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The classical view of “pheromone”—an air-borne chemical signal—is challenged by the

camelids in which ovulation is triggered by ß-nerve growth factor carried in seminal

plasma, effectively extending the pheromone concept to a new medium. We propose

further extension of “pheromone” to include a separate class of seminal fluid molecules

that acts on the female reproductive tract to enhance the prospect of pregnancy. These

molecules include transforming growth factor-ß, 19-OH prostaglandins, various ligands

of Toll-like receptor-4 (TLR4), and cyclic ADP ribose hydrolase (CD38). They modulate the

immune response to “foreign” male-derived histocompatibility antigens on both sperm

and the conceptus, determine pre-implantation embryo development, and then promote

implantation by increasing uterine receptivity to the embryo. The relative abundance of

these immunological molecules in seminal plasma determines the strength and quality of

the immune tolerance that is generated in the female. This phenomenon has profound

implications in reproductive biology because it provides a pathway, independent of the

fertilizing sperm, by which paternal factors can influence the likelihood of reproductive

success, as well as the phenotype and health status of offspring. Moreover, the female

actively participates in this exchange—information in seminal fluid is subject to “cryptic

female choice,” a process by which females interrogate the reproductive fitness of

prospective mates and invest reproductive resources accordingly. These processes

participate in driving the evolution of male accessory glands, ensuring optimal female

reproductive investment andmaximal progeny fitness. An expanded pheromone concept

will avoid a constraint in our understanding of mammalian reproductive biology.

Keywords: pheromone, gonadotrophins, seminal fluid, immune response, hypothalamic-pituitary axis, uterus,

cryptic female choice

INTRODUCTION

While the theme of this special issue of Frontiers in Veterinary Science is focused clearly on signals
transferred from males to females in semen, we would like to add an extra dimension to the
discussion—the concept of “pheromone.” The original approach to male-female chemical signaling
emerged from the field of entomology, for which pheromones were defined by Karlson and Lüscher
in 1959 (1): “. . . substances which are secreted to the outside by an individual and received by
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a second individual of the same species, in which they release
a specific reaction, for example, a definite behavior or a
developmental process.”

A case for relaxing the definition to accommodate the “ram
effect” in sheep was originally made in 1986 (2) and subsequently
updated in 2012 (3). In this paper, we will use the “ram effect”
as a primary example of a pheromone that has profound effects
on mammalian reproduction (review: 2). It involves an olfactory
signal from novel rams that activates the hypothalamic-pituitary-
gonadal (HPG) axis of anovulatory ewes, leading to ovulation
within a few days. The phenomenon has been studied in depth
(review: 3) and we now know:

1. The chemical information is transmitted primarily by the
main olfactory system, with the accessory olfactory system
playing a relatively minor role; the information is delivered to
neuronal networks in the preoptic-hypothalamic continuum
(including the KNDy cells) (4) that control the tonic, pulsatile
secretion of GnRH/LH;

2. Fos expression studies have shown that, in the first 2 h of male
exposure, cells are activated in the arcuate nucleus (ARC), the
ventromedial nucleus of the hypothalamus (VMH) and the
organum vasculosum of the lamina terminalis (OVLT); by 6 h
after male exposure, cells in the preoptic area (POA) are also
activated (5);

3. Fos expression studies have also shown that removal of
males quickly decreases cell activity in the ARC, VMH and
OVLT, but has a relatively small effect on POA cells, perhaps
explaining the incomplete decline in the tonic GnRH/LH
response (5);

4. The stimulus evokes a rapid increase in cell proliferation in
the dentate gyrus of the hippocampus; the roles played by
this site, as well as the cortical amygdala (6), are coherent
with the importance of “olfactory memory” in the “ram effect”
(review: 3);

5. The need for a pheromonal signature for each individual male,
so they can be identified as either novel or familiar, implies a
complex mixture of compounds in the chemical signal; at best,
this chemistry is only partially characterized (review: 3);

6. The responses are learned by the ewe, and depend on sexual
experience (review: 3);

7. Non-olfactory (auditory, visual) ram stimuli help to achieve
the optimum response, but are unable to substitute for the
full complement of sociosexual stimuli from a living ram
(review: 3);

8. The neuroendocrine response and the proportion of ewes
that subsequently ovulate vary within and between genotypes
(review: 3);

9. Species specificity appears to be flexible—for example, odor
from male goats can elicit the neuroendocrine response in
ewes (review: 3).

In 2010, Wyatt (7) also expanded the pheromone concept
to encompass more complex signals, a broader variety of
physiological processes, and a greater number of species: “. . .
molecules that are evolved signals, in defined ratios in the case
of multiple component pheromones, which are emitted by an

individual and received by a second individual of the same
species, in which they cause a specific reaction, for example, a
stereotyped behavior or a developmental process.” Wyatt (7) also
defined “signaturemixture” as a: “. . . variable chemical mixture (a
subset of the molecules in an animal’s chemical profile) learned
by other conspecifics and used to recognize an animal as an
individual . . . .”

Clearly, the “ram effect” in sheep fulfills both of these
conditions. The question we pose here is: can we stretch the
pheromone definition beyond olfactory signals to include semen,
the complex biological and chemical mixture that is transmitted
from males to females at mating?

INDUCTION OF OVULATION BY SEMINAL

FLUID

Seminal fluid had long been seen as a passive carrier of
spermatozoa, but that view is challenged fundamentally by the
camelids, where exposure to seminal plasma at mating triggers
ovulation (8–10). It is now known that this phenomenon is
mediated by ß-nerve growth factor (NGF-β) that, through an as-
yet unresolved pathway, elicits an ovulatory surge of LH, perhaps
though action on GnRH neurons at the level of the median
eminence (11–17). Induction of LH secretion by seminal plasma
NGF-β is also thought to enhance the development and function
of the corpus luteum in camelids (18).

The conceptual overlap of this phenomenon with the ram
effect is self-evident—the major difference being air-borne vs.
semen-borne chemical signals. Our view is that NGF-β in seminal
plasma is indeed a pheromone and, moreover, we need to expand
this discussion even further to encompass molecular components
of seminal fluid that do not directly affect the HPG axis.

EFFECTS OF SEMINAL FLUID ON THE

FEMALE REPRODUCTIVE TRACT

A substantial body of work over the last decade or so
has clearly demonstrated the profound effects of seminal
fluid—the seminal plasma as well as agents carried on the
surface of sperm—on the reproductive tract and physiology
of recipient females in several mammalian species, including
humans, mice, pigs, dogs, cattle and sheep (19–21). Seminal
fluid is produced mostly in the seminal vesicles and is rich
in inorganic salts and micronutrients (e.g., potassium, zinc),
carbohydrates (particularly reducing sugars such as fructose),
lipid derivatives (including prostaglandins, phosphorylcholine),
extracellular vesicles, and an array of glycoproteins including
lactoferrin, proteinase inhibitors and cytokines (20). It has
long been known that these factors play functional roles
in fertilization, including semen coagulation, sperm motility
and capacitation. Now, it is clear that they also elicit direct
paracrine and endocrine responses that induce changes in
gene expression leading to an immune response in the cervix,
uterus, oviduct, and ovary of the female tract, with substantial
consequences for the success of conception, embryo implantation
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and pregnancy (22, 23). In turn, as with the invertebrates, these
processes provide pathways (independent of the sperm) by which
paternal factors can influence the phenotype and health status
of offspring after birth (24, 25). In particular, by modulating
the immune response of the female receiving “foreign” male-
derived histocompatibility antigens (or transplantation proteins),
they determine pre-implantation embryo development and then
promote implantation by increasing receptivity to the embryo
(19, 26).

The signals known to be responsible for the immunological
effects are the isoforms of transforming growth factor-ß (TGFß),
TGFß1, TGFß2 and TGFß3, 19-OH prostaglandins (19-OH
PGE), various ligands of Toll-like receptor-4 (TLR4), and cyclic
ADP ribose hydrolase (CD38) (21, 27, 28). These molecules
bind to epithelial cells lining the female reproductive tract
where they elicit a surge in cytokine expression that induces a
rapid recruitment of immune cells into the local endometrial
and cervical tissue. Ultimately, the female immune response
is “primed” to seminal fluid antigens and tolerance-conferring
regulatory T-cells are activated to permit the presence on the
conceptus of paternally-inherited histocompatibility antigens
(29). Consequently, the generation of effector immunity against
sperm antigens is suppressed and the female immune system is
induced to tolerate the histocompatibility antigens. These same
antigens are present on embryos produced by the male gametes,
so the immune response to seminal fluid effectively “primes” the
female immune response to facilitate survival of embryos sired by
that male (26, 29).

These immunological effects of seminal fluid have been
reported for a wide variety of mammalian species. For example,
in goats and sheep, mating induces a transient inflammatory
response with hallmark recruitment of macrophages and
neutrophils into the cervical and uterine tissues (19, 30, 31). In
common with all other species studied to date, the key active
signaling factor in goat and sheep seminal plasma is TGFβ
(32). Analysis of the uterine inflammatory response after mating
in sheep demonstrates that, as in mice (23, 24), both sperm
and seminal fluid contribute to infiltration by macrophages
and neutrophils, typically leading to induction of seminal fluid-
mediated IL8 and GM-CSF secretion (33).

Seminal fluid also influences the expression of the cytokines
and growth factors that modulate embryo survival and
developmental programming (34). Several cytokines released by
the oviduct and uterine epithelium exert permissive or inhibitory
effects on embryo survival and development. Growth factors that
affect embryo development are induced in the uterus and oviduct
of mice, pigs, sheep, and other species where seminal fluid factors
access the uterus and oviduct (24, 28, 33, 35, 36). When oviductal
cytokine expression is disrupted in early pregnancy by mating
females with males rendered deficient in seminal plasma, fewer
embryos survive and those that do are less able to implant and
develop (24).

In addition to the immunological effects and the ovulatory
response, seminal fluid affects the ovary where as-yet unidentified

components facilitate luteal development and progesterone
secretion (37), after being delivered by unique counter-
current exchange mechanisms where small molecules are
transferred to the ovarian artery from the uterine vein (38).
One candidate, relaxin, is known to be carried by seminal
plasma in rodents (39) and has been shown to promote
ovulation through connective tissue remodeling in the follicle
wall (40).

CONCLUSION

Clearly, seminal fluid carries molecular agents that act in
the female reproductive tract to alter female physiology
in a most fundamental way to promote reproductive
success, and these effects go well beyond the induction
of ovulation. We contend that the chemical components
of seminal fluid meet the definition of “pheromone”—
they act outside the body of the originating male to
affect not only the HPG axis of the female but to change
her immune system and thus enhance the prospect of a
successful pregnancy.

Interestingly, this perspective brings us back to the
world of invertebrates where the role of seminal fluid in
regulating female reproductive physiology and behavior
is also relevant (41–43). For instance, in Drosophila, male
factors induce synthesis of antimicrobial protein and influence
brain function to reduce female receptivity to other males
(44), and the seminal plasma protein, ovulin, stimulates
octopamine neuronal signaling and induces ovulation (45),
reminiscent of the induction of ovulation by seminal fluid
NGF-ß in camelids.

These phenomena have profound implications for
reproductive biology because the capacity of the male to
induce a response in the female will determine the success
of the transmission of the male germ line. Moreover, the
female becomes an active participant in this exchange—
information provided in seminal fluid is subject to “cryptic
female choice,” a process by which females interrogate the
reproductive fitness of prospective male partners and invest
reproductive resources accordingly (46). Resources invested
in the promotion of successful fertilization contribute to the
evolution of male accessory glands (47), helping to ensure
optimal female reproductive investment and maximal progeny
fitness (48).

By expanding the pheromone concept, we avoid
being constrained in our understanding of the
mammalian reproductive biology, including that
of humans.
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