTP model based

on both CFU and total bacterial burden (MPN) data could well predict

both CFU and MPN profiles after killing by different rifampicin

concentrations (12.5, 25, and 50 mg/L) on 100 days in vitro cultures

for 5 days. The predictions using the final MTP model based on only

CFU data showed an over-prediction of drug effect (i.e. total drop in

bacterial count) (Supplemental Fig. S1) (Color figure online)

Fig. 4 Visual predictive check (VPC) of log10 viable cells from

in vivo using the final model. Open circles represent CFU counts and

filled circles are MPN counts in culture filtrates. The red shaded area

is the 95% confidence interval for the median of the simulated CFU

counts and the blue shaded area is the 95% confidence interval for the

median of the simulated MPN counts. The MTP model based on CFU

and total bacterial burden (MPN) data could well predict both CFU

and MPN natural growth pattern in lungs of BALB/c mice. The

predictions using the MTP model based on only CFU data did not

fully capture the total bacteria as represented by MPN counts

(Supplemental Fig. S5) (Color figure online)
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dS

dt
¼ kFS � F þ kNS � N � kSN � S� kSF � S ð10Þ

dN

dt
¼ kSN � Sþ kFN � F � kNF � N � kNS � N ð11Þ

Discussion

In this work, phenotypic resistance, i.e. resistant persisters,

was evaluated for in vitro and in vivo M. tuberculosis

bacteria grown in the absence of drug and for in vitro

bacteria exposed to rifampicin. In vitro persistent pheno-

typic natural-growth bacteria was well predicted using the

MTP model [14] using only CFU data (Fig. 2). For

describing the in vitro persistent phenotypic bacteria fol-

lowing exposure to rifampicin, the prediction of phenotypic

resistance improved when the MTP model was applied to

both CFU and MPN data although the rifampicin drug

effect on the F- and S-multiplying states were well pre-

dicted using only CFU data (Fig. 3 and Supplemental

Fig. S4). The reason is that MPN provides added infor-

mation on the persister associated killing compared to CFU

data alone. The refinement of the MTP model drug effects

using CFU ? MPN data compared to only CFU data

consisted of a change from a linear to an Emax function on

the N-state kill and a change of the Emax and EC50

parameter estimates of the S-state associated kill.

Translational aspects of predictions of in vivo pheno-

typic resistant M. tuberculosis bacteria were evaluated by

assessing the predictions of total bacterial number (MPN

supplemented with rpfs) by the MTP model framework of

murine in vivo natural growth observations, based on the

parameters derived on in vitro data. To predict the in vivo

natural-growth phenotypic resistant M. tuberculosis bac-

teria, the MTP model framework needed to be informed by

both the CFU and MPN observations (Fig. 4), contrary to

the results of the in vitro natural-growth based model

evaluation where only CFU provided information about the

phenotypic resistance (Fig. 2). This implies that the ratio of

persisters to total bacterial burden is different in in vitro

compared to murine in vivo, given the experimental setups

that generated the data.

Reflected by the currently needed extensive treatment

duration, persistent M. tuberculosis bacteria has tolerance

to many of the commonly used antibiotics. A key feature of

persistent bacteria is the lack of ability to form colonies on

solid media. Due to the likely connection to relapse and the

extensive treatment duration, quantification of these dor-

mant bacteria and the drug effect exerted by anti-tubercu-

losis drugs is a key focus of drug development targeting

tuberculosis. The MTP model distinguishes itself from

other TB growth models in that it provides not only proper

predictions of visible CFU observations but, as shown in

this study, also the total bacterial number (in this study

quantified by addition of rpf́s and using an MPN assay).

Table 2 Parameter estimates of the final Multistate Tuberculosis Pharmacometric (MTP) model describing in vivo data

Parameter Description Estimate [RSE (%)]

CFU only CFU ? MPN

Natural growth

kG
a (days-1) Growth rate of the fast multiplying state bacteria 0.804 (18) 2.62 (8)

kFSLin
b(days-2) Second-order time dependent transfer rate between fast- and slow-multiplying state 0.253 (27) 0.316 (22)

kFN (days-1) First-order transfer rate between fast- and non-multiplying state 0.749 9 10–3 (720) 1.75 (12)

kSN (days-1) First-order transfer rate between slow- and non-multiplying state 0.206 (42) 0.183 (18)

kSF (days-1) First-order transfer rate between slow- and fast-multiplying state 1.82 (65) 1.82 fix

kNS (days-1) First-order transfer rate between non- and slow-multiplying state 1.5 9 10–2 (11) 0.49 9 10–2 (16)

F0
c (mL-1) Initial fast-multiplying state bacterial number 558 (139) 558 fix

S0
c (mL-1) Initial slow-multiplying state bacterial number 22,500 (20) 22,500 fix

e (%) Proportional residual error 34.6 (10) 36.9 (9)

Parameter values are presented as applied to colony forming unit (CFU) only and to CFU plus most probable number (MPN) dataRSE = relative

standard error reported on the approximate standard deviation scale
agrowth ¼ F � kG
bkFS ¼ kFSLin
cFixed to value estimated from CFU observations alone

All final model codes (Supplemental Code. S3-S5) and datasets (Supplemental Datasets S6-S8) used for the model-development is included as

supplementary information
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The incorporation of hidden or non-multiplying bacteria is

crucial for establishing a proper baseline from which drug

effect on persistent phenotypic resistant bacteria can be

described. In addition, the MTP model-based framework

can also predict change in biomarker over time. The

evaluation of the MTP modeĺs ability to predict the total

bacterial number revealed a striking difference between the

in vitro and in vivo experimental results. Using the in vitro

data, the MTP model (originally developed using CFU

data) required no refinement to capture the MPN obser-

vations, reflecting the total bacterial number in absence of

rifampicin. The MTP model thus enables predictions of the

total bacterial number based solely on CFU (visible)

observations in an in vitro setting. When applied to in vivo

data the MTP model provided a slight under-prediction of

the total bacterial number when the predictions were based

on only CFU observations (Supplemental Fig. S5). How-

ever, when the parameter estimates were informed by both

the CFU and MPN natural-growth observations, the MTP

model was able to capture observations from both assays

(Fig. 4). The difference between these two results suggest

that the ratio of persisters to total bacterial number is dif-

ferent when comparing in vitro to in vivo murine setting.

This model required no refinement for in vitro but needed

refinement in vivo. The in vitro data in this work used a

similar experimental set up as the in vitro data used in the

work where the in vitro transfer rates were identified [14].

The MTP model parameters very well described the

in vitro CFU and MPN natural growth data without re-

estimation of transfer rates (Fig. 2). However, it is showed

in this work that the in vivo setting is different than the

in vitro and human setting and all MTP model parameters

were re-estimated using the in vivo data (Table 2).

Attempts of re-estimation of the MTP model parameters

using in vivo mouse data have previously been performed

[15]. However, as the natural growth data only covered

18 days in that experiment, the data only supported a dif-

ference in the transfer rate between F to S subpopulations

compared to in vitro estimates. The observed difference in

ratio of persisters to total bacteria for the in vitro and the

in vivo setting is especially interesting when combined

with results from previous model informed translational

predictions of rifampicin drug efficacy [17, 23]. In work by

Svensson et al. and Wicha et al. the MTP model informed

by in vitro data, was used to provide an excellent

description of rifampicin clinical efficacy. This type of

clinical predictive performance has yet to be explored,

taking into account the work observed here which

describes the ratio of persisters to the total bacterial num-

ber, using in vivo data.

The assessment of the MTP modeĺs ability to predict

drug effect based on in vitro stationary phase bacterial

cultures showed an over-prediction of the drug effects (i.e.

too high total drop in persisters and total bacterial counts,

Supplemental Fig. S4), given the estimated drug effects

using only CFU data. This over-prediction was identified as

related to the drug effects on the non-multiplying bacterial

state as no miss-prediction was shown for the corre-

sponding CFU observations, assuming that MPN counts

reflect F-, S- and N-state bacterial number and CFU reflects

F- and S-state bacterial number. When the model was

informed by both CFU and MPN data, the final model

adequately described the antibacterial effect by rifampicin.

Information about the persistant state with the use of MPN

will increase the resolution in the predicted drug effect on

persisters. This is not related to the MTP model itself,

rather the MTP model is unique in that the approach can

identify significant drug effect on persisters using only

CFU data. We recently have shown that the MTP model

can characterize statistical significant clofazimine drug

effects on only the N-state (persisters) using only CFU data

from EBA trial in humans in contrast to the traditional

analysis where no clofazimine drug effect was found (Faraj

et al. AAC 2020). The final in vitro MTP model informed

by both CFU and MPN was re-parametrized compared to

the MTP model using only CFU data. The need for

replacing the N-state related linear kill function, from the

model developed on only CFU observations, to an Emax

function and re-estimation of the S-state associated kill

parameters could partly be explained by the less informa-

tion relating to the drug effect exerted on the non-multi-

plying bacteria contained in the CFU biomarker as

compared to the MPN counts of rpf treated culture filtrates.

It is important to highlight that the predicted drug effect is

only for cultures that was exposed to different rifampicin

concentrations for 5 days. As such, a different experi-

mental setup would be warranted in which bacteria is

quantified also before 5 days of exposure, to evaluate the

performance of the model at different time points of

exposure to drug.

The findings presented in this study highlights the

importance of including in vitro and in vivo quantified

phenotypic resistant bacteria for proper characterization of

drug effect on M. tuberculosis cultures. Failure to capture

this effect could have direct implication for translational

efforts, especially when drugs, such as rifampicin, with a

profound effect on the hard-to-kill dormant M. tuberculosis

bacteria are in focus.

Conclusion

In this work, we evaluated the difference in phenotypic

resistance in in vitro compared to murine in vivo models

and demonstrated improved in vitro drug effect evaluation

using combined CFU and MPN compared to CFU data
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alone, with a model-based framework. In order to correctly

predict human early bactericidal activity using pre-clinical

information and clinical trial simulations, the phenotypic

differences between in vitro, in vivo and in relation to

humans needs to be accounted for.
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