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Abstract
The progressive loss of CD4+ T cell population is the hallmark of HIV-1 infection but the

mechanism underlying the slow T cell decline remains unclear. Some recent studies sug-

gested that pyroptosis, a form of programmed cell death triggered during abortive HIV infec-

tion, is associated with the release of inflammatory cytokines, which can attract more CD4+

T cells to be infected. In this paper, we developed mathematical models to study whether

this mechanism can explain the time scale of CD4+ T cell decline during HIV infection. Sim-

ulations of the models showed that cytokine induced T cell movement can explain the very

slow decline of CD4+ T cells within untreated patients. The long-term CD4+ T cell dynamics

predicted by the models were shown to be consistent with available data from patients in

Rio de Janeiro, Brazil. Highly active antiretroviral therapy has the potential to restore the

CD4+ T cell population but CD4+ response depends on the effectiveness of the therapy,

when the therapy is initiated, and whether there are drug sanctuary sites. The model also

showed that chronic inflammation induced by pyroptosis may facilitate persistence of the

HIV latent reservoir by promoting homeostatic proliferation of memory CD4+ cells. These

results improve our understanding of the long-term T cell dynamics in HIV-1 infection, and

support that new treatment strategies, such as the use of caspase-1 inhibitors that inhibit

pyroptosis, may maintain the CD4+ T cell population and reduce the latent reservoir size.

Author Summary

The CD4+ T cell population within HIV-infected individuals declines slowly as disease
progresses. When CD4+ cells drop to below 200 cells/ul, the infection is usually consid-
ered to enter the late stage, i.e., acquired immune deficiency syndrome (AIDS). CD4+ T
cell depletion can take many years but the biological events underlying such slow decline
are not well understood. Some studies showed that the majority of infected T cells in
lymph nodes die by pyroptosis, a form of programmed cell death, which can release
inflammatory signals attracting more CD4+ T cells to be infected. We developed mathe-
matical models to describe this process and explored whether they can generate the
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long-term CD4+ T cell decline. We showed that pyroptosis induced cell movement can
explain the slow time scale of CD4+ T cell depletion and that pyroptosis may also con-
tribute to the persistence of latently infected cells, which represent a major obstacle to
HIV eradication. The modeling prediction agrees with patient data in Rio de Janeiro,
Brazil. These results suggest that a combination of current treatment regimens and cas-
pase-1 inhibitor that can inhibit pyroptosis might provide a new way to maintain the
CD4+ T cell population and eradicate the HIV latent reservoir.

Introduction
HIV-1 progression to the AIDS stage within untreated patients usually takes many years. As
HIV-1 infection progresses, the CD4+ T cell population declines slowly and the infected individ-
ual becomes progressively more susceptible to certain opportunistic infections and neoplasms.
These are particularly common when CD4+ T cells reach a level below 200 cells/ul, which defines
AIDS [1–7]. How HIV-1 infection induces progressive CD4+ T cell depletion is unclear [8]. One
explanation is that the turnover rate of CD4+ T cells is significantly increased in HIV or simian
immunodeficiency virus (SIV) infected subjects [9,10]. Therefore, massive activation of CD4+ T
cells, which leads to more viral infection and cell death, might outrun the regeneration of T cells
and cause progressive depletion. Another explanation is the failure of CD4+ memory T cell
homeostasis during progressive HIV infection. This is possibly due to the destruction of the
microenvironment of organs and tissues supporting T cell regeneration [3,11–14]. It remains
unclear whether the impaired conformation of T cell regenerative tissues leads to the regenera-
tion failure or it is merely a pathogenic reformation caused by HIV to promote viral replication.

Mathematical models may shed light on how the complex interplay between the immune
response and viral infection leads to overt immunodeficiency. Matrajt et al. used a model to ana-
lyze the simian-human immunodeficiency virus (SHIV) infection data in macaques [15]. They
found that uninfected or bystander cell death accounts for the majority of CD4+ T cell death
[15]. Mohri et al. studied the turnover of CD4+ T cells and found that T cell depletion is primar-
ily induced by increased cellular destruction rather than decreased cellular production [16].
Kovacs et al. also showed that HIV does not impair CD4+ T cell production but increases T cell
proliferation [17]. Using a model including the activation of resting CD4+ T cells, Ribeiro et al.
found that HIV infection increases both the activation rate of resting CD4+ T cells and the rates
of death and proliferation of activated CD4+ T cells [18]. Chan et al. showed that the rapid pro-
liferation of CD4+ T cells provides more targets for infection and that preservation of CD4+ T
cells in natural host monkeys is due to the limited CD4+ T cell proliferation [19]. Thus, CD4+ T
cell depletion may be caused by the massive immune activation during chronic infection. How-
ever, a model by Yates et al. suggested that if immune activation drives T cell decline, then the
predicted decline would be very fast, which is not consistent with the time scale of T cell deple-
tion during chronic infection [20]. The above observations and analyses may explain T cell
depletion but the long-term dynamics of CD4+ T cells have been neither simulated by models
nor compared with patient data. In a recent study, Hernandez-Vargas and Middleton [21]
developed a model including the infection of macrophages to explain the three stages of HIV
infection. Fast infection of CD4+ T cells can explain the CD4+ T cell and viral load dynamics in
the early stages, while slow infection of macrophages may explain the dynamics in the advanced
stages of infection. Whether macrophages form a long-term reservoir causing T cell depletion
and viral explosion in the later stages of infection needs further experimental investigation.
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Different from apoptosis, a programmed process that results in non-inflammatory cell
death, pyroptosis is a form of programmed cell death associated with antimicrobial responses
during inflammation [22]. During HIV infection, Doitsh et al. [23,24] found that when virus
enters a CD4+ T cell that is non-permissive to viral infection, the caspase-1 pathway is trig-
gered to induce pyroptosis, which can secrete inflammatory cytokines such as IL-1β. These
cytokines establish a chronic inflammation state and attract more CD4+ T cells to the inflamed
sites, resulting in more infection and cell death. Thus, pyroptosis generates a vicious cycle in
which dying CD4+ T cells secrete inflammatory signals that attract more CD4+ T cells to be
infected and die [23]. These findings suggest that HIV-1 may use the intrinsic feature of the
immune system to seek targets of infection, establish productive viral replication, and mean-
while destroy the CD4+ T cell population.

Here we developed mathematical models incorporating the effect of pyroptosis to study
whether it can explain the very slow T cell depletion during HIV-1 infection. Using the models
we explored if highly active antiretroviral therapy (HAART) can preserve the CD4+ T cell pop-
ulation. We studied the effect of CD4+ T cell proliferation and CD8+ T cell response on CD4+
decline. We also compared our modeling prediction with clinical data obtained from patients
in Rio de Janeiro, Brazil [25–28]. At last, we probed the possible contribution of chronic
inflammation associated with pyroptosis to the HIV latent reservoir persistence.

Methods

Patient data
The patient data were obtained from seroconverters in 3 cohorts [25–28]. One cohort consists
of high-risk, HIV-seronegative homosexual and bisexual men who did not report injection
drug use, were enrolled between July 1995 and June 1998 and seroconverted during follow-up
[26]. The other cohorts consist of seroconverters from high-risk HIV-seronegative homosexual
and bisexual men patients who were enrolled from December 1998 to May 2001 in a study
designed to evaluate the behavior impact of post-exposure prophylaxis [27], and participants
from the control arm of SPARTAC, a randomized trial designed to evaluate the impact of short
term antiretroviral therapy on the course of primary HIV infection [28]. The median of the
CD4+ T cell data was derived from these cohort studies. The median of the Current Study Mul-
ticenter AIDS Cohort Study (MACS) was obtained from the study [29]. These patient data and
medians were compared with modeling prediction.

One-compartment model
Inflammatory cytokines released by abortively HIV-infected cells can attract more CD4+ T cells
to be infected. In the following one-compartment model, to minimize the number of variables
and parameters we described the effect of pyroptosis by use of an enhanced viral infection rate
because of increased availability of CD4+ T cells attracted by cytokines to the inflamed sites.

dT
dt

¼ l� kð1þ giCÞVT � d1T

dT�

dt
¼ ð1� f Þkð1þ giCÞVT � d2T

�

dM�

dt
¼ fkð1þ giCÞVT � d3M

�
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dV
dt

¼ pvT
� � d4V

dC
dt

¼ Ncd3M
� � d5C

The variable T represents the population of uninfected CD4+ T cells. They are generated at
the rate λ. Proliferation of target cells will be considered later. The infection rate is modeled by a
mass action term kVT, which is enhanced by the inflammatory cytokine (C) with a factor γi.
Uninfected T cells die at a per capita rate d1. T� is the population of productively infected T
cells and their death rate is d2. A fraction (f) of new infection is assumed to be abortively
infected. The death rate of abortively infected T cells (M�) is d3. Virus (V) is generated by pro-
ductively infected T cells with a viral production rate pv and is cleared at a rate d4. Inflammatory
cytokines are released with a burst size (Nc) when an abortively infected cell dies. Thus, Ncd3
represents the generation rate of cytokines per abortively infected cell. The decay rate of cyto-
kines is assumed to be d5. The schematic diagram of this model is shown in Fig 1. Parameters
and values are listed in Table 1.

In the above one-compartment model, we described the consequence of pyroptosis but did
not explicitly model the cytokine-induced attraction of CD4+ T cells from elsewhere to the
place where abortive infection occurs. Below we developed another model with two compart-
ments to include cytokine-induced T cell movement explicitly. The model is more complicated
and contains more parameters.

Fig 1. Schematic diagram of the one-compartment model. Inflammatory cytokines released during cell death by pyroptosis attract more CD4+ T cells (T)
to be infected. The term γiC�kVT represents cytokine enhanced viral infection due to increased CD4+ T cell availability.

doi:10.1371/journal.pcbi.1004665.g001
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Two-compartment model

dT1

dt
¼ l1 � kV1T1 � d1T1 � s1ð1þ grCÞT1 þ s2T2

dT2

dt
¼ l2 þ s1ð1þ grCÞT1 � kV2T2 � s2T2 � d1T2

dT�
1

dt
¼ kV1T1 � d2T

�
1

dT�
2

dt
¼ ð1� f ÞkV2T2 � d2T

�
2

Table 1. A summary of all parameters and values used in the models.

Parameter Description Value Ref.

λ CD4+ T cell generation rate / Fitted

k Viral infection rate / Fitted

d1 Death rate of uninfected CD4+ T cells 0.01 day-1 [31]

γi Effectiveness of cytokines on infection / Fitted

d2 Death rate of infected CD4+ T cells 1 day-1 [36]

f Fraction of abortive infection 0.95 [23]

d3 Death rate of abortively infected cells 0.001 day-1 [31]

pv Viral production rate / Fitted

d4 Viral clearance rate 23 day-1 [31]

Nc Burst size of cytokines 15 molecule /

d5 Decay rate of cytokines 6.6 day-1 [38]

λ1 Generation rate of CD4+ in blood / Fitted

λ2 Generation rate of CD4+ in lymph node 5×105 cell ml-1day-1 See text

σ1 CD4+ transfer rate to lymph node 0.01 day-1 See text

σ2 CD4+ transfer rate to blood 0.0002 day-1 See text

γr Effect of cytokines on CD4+ transportation / Fitted

D1 Rate of viral transfer to blood 0.1 day-1 /

D2 Rate of viral transfer to lymph node 0.2 day-1 /

pv1 Viral production rate in blood / Fitted

pv2 Viral production rate in lymph node 2000 day-1 [32]

ρ Hill coefficient in exponential function 2×10−4 ml molecule-1 /

α Killing rate of CD8+ T cells 0.01 ml cell-1day-1 /

pE Max activation rate of CD8+ T cells 100 cells ml-1day-1 /

θ Half max saturation of CD8+ activation 50 cells ml-1 /

η Effect of CD4+ T cells on CD8 activation 500 cells/μl /

dE Death rate of CD8+ T cells 0.06 day-1 [62]

μ Fraction of latent infection 0.001 [32]

pL Proliferation of latently infected T cells 0.001 day-1 See text

φ Effect of cytokines on latent proliferation 10−2 ml molecule-1 /

Lmax Carrying capacity of latently infected cells 100 cells ml-1 [31]

dL Death rate of latently infected T cells 0.001 day-1 [30]

doi:10.1371/journal.pcbi.1004665.t001
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dM�

dt
¼ fkV2T2 � d3M

�

dV1

dt
¼ pv1T

�
1 � d4V1 þ D1ðV2 � V1Þ

dV2

dt
¼ pv2T

�
2 � d4V2 þ D2ðV1 � V2Þ

dC
dt

¼ NCd3M
� � d5C

In the model there are two compartments: one represents the blood (T1) and the other repre-
sents human lymphoid tissues (T2) such as lymph nodes in which abortive infection takes
place on a large scale [23]. CD4+ T cells in compartment I (or II) can transport to compart-
ment II (or I) at a rate σ1 (or σ2). In blood, cytokines released during abortive infection cannot
accumulate as in lymphoid tissues. They cannot attract other immune cells to fight the infec-
tion and contribute to inflammation. Thus, pyroptosis is assumed to take place only in lym-
phoid tissues (compartment II), as observed in ref. [23]. The transportation rate σ1 from the
blood to tissues is assumed to be enhanced by a factor (1+γrC) due to inflammatory cytokines
(C) released during pyroptosis in compartment II. Viruses (V1 and V2) can also transport
between two compartments with the rates D2(V1-V2) and D1(V2-V1), which depend on the dif-
ference of viral load in the two compartments. Because the dynamics of the virus are much
faster than those of infected cells, it is reasonable to assume that they are proportional to each
other. Thus, we only included the transportation of virus between compartments. In the Sup-
porting Information (S1 Text and S7 Fig), we added the transportation of infected cells to the
model and found that the model prediction is similar to the case without infected cell transpor-
tation. All the other variables and parameters (summarized in Table 1) can be defined similarly
as those in the one-compartment model (Fig 1). The schematic diagram of the two-compart-
ment model is shown in Fig 2.

Model parameters
For model simulation, we fixed most of parameters based on existing experimental data and
our previous modeling studies [30–33]. Because the CD4+ T cell level within an uninfected
individual ranges normally from 500 cells/μl to 1500 cells/μl, we changed the unit to cells/ml
and assumed CD4+ T cells to be 106 cells/ml before infection [34]. The death rate (d1) of unin-
fected CD4+ T cells is assumed to be 0.01 day-1 [35]. Thus, from the steady state of target cells
before infection, we obtained that the generation rate (λ) of target cells is 106(0.01) = 104 cells
ml-1 day-1. The viral infection rate k is assumed to be 2.4×10−8 ml virion-1 day-1 [30]. The
death rate of infected T cells is d2 = 1 day-1 [36]. We chose the parameter γi to be 2×10

−4 ml
molecule-1. The viral production rate of productively infected T cells in the one-compartment
model is chosen to be 2.5×104 virions cell-1 day-1 [37]. As described by Doitsh et al. [23,24],
abortive infection accounts for 95% of the total infection. Thus, we chose f to be 0.95. Because
abortive infection mainly takes place in non-permissive quiescent T cells, we chose their death
rate (d3) to be 0.001 day

-1 [31,32]. The burst size of cytokines is fixed to Nc = 15 molecules.
The half-life of IL-1β is about 2.5 hours [38]. Thus, we chose the decay rate of cytokines to be
d5 = 6.6 day-1. We also performed sensitivity tests of the modeling prediction on a number of
parameters.
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Data fitting
We fit both the one-compartment and two-compartment models to subjects with more than
10 data points [25–29]. The root mean square (RMS) between model prediction and patient

Fig 2. Schematic diagram of the two-compartment model. Parameters σ1 and σ2 represent the transportation rates of uninfected T cells between blood
and lymph nodes. Cytokines (C) attract uninfected T cells (T1) from blood into lymph nodes at an enhanced rate γrC. Parameters D1 and D2 represent the
transportation rates of virus between two compartments.

doi:10.1371/journal.pcbi.1004665.g002
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data is minimized for each patient. RMS is calculated using the following formula

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn

i¼1ðTðtiÞ þ T�ðtiÞ � T̂ ðtiÞÞ2
n

s

where T(ti)+T�(ti) represents the CD4+ T cell population level in blood at time ti predicted by

the model, T̂ ðtiÞ is the corresponding patient data at ti. We used T1(ti)+T1
�(ti) in the fitting for

the two-compartment model. Parameter estimates are based on the best fit that achieves the
minimum RMS. Data fitting is performed using the R programming language.

Model comparison by AIC
In order to statistically compare the best fits of using the two models, we calculated the Akaike
information criterion (AIC). The model with a lower AIC value fits the data better from a sta-
tistical viewpoint. The AIC is calculated using the following formula

AIC ¼ nln
RSS
n

� �
þ 2m

RSS ¼
Xn

i¼1

ðTðtiÞ þ T�ðtiÞ � T̂ ðtiÞÞ2

where n is the number of observations (i.e. number of data points) andm is the number of fit-

ted parameters. RSS is the residual sum of squares. T(ti), T�(ti) and T̂ ðtiÞ are the same as those
defined in the calculation of RMS.

Confidence interval
We obtained the 95% confidence intervals for fitted parameters using a bootstrap method [39],
where the residuals to the best fit were re-sampled 200 times.

Results

Slow depletion of CD4+ T cells
Using the parameter values listed in Methods and initial values V(0) = 1×10−3 RNA copies/ml,
T(0) = 103 cells/μl, T�(0) = 0,M�(0) = 0, and C(0) = 0 in the one-compartment model, we
showed that the population of CD4+ count declines from 103 cells/μl to about 200 cells/μl
around the 6th year after infection (Fig 3A). This is consistent with the slow time scale of T cell
decline during HIV infection. The entire T cell depletion course consists of two major phases.
The first massive depletion phase is rapid, followed by a slower chronic depletion phase (Fig
3A). The first-phase T cell decline is due to the substantial viral infection during the early stage.
If there is no infection (k = 0), then the T cell level would stabilize at the initial level (Fig 3A).
The slow second-phase T cell decline is due to pyroptosis enhanced viral infection. Without
the effect of inflammatory cytokines released during pyroptosis (i.e. γi = 0 or no inflammation
in Fig 3A), a balance between T cell generation and viral infection is reached and the T cell
population is maintained at a steady state level. This agrees with the prediction of most viral
dynamics models without treatment. Because of pyroptosis, cytokine-enhanced viral infection
breaks the balance between cellular production and viral infection, which makes the T cell level
decline at a very low rate and approach the immune-deficient level after several years (Fig 3A).
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The viral load change was plotted in Fig 3B. Without the effect of inflammatory cytokines,
the viral load reaches a steady state level. When there is cytokine enhanced viral infection, viral
load increases very slowly during the phase of chronic infection (Fig 3B).

Using a constant λ is a simple way to approximate the generation of target cells. We included
the proliferation of target cells in the model (S1 Text). Simulation with different proliferation
rates is shown in S1 Fig. As the proliferation rate increases, the decline of CD4+ T cells becomes
faster. This is because more target cells lead to more abortive infection, which releases more
cytokines attracting more CD4+ T cells to be infected and die. This prediction is consistent with
the observation that the level of T cell proliferation in non-pathogenic infection (e.g. SIV infec-
tion in natural host monkeys such as sooty mangabeys or mandrills that do not develop AIDS-
like diseases) was much lower than in pathogenic infection, e.g., SIV in rhesus macaques
[40,41]. This provides an additional support to the view that an attenuated rather than effective
adaptive immune response preserves immune function in natural host monkeys [42].

We performed sensitivity analysis of the CD4+ T cell decline for a number of parameters.
Fig 4 shows that the sensitivity tests on parameters k, λ, pv and γi. S2–S5 Figs show the tests on
parameters Nc, d3, d5, and f, respectively. We found that the model is robust in generating the
slow decline of CD4+ T cells, although the model prediction is more sensitive to three parame-
ters k, pv and f (see Figs 4A, 4C and S5).

In the above simulation, we assumed that the viral infection enhancement parameter γi is a
constant. When the concentration of inflammatory cytokines is low, they may not be able to
trigger the attraction of CD4+ T cells from elsewhere. Thus, we simulated a scenario in which

Fig 3. CD4+ T cell decline and viral load dynamics predicted by the one-compartmentmodel. (A) CD4+ T
cell decline consists of twomajor phases. A rapid and massive decline is caused by enormous viral infection
during the early stage. It is followed by a progressive depletion phase, which is driven by pyroptosis enhanced
viral infection. (B) Viral load dynamics generated by the one-compartment model with and without chronic
inflammation.

doi:10.1371/journal.pcbi.1004665.g003
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Fig 4. CD4+ T cell dynamics predicted by the one-compartment model with different parameter
values. (A) Sensitivity test on the infection rate k. The value of k increases from 1.44×10−8 (orange line) to
3.36 ×10−8 ml virion-1 day-1 (black line) with four equal increments. (B) Sensitivity test on the target cell
generate rate λ. The value of λ increases from 6000 (orange line) to 14000 cell ml-1day-1 (black line) with four
equal increments. (C) Sensitivity test on the viral production rate pv. The value of pv increases from 15000
(orange line) to 35000 virions cell-1 day-1 (black line) with four equal increments. (D) Sensitivity test on γi, the
effect of cytokines on infection. The value of γi increases from 1.2×10−4 (orange line) to 2.8 ×10−4 ml
molecule-1 (black line) with four equal increments.

doi:10.1371/journal.pcbi.1004665.g004
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enhanced viral infection is triggered only when the level of cytokines is above a threshold
value. We chose γi to be the following step function. It is zero if the level of cytokines is below a
certain level.

giðCÞ ¼
0; C < threshold

gi > 0; C � threshold

(

The threshold value was chosen to be 2000 or 4000 molecules/ml in Fig 5A. CD4+ T cells do
not decline until the level of cytokines reaches the corresponding threshold (Fig 5B).

Fig 5. Simulation with a concentration-dependent cytokine enhanced function γi. (A) The dynamics of
cytokines. The black and brown dashed lines represent two threshold values we chose in simulation. (B)
CD4+ T cell dynamics generated by the one-compartment model with a step function for the parameter γi.
The brown line corresponds to the threshold of 2000 molecules/ml and the black corresponds to the
threshold of 4000 molecules/ml. (C) CD4+ T cell dynamics generated by the one-compartment model when
the parameter γi is an exponential function of the concentration of cytokines.

doi:10.1371/journal.pcbi.1004665.g005
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A more realistic scenario is that γi increases gradually when the concentration of cytokines
is above the threshold. We chose γi(C) to be the following exponential function.

giðCÞ ¼
0; C < threshold

gið1� e�rðC�thresholdÞÞ; C � threshold

(

The hill coefficient ρ determines how fast γi(C) increases from 0 to its maximum value γi.
Both ρ and γi were fixed to 2×10

−4 ml molecule-1. With a non-constant parameter γi(C), we
found that CD4+ T cells also undergo a slow decline to below 200 cells/μl (Fig 5B and 5C).
Using an exponential function for γi(C), the decline of CD4+ T cells is smoother than the case
using a step function.

Influence of HAART
Using the one-compartment model, we studied if HAART can rescue the CD4+ T cell popula-
tion. During HAART we assumed that the viral infection rate k is reduced by a factor (1-ε),
where ε is the overall drug efficacy of the treatment [32]. The simulation shows that if the treat-
ment effectiveness is very high, then CD4+ count can rebound to its pre-infection level (Fig
6A) no matter when HAART is initiated. For lower treatment effectiveness (e.g. ε = 0.6 in Fig
6B), the patient needs a relatively long time to restore the CD4+ T cell population. The later
HAART starts, the longer it takes for CD4+ T cell restoration (Fig 6B). When the treatment
effectiveness is further lower, CD4+ T cell depletion could not be prevented. These results sug-
gest that HAART has the potential to rescue CD4+ T cell population, but CD4+ response
depends on the effectiveness of the therapy and when the therapy is initiated.

Fig 6. Influence of HAART on CD4+ T cell dynamics. (A) If treatment is very effective, then the CD4+ T cell
population is predicted to be restored. (B) If drug efficacy is lower, then the later HAART is initiated the longer
it takes for the T cell population to increase.

doi:10.1371/journal.pcbi.1004665.g006
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Model with CD8+ T cell response
We included CD8+ T cells in the one-compartment model to study the interaction between
CD4+ T cell decline and CD8+ T cell response. CD8+ T cells (E) are assumed to kill infected T
cells at a rate αET�. The activation rate of CD8+ T cells depends on the level of infected cells
with a half-maximal saturation constant θ. pE is the maximum activation rate. CD4+ T cells
play an important role in activating the adaptive immune response. We used another satura-
tion function T/(T+η) to account for this influence. The T� and E equations are given below.

dT�

dt
¼ ð1� f Þkð1þ giCÞVT � d2T

� � aET�

dE
dt

¼ pE
T�

T� þ y

� �
T

T þ Z

� �
� dEE

The simulation of the model with CD8+ T cell response is shown in Fig 7. Parameter values
are listed in Table 1. For comparison, we plotted the predicted T cell dynamics with and with-
out the influence of CD4+ T cells. In column A of Fig 7, we performed the simulation without
T/(T+η). CD4+ T cells decline slowly and CD8+ T cells reach a steady state level. Column B
shows the simulation with the term T/(T+η). CD8+ T cell response becomes weaker than in
column A because of the slow depletion of CD4+ T cells. CD4+ T cells decline faster because of
the incapability of CD8+ T cells to control viral infection.

Fig 7. Simulation of the one-compartment model with CD8+ T cell response.Column A: predicted T cell dynamics assuming that CD8 activation is not
regulated by CD4+ T cells (i.e. without the term T/(T+η). Column B: predicted T cell dynamics assuming that CD8 activation is regulated by CD4+ T cells.
Parameter values are listed in Table 1.

doi:10.1371/journal.pcbi.1004665.g007
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Two-compartment model
Inflammatory signals released during pyroptosis induce the movement of CD4+ T cells from
circulation in blood to inflamed lymph nodes [43–46]. We developed a more comprehensive
model by including two cell compartments (Fig 2). One is the blood compartment and the
other is the compartment of lymphoid tissues where pyroptosis takes place. Simulation of the
two-compartment model shows that CD4+ count in blood declines from 103 cells/ul to 200
cells/ul over a long time period (Fig 8A). The viral load change in blood is also similar to that
shown in Fig 3B except that T cell and viral load dynamics generated by the two-compartment
model have less oscillation than by the one-compartment model.

Fig 8. Simulation of the two-compartment model. (A) CD4+ T cell dynamics predicted by the two-
compartment model. (B) Simulation of the model with ε1 = ε2 = 0.9. The red and black lines are the simulation
when HAART is initiated 1 year and 3 years, respectively, after infection. (C) Long-term CD4+ T cell
dynamics predicted with ε1 = 0.9 and ε2 = 0.4 when HAART is initiated at the beginning of infection. Because
approximately 98% of viral replication takes place within lymph nodes [2,46], in the simulation we fixed λ1 to
be 104 cell ml-1 day-1 and λ2 to be 50 times of λ1. Using the equilibrium before infection, we chose the rate σ1
to be 50 times of σ2 (σ1 = 0.01 day-1 and σ2 = 0.0002 day-1). The other parameters were chosen to be γr =
5×10−6 ml molecule-1, D1 = 0.1 day-1, D2 = 0.2 day-1, pv1 = 1000 day-1, and pv2 = 2000 day-1 [32].

doi:10.1371/journal.pcbi.1004665.g008
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Using the two-compartment model we also tested if HAART can rescue CD4+ T cell popu-
lation. We assumed that the drug efficacies of HAART within blood and lymph node are differ-
ent (i.e., the viral infection rate k in compartment I is reduced by 1-ε1 and k in compartment II
is reduced by 1-ε2). We found that if the drug efficacies in both compartments are high, then
CD4+ T cell depletion can be prevented (Fig 8B). The time for CD4+ restoration also depends
on when HAART is initiated. However, if the drug efficacy in compartment II is relatively low
(e.g. ε2 = 0.4) compared with the high efficacy in compartment I (e.g. ε1 = 0.9), then CD4+ T
cells decline even when HAART is initiated at the beginning of viral infection (Fig 8C). In the
simulation, CD4+ T cells stabilize at 230 cells/ul after more than 30 years (Fig 8C). This result
suggests that even if some lymphoid tissues might be difficult for drug's penetration (i.e. drug
sanctuary sites), CD4+ T cells can be maintained at a higher level in treated patients than in
untreated patients. This may explain the increased life expectancies in HIV patients treated
with combination therapy [47–51]. However, because of the CD4+ cell decline (Fig 8C), life
expectancy should be lower in patients with lower baseline CD4+ cell counts than in those with
higher baseline counts. This is consistent with the reported life expectancy of individuals on
combination therapy in a collaborative analysis of 14 cohort studies [47].

Comparison with long-term CD4+ T cell data
We compared modeling predictions with the CD4+ T cell data shown in [25–29]. Using the
one-compartment model, we fit parameters k, γi, λ, pv and fix the other parameters for each
patient. We also fit the model to the median data calculated from all the patients in the two
cohort study [25] and the median data of the Current Study Multicenter AIDS Cohort Study
(MACS) [29]. Using the two-compartment model, we fit parameters k, γr, λ1, pv1 to the same
patient and median data. Figs 9 and 10 show that both models provide a good fit to the long-
term CD4+ T cell data in untreated HIV-1 patients. The fit to the median data is better than the
fit to individual patients based on the calculated error between modeling prediction and data.
These data fits suggest that pyroptosis induced CD4+ T cell movement during abortive infection
can explain the progressive CD4+ T cell depletion observed in untreated HIV-1 patients.

Parameter estimates and their 95% confidence intervals based on the fits to the one-com-
partment and two-compartment models are listed in Tables 2 and 3, respectively. The estimate
of the viral production rate pv in the one-compartment model is higher than the viral produc-
tion rate pv1 in blood of the two-compartment model (pv2 = 2000 virions per cell per day is
fixed during fitting). This is because in the one-compartment model 95% of infection is
assumed to be abortive and only 5% of infection produces virus. Thus, a higher value of viral
production rate is needed to generate viral load with reasonable magnitude. In the second-
compartment model, although only 5% of infection produces viruses in lymphoid tissues, the
target cell level is much higher in lymphoid tissues than in blood (i.e. λ2 >> λ1). Thus, the viral
production rates in the two compartments are on the same order of magnitude.

The Akaike information criterion (AIC) value is calculated to compare data fitting using the
two models (Tables 2 and 3). We found that for patients 11, 38, 44, and median of patient data,
the AIC value of using the second model is less than that of using the first model. This suggests
that the two-compartment model provides a better fit to the data for these patients from a sta-
tistical viewpoint.

Latent reservoir persistence
IL-7 plays an important role in latently infected CD4+ T cell proliferation [52]. It has been
observed to be over expressed in inflamed tissues [53,54]. Inflammatory cytokines released
during cell death by pyroptosis may promote the establishment and persistence of the latent
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reservoir in HIV patients. Here we included the population of latently infected CD4+ T cell (L)
into the one-compartment model. Latently infected CD4+ cells are produced with a fraction μ
during HIV-1 infection. They can also be maintained by proliferation which is assumed to rely
on the cytokine level (see the term 1+φC in the following equation where φ is fixed to 10−2 ml
molecule-1). We chose the base proliferation rate pL to be 0.001 day

-1 [32], which represents a
limited proliferation capacity in the absence of inflammatory cytokines. The carrying capacity
of latently infected cells (Lmax) is fixed at 100 cells/ml [32]. The other parameter values are
listed in Table 1. The equations of L and T� are given below and the other equations are the
same as those in the one-compartment model.

dL
dt

¼ mð1� f Þk½1þ giC�VT þ pLð1þ φCÞL 1� L
Lmax

� �
� dLL

Fig 9. Fitting of the one-compartment model to patient data. Patient median was derived from two cohorts of studies in ref. [25] and MACSmedian was
derived from the Multicenter AIDS Cohort Study in ref. [29]. Parameters values based on the best fits, 95% confidence intervals, and the AIC values of the
fitting are listed in Table 2.

doi:10.1371/journal.pcbi.1004665.g009
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dT�

dt
¼ ð1� f Þð1� mÞk½1þ giC�VT � d2T

�

If there is no chronic inflammation (i.e. φ = 0 in the L equation), then latently infected cells
undergo a slow decline (Fig 11A). However, if the proliferation is enhanced by cytokines
released during cell death by pyroptosis, then the latent reservoir can be maintained at a higher
level (Fig 11B). This result suggests that inflammatory cytokines generated during abortive
infection might contribute to the establishment of the latent reservoir and the maintenance of
its size. We also performed sensitivity test of latently infected cells on the parameter φ, the
effectiveness of cytokines promoting latently infected cell proliferation. The modeling predic-
tion is robust to this parameter (S6 Fig).

Latently infected cells can be activated by relevant antigens and become productively
infected cells. In S1 Text, we included the activation of latently infected cells in the one-

Fig 10. Fitting of the two-compartment model to the same patient data shown in Fig 9. Parameters values based on the best fits, 95% confidence
intervals, and the AIC values of the fitting are listed in Table 3.

doi:10.1371/journal.pcbi.1004665.g010
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compartment model. Simulation with different values of the activation rate is shown in S8 Fig.
As the activation rate increases, the size of the latent reservoir decreases.

Discussion
The mechanisms underlying the slow time scale of CD4+ T cell decline in untreated HIV-1
patients remain unclear. HIV-mediated cell death can contribute to the loss of CD4+ T cells,
but quantitative image analysis suggested that infection-induced cell death could be compen-
sated by upregulated T cell division [55,56]. Some studies suggested that the destruction of
bystander non-infected cells may account for the CD4+ T cell decline during disease progres-
sion [57–60]. Immune activation might be the reason of bystander cellular demise [60]. It
drives uninfected CD4+ T cells into several rounds of division and cells are susceptible to acti-
vation-induced death [61,62]. However, a mathematical model showed that the decline of CD4
+ T cells would be very rapid if immune activation drives T cell depletion [20]. Another possi-
ble reason of T cell decline might be the regeneration failure of CD4+ T cells during disease
progression [3,11–14]. A recent study found that about 95% of CD4+ T cells within lymph

Table 2. Parameter estimates, 95% confidence intervals, and AIC values when fitting the one-compartment model to patient data.

Patient k (10−8 ml virion-1day-1) γi (10
−4 ml molecule-1) λ (104 cell ml-1day-1) pv (10

4 cell-1 day-1) AIC

11 2.4 1.5 1.0 3.0 132.7

[1.97, 2.58] [0.75, 1.67] [0.81, 1.31] [2.78, 3.12]

38 2.3 0.5 1.5 2.6 229.7

[2.19, 2.74] [0.46, 0.81] [0.55, 1.94] [2.50, 3.20]

44 2.1 1.0 1.0 3.0 222.2

[2.05, 2.27] [0.51, 1.97] [0.81, 1.13] [2.77, 3.09]

3055 2.3 1.5 1.0 2.9 129.7

[1.81, 2.67] [1.33, 1.55] [0.72, 1.26] [2.42, 3.22]

Median of patient data 2.4 1.0 1.3 3.0 47.1

[2.33, 2.51] [0.99, 1.17] [1.10, 1.51] [2.96, 3.63]

Median of MACS data 2.0 0.6 1.3 3.0 44.3

[1.83, 2.35] [0.46, 0.81] [1.11, 1.53] [2.30, 3.10]

doi:10.1371/journal.pcbi.1004665.t002

Table 3. Parameter estimates, 95% confidence intervals, and AIC values when fitting the two-compartment model to patient data.

Patient k (10−8 ml virion-1 day-1) γr (10
−6 ml molecule-1) λ1 (10

4 cell ml-1day-1) pv1 (10
3 cell-1 day-1) AIC

11 2.3 4.0 1.0 2.0 111.1

[1.93, 2.51] [1.16, 4.43] [0.66, 1.09] [0.53, 2.67]

38 2.0 2.0 1.2 1.0 222.4

[1.88, 2.59] [1.57, 8.14] [0.66, 1.47] [0.24, 3.75]

44 2.0 2.0 1.1 1.0 208.9

[1.37, 2.25] [1.07, 4.27] [0.88, 1.24] [0.21, 1.28]

3055 2.4 3.0 1.0 1.0 132.4

[1.18, 2.66] [1.65, 5.94] [0.94, 1.36] [0.42, 1.22]

Median of patient data 2.4 4.0 1.1 2.0 41.3

[2.33, 2.54] [1.05, 5.35] [0.71, 1.13] [0.92, 2.55]

Median of MACS data 2.0 3.0 1.4 1.0 45.3

[1.18, 2.66] [1.52, 3.67] [1.20, 1.59] [0.66, 1.09]

doi:10.1371/journal.pcbi.1004665.t003
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nodes die from pyroptosis and release inflammatory signals that attract more CD4+ T cells
from elsewhere to be infected [23]. HIV-1 may use this vicious infection cycle to promote dis-
ease progression and chronic T cell depletion.

In this paper, we developed mathematical models to explore whether cell death induced by
pyroptosis can explain the slow time scale of CD4+ T cell decline in untreated HIV patients. In
the first model, we assumed that increased availability of target cells due to attraction by
inflammatory cytokines facilitates viral infection, which drains the CD4+ T cell population
slowly during chronic infection. In the second model, we explicitly included the movement of
CD4+ T cells from blood to lymphoid tissues where pyroptosis occurs. Both models generate a
very slow decline of CD4+ T cells in plasma (Figs 3 and 8), and agree with the long-term CD4+
T cell data from untreated HIV patients in several cohorts in Brazil (Figs 9 and 10).

We found that the entire CD4+ T cell decline consists of two major phases (Fig 3). The first-
phase decline is very rapid. This decline is due to the enormous virus infection and virus-
induced cell death during primary infection. Following the first phase, CD4+ T cells partially
recover because of cell regeneration and viral control by immune responses. However, a bal-
ance cannot be established between cell generation and viral infection. Chronic inflammatory
cytokines released during pyroptosis can attract CD4+ T cells from other places to inflamed
lymphoid tissues. These cells are infected and die, resulting in a slow decline of CD4+ T cells
in plasma. These results suggest that HIV-mediated cell death causes the dramatic decline of
CD4+ T cells during primary infection and that persistent chronic inflammation acts like an
erosive force which gradually drains the CD4+ T cell population in plasma during chronic
infection. HAART was shown to have the potential to restore the CD4+ T cell population (Figs
6 and 8), which agrees with the robust and sustained CD4 recovery among patients remaining

Fig 11. Simulation of the one-compartment model with latently infected cells. (A) Population of latently
infected T cells without cytokine enhanced homeostatic proliferation. (B) Population of latently infected T cells
with cytokine enhanced homeostatic proliferation.

doi:10.1371/journal.pcbi.1004665.g011
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on therapy [63] and a normal life expectancy in patients with a good CD4 response and unde-
tectable viral load [50]. However, CD4 response depends on the effectiveness of the therapy,
when the therapy is initiated, and whether there exist drug sanctuary sites (Figs 6 and 8). This
may explain the considerable variability in the increase of life expectancy in patients treated
with combination therapy between 1996 and 2005 [47].

Our model has limitations. First, it does not account for the spatial effect of CD4+ T cells.
Although we used a two-compartment model to describe the transportation of cells and virus
between blood and lymphoid tissues, release of cytokines during cell death by pyroptosis and
attraction of CD4+ T cells are mainly constrained to occur locally. Ordinary differential equa-
tion models could not capture these features. It would be valuable to develop spatial models
that can describe the vicious cycle within lymphoid tissues. Spatial models require precise
description and parameterization of diffusion of cytokines and attraction of CD4+ T cells, and
are also computationally demanding in studying T cell dynamics within blood and different
lymphoid tissues. The second limitation of our model is that we did not consider a detailed
inflammatory signal transduction cascade between T cells and relevant tissues. Recruitment of
T cells to the inflamed tissue goes through several steps of immunological reaction. Upon
secretion of IL-1β, expression of adhesion molecules such as E/P-selectin and ICAM-1 on the
vascular endothelium is upregulated [64]. Binding to these molecules facilitates T cell's attach-
ment to vascular endothelium. After attachment T cells undergo conformational changes and
penetrate into the inflamed tissue [65,66]. In our models, we used a very simple factor multi-
plied by the concentration of cytokines to describe the effect of inflammatory cytokines. A
more comprehensive model requires a detailed description of intracellular processes underly-
ing the inflammatory signal cascade and related data for model verification. The third limita-
tion is that our model cannot generate viral load explosion in the later stages of HIV infection.
Assuming that all parameters are constant and that only one cell population produces virus,
our model cannot describe viral explosion. However, as CD4+ T cells drop to very low levels,
the immune system cannot kill infected cells or neutralize virus effectively. This leads to a
reduction in the death rate of infected cells or viral clearance rate, and may explain the viral
explosion. Infection of other cell populations such as macrophages (as suggested by Hernan-
dez-Vargas and Middleton in ref. [21]) or other viral reservoirs may also explain the dramatic
viral load increase during the AIDS stage.

Our simulation shows that the latent reservoir may be maintained by chronic inflammation.
How inflammation promotes the latent reservoir persistence is not fully understood. Some
results suggested that caspase-1 can promote cellular survival. For example, epithelial cells acti-
vate caspase-1 to enhance membrane repair in response to the pore-forming toxins to prevent
proteolysis [67]. Whether latently infected T cells can use this caspase-1 pathway to promote
their survival remains unknown. Another possibility is through the dysregulated action of IL-7
or IL-15 that can stimulate homeostatic proliferation of latently infected cells. Stromal cells are
located in secondary lymph organs such as lymph node trabeculae, lymph vessels, and conduits
[68]. IL-7 is observed to be significantly expressed by stromal cells within inflamed lymph
nodes [69]. It would be valuable to explore whether HIV-1 can use the caspase-1 pathway to
persist in latent cells and whether IL-7 production can be inhibited in the inflamed
microenvironment.

The results suggest that cell death by pyroptosis plays an important role in driving slow
CD4+ T cell depletion. If pyroptosis can be inhibited, then CD4+ T cells might be maintained.
VX-765 is a caspase-1 inhibitor [70–73] used to treat chronic epilepsy and psoriasis. It was
found to be safe and well tolerated in humans in a phase IIa trial of epilepsy [74]. Doitsh et al.
showed that VX-765 can inhibit secretion of IL-1β and also block cleavage of caspase-1 in
HIV-infected tonsillar and splenic lymphoid tissues [23]. However, the active form of VX-765
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cannot effectively inhibit cell death, which may be due to reduced cellular permeability [70]. It
remains unclear whether the pro-drug VX-765 can efficiently block cell death in vivo. We
showed that if antiretroviral drugs cannot effectively block viral replication in lymphoid tissues,
then HIV-1 can still establish chronic inflammation in these sites. This is consistent with the
observation of persistent inflammation in patients under long-term antiretroviral treatment
[75,76]. When drug sanctuary sites exist, CD4+ T cells undergo a very slow depletion or stabi-
lize at a low level (Fig 8). In this case, the immune system would be vulnerable to various
opportunistic infections and neoplasms. This may explain the shorter extension of life expec-
tancy in treated patients who had a low CD4+ cell nadir [47–49,51]. If antiretroviral drugs and
caspase-1 inhibitors can be effectively delivered to human lymphoid tissues via some transport-
ers [77,78], then CD4+ T cell depletion might be prevented and life expectancy of treated
patients might be further extended.

Supporting Information
S1 Text. Additional models and sensitivity test.
(DOCX)

S1 Fig. CD4+ T cells predicted by the one-compartment model with target cell prolifera-
tion. The proliferation rate p is chosen to be 0.001 day-1 (red), 0.01 day-1 (blue), 0.1 day-1

(black), and 1 day-1 (brown) in the simulation.
(EPS)

S2 Fig. Sensitivity test of CD4+ T cells on the cytokine burst size Nc. The value of Nc

increases from 9 molecules (orange line) to 21 molecules (black line) with four equal incre-
ments.
(EPS)

S3 Fig. Sensitivity test of CD4+ T cells on the death rate (d3) of abortively infected cells.
The value of d3 increases from 0.0006 day-1 (orange line) to 0.0014 day-1 (black line) with four
equal increments.
(EPS)

S4 Fig. Sensitivity test of CD4+ T cells on the cytokine decay rate d5. The value of d5
increases from 3.96 day-1 (orange line) to 9.24 day-1 (black line) with four equal increments.
(EPS)

S5 Fig. Sensitivity test of CD4+ T cells on the fraction (f) of abortive infection. The value of
f increases from 93.1% (orange line) to 96.9% (black line) with four equal increments.
(EPS)

S6 Fig. Sensitivity test of latently infected cells on the effect (φ) of cytokines promoting
latently infected cell proliferation. The value of φ increases from 0.006 ml molecule-1 (orange
line) to 0.014 ml molecule-1 (black line) with four equal increments.
(EPS)

S7 Fig. CD4+ T cells predicted by the two-compartment model with transportation of pro-
ductively infected cells between compartments. In the simulation, the value of D1

� is fixed to
0.2 day-1 and D2

� is fixed to 0.1 day-1.
(EPS)

S8 Fig. Simulation of latently infected cells with different rates of activation aL. The value
of aL increases from 0.01 day-1 (red line) to 0.05 day-1 (orange line) with four equal increments.
(EPS)
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