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7 Department of Internal Medicine, Technical University of Munich, Munich, Germany

Abstract

The early systemic production of interferon (IFN)-ab is an essential component of the antiviral host defense mechanisms,
but is also thought to contribute to the toxic side effects accompanying gene therapy with adenoviral vectors. Here we
investigated the IFN-ab response to human adenoviruses (Ads) in mice. By comparing the responses of normal, myeloid
(m)DC- and plasmacytoid (p)DC-depleted mice and by measuring IFN-ab mRNA expression in different organs and cells
types, we show that in vivo, Ads elicit strong and rapid IFN-ab production, almost exclusively in splenic mDCs. Using
knockout mice, various strains of Ads (wild type, mutant and UV-inactivated) and MAP kinase inhibitors, we demonstrate
that the Ad-induced IFN-ab response does not require Toll-like receptors (TLR), known cytosolic sensors of RNA (RIG-I/MDA-
5) and DNA (DAI) recognition and interferon regulatory factor (IRF)-3, but is dependent on viral endosomal escape, signaling
via the MAP kinase SAPK/JNK and IRF-7. Furthermore, we show that Ads induce IFN-ab and IL-6 in vivo by distinct pathways
and confirm that IFN-ab positively regulates the IL-6 response. Finally, by measuring TNF-a responses to LPS in Ad-infected
wild type and IFN-abR2/2 mice, we show that IFN-ab is the key mediator of Ad-induced hypersensitivity to LPS. These
findings indicate that, like endosomal TLR signaling in pDCs, TLR-independent virus recognition in splenic mDCs can also
produce a robust early IFN-ab response, which is responsible for the bulk of IFN-ab production induced by adenovirus in
vivo. The signaling requirements are different from known TLR-dependent or cytosolic IFN-ab induction mechanisms and
suggest a novel cytosolic viral induction pathway. The hypersensitivity to components of the microbial flora and invading
pathogens may in part explain the toxic side effects of adenoviral gene therapy and contribute to the pathogenesis of
adenoviral disease.
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Introduction

Adenoviruses (Ads) cause mild disease in humans, but are

hazardous pathogens in immuno-compromised individuals [1].

Human Ads are dsDNA viruses grouped into six species. Species

A, C, D, E, and F and species B Ads use different infectious entry

pathways [2]. Human Ads enter mouse cells and express their

early genes; however, the virus genome is not replicated and no

viral progeny is made during the infection of mouse cells in vitro or

in vivo [3,4]. Furthermore, early viral gene expression can be

abolished by UV-inactivation and well-defined mutants with

defects of viral early genes or viral entry are available [3,5]. Thus,

the effects elicited by different components of the virus-host

interaction preceding viral replication can be accurately evaluated.

Ads transduce many different cell types and can be produced in

vitro in sufficiently high amounts for in vivo administration. While

these properties make them attractive for gene therapy applica-

tions, they can also trigger a severe systemic toxic reaction [6,7].

Upregulation of inflammatory mediators, including cytokines and

chemokines such as IL-1, IL-6, IL-8, IL-12, macrophage

inhibitory protein-1/2, tumor necrosis factor-a (TNF) and recently

also type I IFN has been observed in experimental and clinical

infections with wt as well as with recombinant Ads [6,7,8,9,10].

Type I IFNs represent one of the host’s most important antiviral

defense mechanisms. The type I IFN family comprises different

IFN-a subtypes, a single IFN-b and other less well characterized

proteins [11]. All IFN-a species and IFN-b interact with the same

IFN-ab cellular receptor, the activation of which mediates a wide

range of direct and indirect innate antiviral or antimicrobial effects

and modulates the antiviral adaptive immune response [12,13,14].

At present, two main mechanisms of type I IFN induction by

viruses resulting from the extracytoplasmic or cytoplasmic virus

recognition, respectively, are known [12,13,14,15]. The extra-

cytoplasmic induction is initiated by triggering the surface-

expressed transmembrane protein toll-like receptor (TLR) 4 with

certain non-nucleic viral constituents [16,17,18] or upon recogni-

tion of viral nucleic acids in the endosomes of specialized cells

(dendritic cells and macrophages) via different members of the

TLR family. These include TLR3, TLR7/TLR8 and TLR9,

sensing dsRNA, ssRNA and CpG DNA, respectively. For IFN-ab
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induction TLR3 and TLR4 signal through the adaptor molecule

TIR domain-containing adaptor protein inducing interferon b
(TRIF). This results in the activation of interferon regulatory factor

(IRF)-3. TLR7, 8 and 9 signal through the adaptor molecule

Myeloid differentiation factor 88 (MyD88). An important result of

the MyD88-mediated pathway is the activation of IRF-7 (but not

of IRF-3), which together with the transcription factors NF-kB and

AP-1 initiates the induction of both the IFN-a and IFN-b genes

[13,15]. This induction pathway is responsible for the strong, early

IFN-ab response to several replicating and inactivated viruses in

pDCs, which express preferentially TLR7 and TLR9 [19,20,21].

The ‘‘classical’’ cytosolic pathway is the major IFN-ab
producing mechanism in cells other than pDCs [22,23]. Signal

transduction leading to type I IFN gene induction is initiated by

the recognition of intracellular virus-associated molecular patterns.

dsRNA and 59-triphosphate RNA produced during viral replica-

tion are sensed by the RNA helicases RIG-I and MDA-5

[23,24,25,26,27,28]. This pathway has been extensively studied,

mainly in virus-infected fibroblasts. Triggering of the aforemen-

tioned RNA helicases leads to the activation of the transcription

factors NF-kB, IRF-3 and IRF-7 that are important for the

induction of IFN-ab and proinflammatory cytokines, including IL-

6. In the cytosolic pathway, type I IFN gene induction is a

sequential event and both IRF-3 and IRF-7 were shown to be

important in the early phase when mostly IFN-b is produced. The

late phase of the IFN-ab response is regulated by positive feedback

via the increased levels of IRF-7 elicited by IFN-b production

during the early phase [29,30,31]. In addition to fibroblasts, the

potential of mDCs and macrophages to produce significant

amounts of type I IFNs in response to viral replication has been

demonstrated in vitro [32,33]; however, in vivo the specific

contribution of these cells to systemic levels of IFN-ab is not well

documented.

Recently, detection of bacterial DNA in cells infected with L.

monocytogenes and recognition of transfected B-DNA has been

shown to trigger IFN-b production. This type of response strictly

requires IRF-3 [15,34,35,36,37,38]. Such a sensing system has

been suggested to represent a further mechanism of cytosolic DNA

virus recognition [14,15] and the Z-DNA binding protein 1 (Zbp1,

also referred as DNA-dependent activator of IFN regulatory

factors, DAI) was shown to be a candidate DNA sensor in this

pathway [39]. Notably however, in a follow-up study the same

group found a critical role for DAI in L-929 cells but not in mouse

embryonic fibroblasts (MEFs) [40]. Furthermore, recent experi-

ments with Zbp1/DAI knockout mice did not show the essential

role of Zbp1/DAI in the induction of innate and adaptive

responses to B-DNA in vivo and in macrophages, dendritic cells

and MEFs in vitro [41].

The induction of type I IFN in Ad-infected mice has been

recently studied [10,42] and associated with both the extracyto-

plasmic and intracytoplasmic pathways. It was claimed that a part

of the IFN-ab response is initiated by TLR9 and MyD88 signaling

in pDCs and another part by cytosolic DNA recognition in non-

pDCs. However, the identification of IFN-ab producing cell types

directly in infected mice was not carried out. In the present study

we investigated the IFN-ab responses of Ad-infected mice and

showed that the bulk of the in vivo induced IFN-ab is produced by

splenic mDCs. Furthermore, we found that TLRs, including

TLR9 play no major role. The Ad-elicited IFN-ab response

required viral endosomal escape, suggesting a cytosolic induction

pathway. Surprisingly however, the induction was independent of

IRF-3 and dependent on stress-activated protein kinase/c-Jun

NH2-terminal kinase (SAPK/JNK) activity, which is in contrast to

the known induction mechanism initiated through cytosolic DNA

recognition. Instead, the induction required IRF-7, and a positive

feedback regulation via the type I IFN receptor. Although this does

not exclude a role for cytosolic nucleic acid sensors, our data do

not support the involvement of MDA-5, RIG-I and Zbp1/DAI in

the induction of the IFN-ab response to Ad. Furthermore, our

results reveal distinct mechanisms in the induction of IFN-ab and

IL-6 by Ad. Finally, we show that Ad-induced IFN-ab is a key

mediator of hypersensitivity to bacterial lipopolysaccharides in

infected mice. Enhanced susceptibility to LPS and to other

microbial inducers of inflammation may contribute to toxic

reactions observed during adenoviral gene therapy and to the

clinical symptoms of adenoviral diseases.

Results

Induction of IFN-ab by adenovirus in mice is elicited by
viral entry and is inhibited by viral early gene expression

In order to characterize the induction of type I IFNs by Ad in

vivo, we first examined how two types of human Ad, Ad3 (species

B) and Ad R700 (species C) [2] known to use distinct infectious

entry routes, elicit an IFN-ab response in vivo. The results

summarized in Fig. 1A and supplementary Fig. S1A show that

all mice infected with either of the two viruses exhibited similar

IFN-ab responses. IFN-ab was first detectable in plasma at 4 h,

peaking at 8 h and declining to low levels 18 h after infection. We

then investigated, whether the expression of viral genes is required

and/or regulate the induction of IFN-ab by Ads. To this end, we

injected mice with an UV-inactivated Ad3 (Fig. S1B) or Ad R700,

incapable of viral gene expression, or with a recombinant Ad5

(species C) that contains a deletion of the E1 and E3 Ad early

regions and expresses GFP (Ad5-GFP) (Fig. S1C). As shown in

Fig. 1A, UV-inactivated Ads also induced a strong IFN-ab
response which, however, peaked at 6 h after injection, i.e. 2 h

earlier than the response to intact Ads. A similar early-peaking

IFN-ab response was obtained in mice injected with UV

inactivated Ad R700 (Fig. S2A) and with the recombinant Ad5-

GFP (Fig. S2B).

Author Summary

Adenoviruses (Ads) are important pathogens and promis-
ing vectors for gene therapy applications. In the course of
adenoviral infections innate immune responses are acti-
vated, which can be beneficial for the antiviral host
defense but also detrimental if activated in a deregulated
manner. Type I IFNs are crucial for the innate immune
control of various viral infections in the mammalian host.
So far, the early, systemic release of IFN-ab during viral
infections has been attributed to specialized immune cells,
the plasmacytoid dendritic cells. Here, in a mouse infection
model, we show that wild type Ads, as well as adenoviral
vectors, elicit rapid IFN-ab production almost exclusively in
another cell population, the splenic myeloid dendritic cells.
This IFN-ab storm depends on viral escape from endo-
somes to the cytosol and the requirements of the response
are suggestive of a novel viral induction pathway.
Furthermore, we show that virus induced IFN-ab is the
key mediator of Ad-induced hypersensitivity to the
cytokine-inducing and toxic activity of lipopolysaccharide,
a common constituent of Gram-negative bacteria. Since
these bacteria comprise several commensals and patho-
gens, enhanced susceptibility to lipopolysaccharide may
contribute to toxic reactions observed during adenoviral
gene therapy and to the clinical symptoms of adenoviral
diseases.

Innate Immune Response to Adenovirus
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Figure 1. IFN-ab and IL-6 responses to Ad infection in vivo and in vitro. (A) Kinetics of the IFN-ab response. Mice (4–5/group) were infected
intraperitoneally (i. p.) with 1.261010 intact Ad3 or 3.661010 of UV-inactivated Ad3 and IFN-ab in plasma collected at the indicated time points was
determined. 6 h and 8 h values were analyzed for statistical significance. One representative experiment of three is shown. (B, C) IFN-ab and IL-6
responses to graded doses of Ad3. Mice (4–6/group) were infected with 46109 (1), 1.261010 (2), 3.661010 (3) or 7.261010 (4) of intact or UV-
inactivated Ad3. Plasma for the determination of IFN-ab and IL-6 was collected 6 h after infection. One representative experiment of two is shown. (D)
Induction of IFN-ab in different cell types by Ad in vitro. BMMs, BMDCs and MEFs were infected with 600, 1800 and 5400 Ad2 particles/cell or left
uninfected. MEFs were also transfectected with Lipofectamine 2000-DNA complexes (DNA/Lp). IFN-ab was measured in cell-free supernatants 6 h
after infection. (E) Expression of viral E1A mRNA in infected cells. E1A and b-actin mRNAs were determined in cells 6 h after Ad2 infection by RT-PCR.

Innate Immune Response to Adenovirus
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Titration of the viral preparations in mice revealed that a positive

correlation between the viral dose and the height of the IFN-ab
response existed only when relatively small doses of intact Ads were

used. Higher doses of the Ads either did not elicit a further increase

of the IFN-ab response (Ad3, Fig. 1B) or led to a decrease of the

response (Ad R700, Fig. S2C). In contrast, injection of the

corresponding UV-inactivated Ads always led to a gradual increase

of the IFN-ab response and, at higher viral concentrations, even

exceeded the response obtained with intact viruses. Thus, the

expression of Ad genes is not required for the induction of IFN-ab in

mice. The data also indicate that the expression of early adenoviral

genes negatively regulates type I IFN production. Notably, the Ad

E1A gene has been shown previously to suppress Newcastle Disease

Virus and IRF-3 induced IFN-a4 promoter induction in transient

expression assays in fibroblasts [43].

Interestingly, however, viral gene expression did not inhibit the

production of IL-6 in either Ad3- or Ad R700-infected mice

(Fig. 1C and Fig. S2D). Further experiments revealed that, in

contrast to the UV-inactivated Ad, heat-inactivated Ad did not

elicit IFN-ab in mice (data not shown). Since heat inactivation

prevents the entry of Ad into cells ([44] and Fig. S2E), we conclude

that signal transduction leading to IFN-ab production is activated

during Ad entry.

Dendritic cells and macrophages, but not embryonic
fibroblasts or L-929 cells, produce type I IFNs after Ad
infection in vitro

Previous studies have shown that, depending on the inducing

virus, IFN-ab is produced ubiquitously or in a cell type specific

manner [13,14]. Here we stimulated different primary mouse cells,

including bone marrow derived mDCs (BMDC), bone marrow

derived macrophages (BMM), bone marrow derived pDCs and

mouse embryonic fibroblasts (MEFs), with Ad2 (species C) or Ad3

(species B). Six hours later, the IFN-ab content of culture

supernatants and the expression of the viral E1A gene in the cells

were determined. BMDC and BMM, but not MEFs, produced

IFN-ab (Fig. 1D), although all cell types were successfully infected as

shown by RT-PCR (Fig. 1E and not shown). Very similar results

were obtained when, instead of Ad2, Ad3 or the recombinant Ad5-

GFP were used for infection of the three cell types (not shown). In

addition, pDCs also produced IFN-ab in response to Ad infection in

vitro (Fig. S3A); however, only at high multiplicities of infection.

Finally, like MEFs, L-929 cells infected with Ad2 produced no IFN-

ab either (Fig. S3B). In agreement with previous studies [36,37],

MEFs and L-929 cells produced IFN-ab following transfection with

purified DNA (Fig. 1D and Fig. S10C). In addition to mouse DCs

and macrophages we also found that human monocyte-derived

DCs produced IFN-ab upon infection with the adenoviral vector

Ad5-GFP (Fig. S3C). The present data confirm that Ads can trigger

IFN-ab production in various immune cells in vitro [10,45,46].

However, it furthermore indicates that production does not proceed

ubiquitously in all types of infected cells.

Splenic myeloid dendritic cells are the major producers
of IFN-ab in Ad-infected mice

In order to identify the organ site of viral uptake and IFN-ab
production in vivo, we analyzed the expression of the early viral

gene E1A and of type I IFN mRNAs, respectively, in the spleen,

liver, lung and kidney of Ad3-infected mice. We found expression

of the early viral E1A gene in spleen and liver (Fig. S1B), but not in

lung and kidney (not shown), which agrees with earlier findings on

in vivo Ad tropism [47,48]. Expression of IFN-a and IFN-b mRNA

was below the level of detection in the organs of non-infected

controls. We also found that between 4 and 18 h after infection

IFN-a and IFN-b mRNAs were expressed at high levels in the

spleen (Fig. 1F), but surprisingly not in the liver, despite the

presence of Ad in both organs. As expected, IFN-ab was not

expressed in the virus-free lung or kidney of infected mice (Fig. 1F).

In order to identify the cell type(s) producing IFN-ab in vivo, we

isolated splenocytes from Ad infected animals 8 h after virus

treatment and separated them into CD11c+ (DC-containing) and

CD11c2 (non-DC) populations. Both CD11c+ and CD11c2

populations contained viral DNA (not shown). This finding is in

accordance with the report of Morelli et al describing that both

splenic DC and non-DC contain the virus in Ad-infected mice

[49]. However, quantitative RT-PCR determination of IFN-a and

IFN-b mRNA in both populations revealed the presence of IFN-

ab mRNAs predominantly in the DC-containing CD11c+ fraction

(Fig. 2A, B), but not in the macrophage containing CD11c2

fraction. In contrast to IFN-a and IFN-b, the mRNA levels of IL-

6, another cytokine known to be induced by Ad, were comparably

upregulated in both the CD11c+ and CD11c2 population

(Fig. 2C). Since the latter non-DC population comprises more

than 95% of all mouse splenocytes [50], we conclude that most of

the IL-6 made in the Ad-infected spleen is of non-DC origin.

According to published data, the CD11c+ cell population contains

different types of DCs, as well as other cells such as lymphocytes,

macrophages, granulocytes and NK cells [51,52,53]. We therefore

further separated the purified CD11c+ cells into mDCs

(CD11c+CD11b+Gr12), pDCs (CD11c+CD11b2GR1+B220+) and

a CD11c+CD11b-F4/80+ subpopulation (Fig. S4A–D) and measured

the expression of IFN-a, IFN-b and b-actin with real-time RT-PCR.

After normalization to b-actin expression, we found that on a per cell

basis mDCs expressed significantly more IFN-b than pDCs (Fig. 2D),

but both mDCs and pDCs expressed similar amounts of IFN-a
(Fig. 2E). In contrast, CD11c+, CD11b2 cells carrying the

macrophage marker F4/80+ did not express detectable amounts of

IFN-a or IFN-b. Since mDCs comprise approximately 60% of all

analyzed CD11c+ splenocytes and their numbers are approximately

10-times higher than those of pDCs (Fig. S5A, B and [50]), these

results suggested that the vast majority of IFN-ab in Ad-infected mice

was produced by splenic mDCs. To verify this assumption, we

analyzed the Ad-elicited cytokine responses in mice depleted of

CD11chigh MHC II+ myeloid DCs. To ablate these cells, we injected

diphtheria toxin into the CD11c-diphtheria toxin receptor

CD11cDTR/GFP transgenic mice [54] 24 h prior to infection with

Ad. In agreement with previous reports [55,56], DT pre-treatment of

DTR/GFP transgenic mice resulted in the ablation of CD11chigh

MHC II+ CD11b+ splenic mDCs, whereas the CD11cint Siglec H+

CD11b2 plasmacytoid DCs remained unaffected (Fig. S5A, B).

When DT pre-treated CD11cDTR/GFP transgenic mice were

challenged with Ad3 and examined for IFN-ab in plasma 4 and 8 h

after infection, only marginal IFN responses were found at both time-

points, in contrast to the strong responses of similarly infected

transgenic control mice that had not received DT (Fig. 3A). The same

Data in MEFs (lane 1, 2, 3) and BMDCs (lane 4, 5, 6) infected with 5400 (lane 1, 4) and 1800 (lane 2, 5) viral particles/cell and in mock infected cells (lane
3, 6) are shown. (F) Expression of IFN-b and IFN-a mRNA in organs of Ad-infected mice. (3 mice/group) were infected i.p. with 1.261010 Ad3 particles
and the relative levels of IFN-b and IFN-a mRNA in organs were analyzed at the indicated time points by RT-PCR. A representative organ sample per
each time point is shown. c+ indicates a spleen sample from a Ad3-infected mice used as a positive control. n.d.: not detectable.
doi:10.1371/journal.ppat.1000208.g001

Innate Immune Response to Adenovirus
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pretreatment with DT had no effect on the Ad elicited IFN-ab
response of wild-type mice (Fig. 3A).

Interestingly, the determination of IL-6 levels in plasma 8 h

after infection revealed that the ablation of mDCs in

CD11cDTR/GFP transgenic mice affected only moderately the

induction of IL-6 (Fig. 3B), confirming that non-DCs contribute

significantly to the Ad-elicited IL-6 response in vivo. The fact that

different cell types are responsible for IFN-ab and IL-6 response to

Ad may explain at least in part why viral gene expression did not

inhibit the production of IL-6 in Ad3- or Ad R700-infected mice

(see Fig. 1C and Fig. S2D). In order to functionally evaluate the

possible participation of pDCs to the systemic production of IFN-

ab to Ad we also checked this response in mice depleted of pDCs.

As shown in Fig. S6A and B, the injection of anti PDCA-1

antibody led to the substantial decrease of the number of splenic

pDCs. Nevertheless, the production of IFN-ab was not changed in

response to Ad infection (Fig. 3C). The data collectively show that

the vast majority of IFN-ab but not of IL-6 in Ad infected-mice is

produced by splenic mDCs.

Ad induction of type I IFNs is TLR independent
Recent studies have shown the involvement of different TLRs

including TLR 2, 3, 4, 7 and 9 in the innate recognition of

different viruses [16,17,18,57,58,59,60,61]. Signaling via TLR9

was shown to be responsible for the strong type I IFN response of

pDCs to Ad in vitro [10,45,46]. Here we investigated the possible

involvement of TLR9 in the induction of type I IFNs by measuring

IFN-ab in Ad infected wt and TLR92/2 mice. Fig. 4A shows that

TLR92/2 mice produced normal levels of IFN-ab. upon infection

with Ad3. Comparable results were obtained with the recombi-

nant Ad5-GFP (Fig. S7A). Moreover, Unc93B mice, deficient in

signalling by intracellular TLRs showed normal IFN-ab responses

to Ad5-GFP (Fig. S7A). We further checked the possible

involvement of the TLR system using mice deficient for TLR2,

TLR4 or for the TLR adaptor proteins TRIF and MyD88. Fig. 4A

shows that the Ad3 induced IFN-ab levels in all strains of mice

were as high as in the respective wt controls. Similarly, comparable

IFN-ab responses were also found in TLR-, MyD88- or TRIF-

deficient mice and in the corresponding wt animals after infection

Figure 2. IFN-ab and IL-6 mRNA levels in ex vivo purified splenocyte subsets from Ad infected mice. Spleens were removed from mice
8 hours after infection with 1.261010 Ad3 particles and from uninfected mice. Pooled splenocytes (3–5 mice/group) were MACS enriched for CD11c+

and CD11c2 cells and further purified with FACS-sorting after staining with antibodies to CD11c, Cd11b, Gr-1, B220 and F4/80. Gates used for the
purification of DC subsets are shown on Figure S4. The relative expression of IFN-b (A, D), IFN-a (B, E) and IL-6 (C) was measured in CD11c+ versus
CD11c2 cells (A,B,C) and in the mDC, pDC and F4/80+CD11b2 subsets of CD11c+ cells (D, E) using real-time RT-PCR. Triplicate measurements of a
representative experiment of three are shown. n.d.: not detectable.
doi:10.1371/journal.ppat.1000208.g002

Innate Immune Response to Adenovirus
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with UV-inactivated Ad3, AdR700 and Ad5-GFP (not shown).

Furthermore, comparable IFN-ab responses were found in

cultures of Ad-infected BMDCs from wt, MyD88- and TRIF-

deficient mice (Fig. 4B). The various TLR deficient mice showed

impaired responses to the corresponding ligands in control

experiments (Fig. S7B). Collectively, our data show that the

TLR system plays no major role in the systemic IFN-ab responses

to Ads in mice.

The induction of IFN-ab and IL-6 in response to Ad
infection is dependent on IFN-ab feedback signaling

The type of virus, the IFN-ab-producing target cell, and the

activation mechanism determines whether positive feedback

signaling is involved in the induction of the IFN-ab response or

not [13,20]. Here, we studied the possible involvement of IFN

feedback signaling in the IFN-ab and IL-6 response to Ad3 by

using wt and IFN-abR-deficient mice. The absence of the IFN-ab
receptor resulted in dramatically decreased levels of IFN-a and

IFN-b protein in the plasma as well as of IFN-a and IFN-b
mRNAs in the spleen (Fig. 5A, B) 4 and 8 h after Ad infection.

The difference between the protein or mRNA levels of IFN-a and

IFN-b in wt versus mutant animals was approximately 100 and 20-

fold, respectively. Furthermore, in contrast to wt mice, the

characteristic rise in IFN-ab levels between 4 and 8 h after

infection was absent in IFN-abR2/2 mice. Thus, in Ad-infected

mice, production of both IFN-a and IFN-b is strictly dependent on

positive IFN-ab feedback. The determination of IL-6 protein and

mRNA levels in the same plasma and splenic tissue samples

revealed that the induction of IL-6 is also positively regulated by

IFN-ab signaling (Fig. 5C), which is in agreement with a previous

study [10].

We also tested whether IFN-abR-dependent signaling is

involved in the IFN-ab response of Ad-infected BMDCs in vitro.

As with the in vivo results, we found that cells from IFN-abR2/2

mice infected with Ad3 produced significantly less type I IFN than

similarly infected cells from wt mice (Fig. S8). The loss of IFN-ab
signaling also resulted in a strong inhibition of the Ad induced IL-6

production in BMDCs (Fig. 5D) and BMMs (Fig. 5E). Further-

more, as shown using Ad-infected BMMs, it resulted also in a

strong reduction of inducibility of IL-6 mRNA expression (Fig. 5F).

Because transcriptional changes are often determined by epige-

netic factors [62] we checked the levels of hyperacetylated histone

H4 (acH4), a permissive factor for transcription at the IL-6

promoter in control and Ad-infected BMMs from wt and

IFNabR2/2 mice. Chromatin immunoprecipitation (ChIP) assays

showed a significant enrichment of acH4 at the IL-6 promoter in

infected wt, but not IFNabR2/2 BMMs (Fig. 5G). In a control

experiment, as expected, an enrichment of acH4 was observed at

the promoter of the constitutively active Topoisomerase 3b but not

of the l5 (not expressing, active only in early B-cells) gene in both

cells types. From these results we conclude that IFN-ab exerts a

positive regulatory effect on the Ad-induced IL-6 transcription and

that its loss is at least partly responsible for the strong reduction of

the IL-6 response in Ad-infected IFN-abR knockout mice.

Using real-time RT-PCR we then analyzed the spectrum of

IFN-ab genes in wt mice as well as the impact of IFNabR

deficiency on their induction. Included were IFN-a2, 4, 5, 6, 9, 11,

12, 13, 14 and IFN-b. All of them were induced in the spleen by

Figure 3. Splenic mDCs are the major IFN-ab-, but not the predominant IL-6-producing cells in adenovirus infected mice. Ad-induced
IFN-ab and IL-6 responses in mice depleted for mDCs and pDCs. Groups of wt and CD11c-DTR mice (4/group) were injected with DT i. p. or left
untreated. 24 h later the animals were injected with 1.261010 Ad3 particles and the plasma levels of IFN-ab (A) and IL-6 (B) were measured 4 and 8 h
after infection. Mice (4/group) were untreated or injected with 500 mg of anti-mPDCA-1 antibody i. p. and challenged with 1.261010 Ad3 particles.
Plasma IFN-ab levels were determined 8 h after Ad infection (C). The efficacy of splenic DC depletions is shown in Fig. S5 and S6.
doi:10.1371/journal.ppat.1000208.g003
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Ad3 in vivo and in BMDC in vitro. IFN-ab subtypes were not

detectable in the spleen of unstimulated mice or BMDCs (not

shown). Fig. 6 shows the patterns of IFN-ab genes induced in vivo

and in vitro in the presence or in the absence of IFN-ab feedback

signaling. In wt mice and cells IFN-a5 and IFN-b were the most

strongly expressed genes and IFN-a13 was the least activated IFN-

a subtype. IFN-a11 was not induced at all. IFNabR deficiency

resulted in an inhibition of IFN-ab gene expression, the strength of

which was subtype dependent. In some cases the inhibition was

weak (IFN-a2, 4, 5 and IFN-b), in others strong or complete (IFN-

a12, 13, and 14), showing that the expression of different subtypes

of IFN-ab are differentially affected by IFN-ab feedback signaling.

Collectively, these data show that the adenovirus triggered

production of IFN-ab and IL-6 in BMDCs in vitro and in mice

in vivo is strongly dependent on intact IFN-ab signaling.

The critical role of IRF-7 but not IRF-3 in Ad-induced type
I IFN production

The transcription factors IRF-3 and IRF-7 have distinct and

important roles in IFN-ab production induced by viruses or other

pathogens and their involvement can be characteristic for the

induction mechanisms involved [13]. Specifically, IRF-3 has been

shown to be critically involved in cytoplasmic DNA sensing and in

the Ad-induced IFN-ab production in BMMs in vitro [63]. We

show here that IRF-3 is critical for the induction of IFN-ab by

isolated adenoviral DNA, but not by infection with whole virions

in BMDCs (Fig. 7A). In order to analyze the individual

contribution of IRF-3 and IRF-7 to the Ad-induced IFN-ab
response in vivo, we infected mice deficient for these transcription

factors with Ad3. We also compared these responses to those

triggered by poly I:C, a known activator of the cytosolic IFN-ab
producing pathway in vivo. As shown in Fig. 7B, the lack of IRF-3

did not significantly influence the plasma levels of IFNab 4 or 8 h

after infection in response to Ad. In contrast, Ad-infected IRF-7-

deficient mice did not exhibit detectable amounts of IFN-ab in the

plasma. Very similar data were obtained with Ad5GFP (Fig. S9).

Thus, IRF-7, but not IRF-3, is essential for the induction of the

IFN-ab response during Ad infection. Compared to wt mice, poly

I:C injected IRF-7 deficient mice produced significantly less, but

still well detectable amounts of IFN-ab.

The nucleic acid sensors MDA-5, RIG-I and DAI/Zbp1 are
not critical for Ad-induced type I IFN production

Next, we investigated whether the cytoplasmic RNA sensors

MDA-5 or RIG-I, or the putative DNA sensor DAI/Zbp1 may

play a major role in the induction of the IFN-ab response to Ad.

The possible involvement of MDA-5 was tested using BMDCs and

BMMs from MDA-5 deficient mice. Normal IFN-ab responses to

Ad were obtained in MDA-5-deficient BMDCs cells (Fig. 8A) and

also in BMMs (not shown), whereas the responses to the known

MDA-5 ligand Poly I:C were abrogated (Fig. 8A). The possible

involvement of RIG-I was checked using a dominant negative

form of RIG-I (RIG-IC) [64]. BMDCs from IRF-32/2 mice were

transfected with a GFP-expressing plasmid (transfection control)

with or without RIG-IC and subsequently stimulated with Ad or

control leader RNA. We used IRF-32/2 cells to avoid any

induction of IFN-ab by the plasmid itself, which is, contrary to

that by Ad, strictly IRF-3 dependent. The induction of IFN-b
mRNA was analyzed in sorted GFP-positive cells. As shown in

Fig. 8B, left, the transfection of RIG-IC prevented induction of

IFN-b mRNA by the leader RNA, but not by Ad. The role of

Zbp1/DAI was analyzed using siRNA-mediated knockdown of

DAI/Zbp1 in BMDCs. For this purpose, cells from IRF-32/2

mice were co-transfected with DAI/Zbp1 targeting siRNAs and a

GFP expressing plasmid and subsequently stimulated with Ad. As

shown in Fig. 8B, right, the transfection of BMDCs resulted in

strongly reduced DAI/Zbp1 expression but not in a reduced IFN-

b mRNA induction by Ad in GFP-positive cells. Control

experiments with L-929 cells showed that transfection of the

gene-specific siRNA downregulated the expression of DAI/Zbp1

on both the mRNA and protein levels and efficiently inhibited the

IFN-b response to B-DNA (Fig. S10A–C). Collectively, our results

indicate that known nucleic acid sensors such as MDA-5, RIG-I

and Zbp1/DAI are not involved in the Ad-induced type I IFN

production.

SAPK/JNK signaling is activated upon Ad infection and is
necessary for virus elicited IFN-ab and IL-6 production

MAPKs have been previously shown to be activated by Ad in

vitro, in different non-immune cell types and to be important for

the induction of chemokines in response to Ad [65,66,67,68]. Here

we investigated whether members of the MAPK family play a role

in the Ad-induced IFN-ab and IL-6 response. We infected

BMDCs with Ad3 in the presence or absence of MAPK inhibitors

Figure 4. Adenovirus induction of IFN-ab is TLR independent.
(A) IFN-ab responses to Ad in mice with impaired TLR signaling. IFN-ab
was measured in plasma of mice (4–6/group) of the indicated
genotypes 8 h after i. p. infection with 1.261010 Ad3 particles. One
representative experiment of three is shown. (B) IFN-ab response to Ad
in BMDC with impaired TLR signaling. BMDC generated from wt,
Myd882/2 and TRIF2/2 mice were infected in vitro with 600, 1800 and
5400 Ad3 particles/cell or were mock-infected. IFN-ab was measured in
cell-free supernatants 16 h after infection. One representative experi-
ment of three is shown. n.d.: not detectable.
doi:10.1371/journal.ppat.1000208.g004
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Figure 5. Role of IFN-ab feedback in Ad-induced IFN-ab and IL-6 responses. (A–C) Role of IFN-ab feedback signaling in vivo. Wt (empty bars)
and IFN-abR2/2 (black bars) mice (4–6/group) were infected with 6.261010 Ad3 particles. Four and 8 h after infection, the protein and mRNA levels of
IFN-b (A) IFN-a (B) and IL-6 (C) were determined in plasma and spleen with bioassay and real-time RT-PCR, respectively. (D-G) Role of IFN-ab feedback
signaling in Ad induced IL-6 production. BMDCs (D) from wt and IFNabR2/2 mice were mock-infected or infected with 600, 1800 and 5400 Ad3
particles/cell. Wt and IFNabR2/2 BMMs were mock-infected or infected with 5400 Ad5 GFP particles/cell (E–G). IL6 was measured in cell-free
supernatants 16 h (D) or 8 h (E) after infection. IL-6 mRNA was quantified 8 h after infection (F). Acetylation of histone H4 was measured at the IL-6,
topoisomerase 3b and l5 promoters 8 h after infection. Mock immunoprecipitated samples showed no significant values (less than 0.1%) for all
samples, not shown. (G). One representative experiment of three (D) or two (E) is shown.
doi:10.1371/journal.ppat.1000208.g005
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Figure 6. Ad-induced pattern of IFN-ab subtypes in vivo and in vitro in the presence and absence of IFN-ab feedback. The expression of
different IFN-ab subtypes was analyzed by real-time RT PCR in total RNA prepared from the spleen or from in vitro generated BMDCs of wt or IFN-
abR2/2 mice 8 h after infection with 6.261010 Ad3 particles/mouse (in vivo) or with 900 particles/cell (in vitro). One representative experiment of two
is shown. (1) IFN-a2, (2) IFN-a4, (3) IFN-a5, (4) IFN-a6, (5) IFN-a9, (6) IFN-a11, (7) IFN-a12, (8) IFN-a13, (9) IFN-a14, (10) IFN-b. n.d.: not detectable.
doi:10.1371/journal.ppat.1000208.g006

Figure 7. Adenovirus induction of IFN-ab requires IRF-7 but is independent on IRF-3. Wt and IRF-32/2 BMDCs were infected with 0, 600,
1800 and 5400 Ad5GFP particles/cell or were transfected with Ad5GFP DNA (2 mg/ml), Ad2Ts1 (26109 whole virus particles/ml) and empty Ad5 GFP
(26109 whole virus particles/ml) with Lipofectamine 2000. IFN-ab was measured in cell-free supernatants 16 h after infection (A). One representative
experiments of three is shown. Wt, IRF-32/2 and IRF-72/2 mice (4–6/group) were infected with 6.261010 Ad3 particles, i.p. (B) or injected with 5 mg of
poly I:C i. p. (C) Plasma IFN-ab was measured 4 and 8 h (B) or 3 h (C) after stimulation. One representative experiment of two is shown. n.d.: not
detectable.
doi:10.1371/journal.ppat.1000208.g007
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and determined the levels of IFN-ab and IL-6 produced. Fig. 9A

and Fig. S11 show that the pharmacological blockade of the

SAPK/JNK MAPK almost completely inhibited the Ad3-induced

production of both IFN-ab and IL-6. In contrast, the inhibition of

the p38 MAPK pathway partially inhibited the production of IL-6,

but had no effect on the production of IFN-ab. Finally, the

blockade of ERK1/2 had no effect on the production of either IL-

6 or IFN-ab. Very similar data on the effects of MAPK inhibitors

were obtained using Ad2 and mutant Ad5-GFP to stimulate

BMDC (data not shown).

Next, we analyzed the levels of activated SAPK/JNK MAPK

proteins in BMDCs and found their robust phosphorylation 2 h

after either Ad3 or Ad5-GFP infection (Fig. 9B). We also tested the

importance of SAPK/JNK signaling on Ad-induced IFN-ab
production in vivo. Fig. 9C shows that the blockade of the SAPK/

JNK signaling pathway in mice completely inhibited the

production of IFN-ab at 4 and partially at 8 h after Ad infection.

Taken together, these data strongly indicate that the Ad-activated

SAPK/JNK MAPK pathway plays an important role in the virus-

induced production of type I IFNs and IL-6.

Endosomal escape triggers the Ad-induced production
of IFN-ab and IL-6, but prevents TLR9-dependent innate
recognition

During the course of our adenovirus preparations, we regularly

found ‘‘empty capsids’’ which we separated and purified in

addition to the mature virions. We tested the IFN-ab stimulating

activity of these preparations in vivo and observed that they were

not active (Fig. S12A). Since empty capsids lack viral DNA and

exhibit an altered protein composition [69], the absence of an

inducing viral constituent(s) from these capsids could explain their

inability to provoke an IFN-ab response. Another possible

explanation could be that endosomal escape is required for IFN-

ab induction, since empty capsids cannot escape from the

endosome [69]. To test the latter possibility, we infected mice

with 3.661010 viral particles of wt Ad2 and Ad2Ts1, a viral

mutant deficient in endosomal escape [5]. As shown in Fig. 10A, in

contrast to the wt virus, Ad2Ts1 did not induce detectable levels of

type I IFN at 4 and 8 h after infection. Furthermore, the IL-6

response was also severely reduced in these animals (Fig. S12B). In

a control experiment, mice infected with Ad2Ts1 grown at

permissive temperature (32uC) and thus capable of endosomal

escape, exhibited normal IFN-ab responses (Fig. 10B). The

inability of Ad2Ts1 to escape from endosomes of mDCs was

confirmed by electron microscopy (Fig. 10E–H) and in vivo by the

lack of Ad early E1A gene expression in the spleen of mice infected

with Ad2Ts1 (Fig. 10I). Thus, escape from the endosome is critical

for the induction of IFN-ab and IL-6 by adenoviruses.

It should be noted that a further increase in the Ad2Ts1 dose

(2.1661011 particles) resulted in detectable, albeit very low levels

of plasma IFN-ab that were released with different kinetics

(Fig. 10C). In this case, IFN-ab was detectable as early as 2 h after

infection and, in contrast to the results we obtained with wt viruses

(Figures 1A, 10A and S1A), the levels of IFN-ab did not increase

significantly at the later time-points. This already suggests a

mechanism for type I IFN induction by Ad2Ts1 that is

fundamentally different from the IFN-ab induction seen with wt

Ad2. Since Ads are DNA viruses, they can possibly be detected by

TLR9. In fact, the innate immune recognition of Ad in pDCs is

TLR9 dependent. We therefore repeated the experiment with a

high dose of Ad2Ts1 using TLR92/2 mice. As shown in Fig. 10C,

TLR92/2 mice did not produce IFN-ab in response to the mutant

Ad2Ts1, quite in contrast to the results obtained with the wt virus

(see Fig. 4A) Likewise, there was no detectable IFN-ab release in

Ad2Ts1-infected mice deficient in MyD88, an essential compo-

nent of TLR9 signaling (not shown). Furthermore, the corre-

sponding amount of empty particles (DNA-free) of Ad2Ts1 elicited

no IFN-ab response in wt mice (Fig. 10C). These data illustrate the

critical role of TLR9 in the induction of IFN-ab by means of high

doses of Ad2Ts1. To exclude the possibility that contaminating

DNA on the surface of the virions was responsible for the TLR9-

dependent IFN-ab induction, we treated the mutant virions with

bensonase, which destroys all kinds of free nucleic acids.

Bensonase-treated Ad2Ts1 still induced an IFN-ab response in

Figure 8. IFN-ab production after adenovirus induction is
independent of known cytosolic nucleic acid sensors. Wt and
MDA-52/2 BMDCs were infected with 0, 600, 1800 and 5400 Ad5GFP
particles/cell, or stimulated with synthetic poly I:C (10 mg/ml) or leader
RNA complexed with Lipofectamine 2000 (0.1 mg/ml). IFN-ab was
measured in cell-free supernatants 16 h after infection (A). IRF-32/2

BMDCs were transfected with pmaxGFP (1 mg/36105 cells) alone and
together with RIG-IC (1 mg/36105 cells) or with DAI/Zbp1 targeting
siRNAs (0.3 mM/36105 cells). Twentyfour hours later cells were infected
with 5400 Ad5GFP particles/cell. Alternatively, RIG-IC transfected cells
were stimulated with synthetic leader RNA (0.1 mg/ml) complexed with
Lipofectamine 2000. Expression of IFN-b mRNA was measured in sorted
GFP+ cells 12 h after stimulation. Knockdown of DAI/Zbp1 expression
was measured in siRNA transfected cells (B).
doi:10.1371/journal.ppat.1000208.g008
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mice (not shown) supporting the view that endogenous viral and

not contaminating DNA is responsible for IFN-ab induction by

the Ad trapped in the endosomes.

We also tested the role of endosomal escape of Ad in the in vitro

induction in BMDCs of IFN-ab and IL-6. Fig. 10D shows a dose

dependent production of IFN-ab by Ad2Ts1 grown at permissive

Figure 9. Adenovirus induction of IFN-ab is dependent on SAPK/JNK signaling. (A) Effect of MAPK inhibitors on the IFN-ab response of
BMDC to Ad. BMDC from mice were pretreated for 15 min with the inhibitor SP600125 (for SAPK//JNK), UO126 (for ERK1/2), SB 203580 (for p38) or
with the diluent only as described in Materials and Methods, and then infected with 600, 1800 and 5400 Ad3 particles/cell or mock-infected. IFN-ab
was measured in cell-free supernatants 6 h after infection. n. d.: not detectable. (B) Inhibition of SAPK/JNK activation by SP600125 in Ad-infected
BMDC. BMDCs were pretreated with SP600125) or with diluent for 15 min and then infected with 5400 Ad3 or Ad5 particles/cell, or were mock-
infected. Total cell lysates obtained at the indicated times after Ad were analyzed by immunoblotting using antibodies to the total or phosphorylated
p46 and p54 SAPK/JNK isoforms. (C) The effect of SP600125) treatment on the IFN-ab production in Ad-infected mice. B6 Mice (4/group) were
pretreated with the SP600125 inhibitor (20 mg/kg) i.p. or with diluent for 45 min and then infected with 3.661010 Ad5-GFP particles. Plasma IFN-ab
was measured 4 and 8 h after infection. One representative experiment of three is shown.
doi:10.1371/journal.ppat.1000208.g009
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Figure 10. Requirement for viral endosomal escape in the induction of IFN-ab by adenovirus in vivo and in vitro. Comparison of the
cytokine responses of mice infected with wild-type Ad2 or mutant Ad2Ts1 virus grown at the non-permissive (38.5uC) or permissive (32uC)
temperature. B6 Mice (4/group) were infected with 3.661010 virus particles i. p. and plasma IFN-ab was measured 4 and 8 h (A) or 2 and 8 h (B) after
infection. n.d.: not detectable. IFN-ab responses to high doses of Ad2Ts1 virus in vivo. Wt or TLR9 deficient (4 animals/group) mice were infected with
2.1661011 Ad2Ts1-38.5uC particles, i.p. or with the same number of Ad2Ts1-38.5uC empty particles as indicated. IFN-ab levels were measured in
plasma at the indicated time-points after infection (C). Comparison of IFN-ab responses of BMDCs infected with Ad2Ts1 grown at permissive or non-
permissive temperature. BMDCs were infected with 1800, 5400, and 16 200 particles of Ad2Ts1-32uC/cell or with 32 400 particles of Ad2Ts1-38.5uC/
cell or were mock-infected. IFN-ab was measured in cell-free supernatants 16 h after infection (D). One representative experiment of two is shown.
(E–H) Incoming Ad2 but not Ad2-ts1 particles localize to the cytosol of mDCs. Myeloid dendritic cells were infected with Ad2 or Ad2-ts1 (38.5uC),
warmed to 37uC for 4 h, fixed and processed for transmission EM analysis as described in Materials and Methods. (E) and (F) show images of Ad2 and
Ad2-ts1 infected cells, respectively, and panel (G) depicts a fraction of a non-infected cell. Statistical analyses of Ad2 and Ad-ts1 particles at the plasma
membrane outside of the cell, in endosomes and the cytosol are shown in (H). (I) Absence of viral E1A expression in the spleen of Ad2Ts1-infected
mice. Mice (2/group) were infected with 3.661010 Ad2 or Ad2Ts1 (Ts1) particles, i. p. The expression of E1A mRNA in the spleen 6 h after infection was
analyzed by RT-PCR in samples from the individual Ts1-infected (lane 1, 2) and Ad2-infected (lane 3, 4) mice.
doi:10.1371/journal.ppat.1000208.g010
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temperature and Figures S12C and D the production of IFN-ab
and IL-6 by wt Ad2, but no production of either of the cytokines

by Ad2Ts1 grown at the restrictive temperature. Interestingly,

liposomal transfection of whole Ad2 Ts1 virions (but not of empty

virus particles) in BMDCs resulted in the significant production of

IFN-ab that however, was critically dependent on IRF-3 (Fig. 7A).

Similarly, Ad2 Ts1 did not induce IFN-ab production in human

monocyte derived DCs (Fig. S12E). The requirement of low pH

for Ad3 infection was also tested using bafilomycin A1, a drug

known to inhibit the acidification of endosomes. Experiments

shown in Fig. S13A, B revealed that cells treated with this drug

produced significantly reduced levels of IFN-ab and IL-6

respectively, in response to Ad3. This is consistent with the notion

that Ad3 and Ad7 infection of cultured cells requires low

endosomal pH [70,71]. Similar results were obtained using

treatment with ammonium chloride, another acidification inhib-

itor known to block Ad escape from endosomes (not shown).

Collectively, the data in vitro and in vivo provide evidence that the

late phase of the Ad infectious entry, in which the virus escapes

from the endosome, triggers an innate response characterized by

the production of type I IFNs and IL-6.

Ad elicited IFN-ab production leads to LPS
hypersensitivity

Induction of type I IFNs was shown to be critical for some

innate immune responses to Ads [10].We therefore investigated

whether a characteristic consequence of infection with Ad, the

induction of LPS hypersensitivity [72], might be mediated by type

I IFNs. For this purpose, we infected wt and IFNabR2/2 mice

with Ads, challenged them 16 h later with LPS and measured the

TNF-a response. Non-infected LPS-treated mice served as a

control. Unlike the infected wt mice, the Ad3-infected IFNabR2/2

mice did not exhibit enhanced responses to LPS (Fig. 11A).

Interestingly, LPS hypersensitivity developed also in mice injected

with very small amounts of Ad. Such amounts were capable of the

elicitation of IFN-b mRNA in the spleen of infected animals, but

incapable of inducing detectable circulating IFN-ab (Fig. S14A and

B). Similar results were obtained in Ad5-GFP-infected mice (not

shown). Furthermore, in IRF-72/2 mice that exhibit a severe

impairment of the IFN-ab response to Ad a severe impairment of

LPS sensitization by Ad5-GFP was also observed. (Fig. 11B). In

contrast, sensitization to LPS developed normally in Ad5-GFP-

infected TLR92/2 mice (Fig. 11B), which is in agreement with our

finding that TLR9 is not critical for the induction of IFN-ab by Ad.

Furthermore, only Ad5-GFP-infected wt, but not IFNabR2/2 mice

exhibited enhanced susceptibility to LPS shock (Fig. 11C). Notably,

also Ad vector-infected or IFN-a treated human monocyte-derived

mDCs exhibited enhanced sensitivity to LPS and overproduced

TNF-a upon LPS challenge (Fig. S14C). On the whole, our results

indicate that IFN-ab is an essential mediator of the LPS

hypersensitivity induced by adenovirus infection.

An increased expression of the LPS receptor complex on target

cells, may contribute to the enhanced reactivity to LPS [73,74].

We therefore investigated whether macrophages of Ad infected

mice overexpress the receptor components mCD14 and TLR4/

MD-2. We found that splenic macrophages from Ad infected mice

overexpress mCD14 in an IFN-ab dependent manner (Fig. 11D)

but the expression of TLR4/MD-2 was only minimally affected

(Fig. S14D). Furthermore, we found increased acetylation levels of

histone H4 at the TNF-a promoter in Ad-infected wt, but not in

IFNabR-deficient macrophages (Fig. 11E). This suggests that Ad-

induced IFN-ab increases LPS-induced TNF-a production, at

least in part by epigenetic changes at the TNF-a promoter.

Discussion

In the present study we investigated the IFN-ab response of

mice infected with human Ads. We showed that the response is

characterized by high levels of IFN-a and IFN-b, which are

produced simultaneously and almost exclusively by splenic mDCs.

Furthermore, the response is entirely independent of viral

replication, TLR-, MyD88-, TRIF- and IRF-3-signaling, but

dependent on viral escape from the endosomes, activation of the

SAPK/JNK pathway and IRF-7, and subsequent IFN-ab
feedback signaling. These data suggest an IFN-ab induction

pathway that is different from the extracytoplasmic and cytoplas-

mic pathways so far described. Finally, we show that IFN-ab is a

key mediator of the hypersensitivity to bacterial lipopolysaccha-

ride, which develops, in Ad-infected mice.

Adenoviruses, DCs and other IFN-ab producing cell types
As shown previously and in this study, a wide spectrum of cells

including pDCs, mDCs and macrophages [10,45,46,63] produce

IFN-ab in response to Ad in vitro. The present finding that in vivo,

in Ad-infected mice, splenic mDCs are the major source of IFN-ab
is surprising, since in mice infected with different viruses (MCMV,

HSV, VSV, MHV, influenza, vaccinia and Sendai viruses)

[27,57,58,59,75,76,77,78] pDCs activated by the TLRs constitute

the major contributors to the systemic levels of type I IFNs. In the

present study the expression levels of IFN-ab mRNAs in organs

and cells from Ad-infected mice suggested a dominant role for

splenic mDCs in the IFN-ab response. Furthermore, the IFN

response to Ad was practically absent in mice depleted of

CD11chigh MHC II+ myeloid DCs. Also, there was a striking

similarity between the IFN-ab subtypes induced by Ads in the

spleen of infected mice and those induced in mDC cultures in vitro.

It should be emphasized that in mice infected with VSV, in which

splenic pDCs are the main IFN producers, the spectrum of in vivo

induced IFN-a subtypes was markedly different [76]. Finally, the

finding that the response of Ad-infected mice was completely

independent of TLR signaling and strongly dependent on IFN-ab
feedback provide further arguments against a major role for pDCs.

In a number of viral infection models, IFN-a and -b production by

pDCs was mediated by TLR7/9 [13,19,23] and was at least

partially independent of a positive IFN-ab feedback [76,77,79,80].

In variance to our data, pDCs and various types of non-pDCs

[10,42] were suggested to be responsible for the type I IFN

responses to adenoviral vectors in mice. In [10] the loss of TLR9

signaling resulted in a reduction of the IFN-a response in mice

infected with the recombinant species C Ad-lacZ [10]. This

finding suggested a significant contribution of TLR9, and

therefore of pDCs, to the Ad-induced IFN-ab response in vivo.

The ratio of pDCs to mDCs (approximately 1:1) in the spleen of

animals used in the above study was quite different from that we

and others [50] have found (approximately 1:10). This may

explain the conflicting results on the role of TLR9 in vivo, between

this previous study and ours. In another study [42] the induction of

IFN-ab was studied in mice with an artificially enlarged pool of

DCs (due to prior pretreatment with sFLT-3L), 24 h after

recombinant Ad administration. In our study naı̈ve mice were

used and 24 h after Ad infection the levels of IFN-ab were already

below the detection limit. Of note also, the bone marrow stromal

antigen 2 (BST2) (that is recognized by the PDCA-1 antibody used

for isolation of pDCs in [42]), was shown to be up-regulated on

numerous cell types following stimulation that triggers an IFN

response [81]. Thus, the use of the PDCA-1 antibody for the

isolation of pDCs seems to be more reliable in the case of

uninfected mice [81].
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Recently, an absolute IRF-3 dependency of the in vitro IFN-ab
response of bone marrow derived macrophages to Ad has been

reported [63]. In our study IRF-3 deficiency had no significant

effect on the levels of IFN-ab induced in Ad-infected mice. In

addition, in Ad-infected macrophages, the relatively low level of

IFN-a4 mRNA and its negative regulation by the autocrine

Figure 11. Adenovirus triggered IFN-ab production is the mediator of LPS hypersensitivity. Wild-type and IFN-abR2/2 mice (4–6 mice/
group) were infected i. p. with 161010 Ad3 particles or left uninfected. 16 h later the animals received 1 mg LPS i. p. or diluent only. TNF-a was
determined in plasma 2 h after challenge (A). One representative experiment of three is shown. n.d.: not detectable. IRF-72/2 and TLR92/2 mice were
infected i. p. with 26109 Ad5 GFP particles and injected 16 h later with 1 mg LPS i. p. TNF-a was determined in plasma 2 h later (B). IFN-ab signaling is
required for Ad infection augmented LPS lethality. Wt and IFNabR2/2 mice were infected with 161010 Ad5 GFP particles i. p. or left uninfected. 16 h
later mice were injected with 3.5 mg LPS/gr. bw. The number of dead/total animals are shown at the indicated time after LPS challenge (C). Ad
infection increases mCD14 expression on splenic macrophages in an IFN-ab signaling dependent manner. Wt and IFN-abR2/2 mice were infected
with 161010 Ad5 GFP particles i. p. or left uninfected. Expression of mCD14 was measured on the surface of F4/80+ splenic macrophages by FACS
16 h after infection (D). Ad infection increases acetylation of histone H4 in wt macrophages at the TNF promoter. Wt and IFNabR2/2 BMMs were
mock-infected or infected with 5400 Ad5 GFP particles/cell and levels of acetylation of histone H4 were measured at the TNF-a promoter with ChIP
assays (E). Representative experiments of two are shown.
doi:10.1371/journal.ppat.1000208.g011
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feedback was different from our in vivo findings (strong induction

and positive regulation by feedback). This is in agreement with the

concept that in vivo macrophages make no significant contribution

to the IFN-ab response to Ad. A likely explanation is that the

induction of IFN-ab in macrophages requires the high numbers of

virions used in vitro, and that such multiplicities were never reached

in vivo. Interestingly however, in contrast to IFN-ab induction, the

induction of IL-6 proceeded in the spleen of infected mice in both

DC and non-DC populations. In accordance, the depletion of

IFN-ab-producing mDCs in mice prior to infection lowered, but

did not entirely prevent the IL-6 response. It is possible that the

pathways leading to the induction of IFN-ab and IL-6 by Ad are

different, at least in different cell types. Alternatively, in vivo, part of

the IL-6 formed is induced indirectly via secondary mechanisms.

In this context it is interesting that blockade of the p38 MAPK in

mDCs in vitro had no effect on Ad-induced IFN-ab production, but

partially inhibited the production of IL-6. Our data showing that

IFNabR2/2 mice exhibit strongly impaired IL-6 responses to Ad

is in agreement with a previous report [10] and shows that IFN-ab
is a positive regulator of IL-6 production. Moreover, our data

indicate that this effect could be explained at least in part by the

positive regulatory effect of IFN-ab on Ad-induced IL-6

transcription and is achieved by the alteration of the chromatin

structure at the IL-6 promoter.

Requirements for IFN-a/b induction by adenoviruses and
its relation to known induction pathways

The experiments carried out in this study in MyD88-, TRIF-,

Unc93B and various TLR-deficient mice excluded a participation

of TLRs in the IFN-ab responses to Ads, including the

recombinant Ad5-GFP. The only exception was the TLR9- and

MyD88-dependent IFN-ab response elicited by Ad2Ts1, a mutant

virus deficient in endosomal escape [5]. However, compared to all

other Ads used in this study, Ad2Ts1 induced very low levels of

IFN-ab, with faster kinetics and only when used in very high

amounts. This is consistent with the finding that the mechanisms

of type I IFN induction by Ad2Ts1 and the other adenoviruses are

not the same. We suggest that the fast escape of Ads from the

endosome circumvents activation of endosomal TLRs. The

requirement for a longer endosomal retention time in TLR9-

dependent IFN-ab production has been recently demonstrated

[82]. On the whole, our experiments indicate that Ad endosomal

escape is required for the induction of IFN-ab in vivo and suggest a

cytosolic pathway. The same requirement was ascertained in the

present study for the IL-6 response.

Sensors of nucleic acids are powerful initiators of the TLR-

independent cytosolic IFN-ab induction [12,14,15]. We excluded

in this study a major involvement of the cytoplasmic RNA sensors

RIG-I and MDA-5 in the induction of IFN-ab by Ads. Likewise,

our study does not support a major participation of the cytosolic

DNA sensor DAI/Zbp1 in this induction either. However, our

study did not formally exclude the existence of all potentially

redundant recognition pathways. So far reported, the pathway(s)

of IFN-ab induction activated by cytosolic DNA is (are) strictly

dependent on IRF-3 and minimally on IRF-7 [34,35,36,37,39].

IRF-3 was also reported to be essential for the adenoviral DNA-

dependent induction of IFN-ab in BMMs in vitro [63]. In

agreement, in this study we show that transfection of BMDCs

with naked adenoviral DNA or with whole virions of the

endosomal escape deficient Ad2Ts1 results in a strictly IRF-3

dependent IFN-ab response. Evidently however, the IFN-ab
response of Ad-infected BMDCs and mice is independent of IRF-

3. These findings do not exclude a requirement for dsDNA

recognition in the induction of IFN-ab, but suggest a different

induction mechanism and show the importance of cellular

compartmentalization during normal Ad entry. A possible

important factor involved in cytosolic Ad sensing might be the

adenoviral cysteine protease L3/23, whose activation requires the

presence of Ad DNA [83]. This assumption is supported by our

finding that a small fraction of the protease-lacking Ad2Ts1 still

reaches the cytosol (Fig. 10F, H), but is devoid of any IFN-ab-

inducing activity. This enzyme, apart from its involvement in

maturation of viral proteins and endosomal escape, is essential for

the stepwise disassembly of Ads in the cytosol and the release of

viral DNA at the nuclear pore [5].

The absolute requirement of IRF-7 for type I IFN induction in

Ad-infected mice shows that this transcription factor participates

not only in the positive IFN-ab feedback, but also in the initial

IFN-ab production and indeed plays a master role in the

regulation of type I interferon response [29].

A further finding of the present study is the essential role for the

MAPK SAPK/JNK in the IFN-ab induction by Ads in vitro and in

vivo, although the DNA-mediated cytosolic induction of IFN-ab
has been reported to be independent of MAPKs activation

[14,15,36]. A cytosolic dsDNA-signaling pathway, mediated by

the RNA helicase RIG-I and MAVS, and leading to the induction

of IFN-b has been recently demonstrated in human hepatoma

cells [84]. This induction pathway is absent in murine systems

[22,37,84,85] and is therefore unlikely to participate in the IFN-ab
response of Ad-infected mice.

On the whole, our findings do not support the participation of

any known nucleic acid-mediated mechanisms in the elicitation of

IFN-ab responses to human Ads. In this context it is interesting

that, as shown here, mouse embryonal fibroblasts do not produce

IFN-ab upon Ad infection, although they posses efficient cytosolic

induction pathways for dsRNA or dsDNA [13,36,37], the latter

shown also in this study. Rather, our data support the possibility

that the IFN-ab response to Ads occurs via a novel, not yet

characterized cytosolic DNA or protein recognition pathway.

Further studies are required to identify the viral components and

the host receptors involved. We also emphasize that the known

extra- and intra-cytosolic induction pathways may contribute to

the IFN-ab response in a host in which Ads replicate and free viral

dsRNA and dsDNA are generated.

As mentioned above, the production of IFN-ab in Ad-infected

mice is strongly dependent on IFN-ab feedback signaling.

Inhibition of positive IFN-ab feedback is a likely explanation for

the negative regulation of the IFN-ab response, observed, in mice

infected with intact Ads (expressing early genes) in this study.

Likely candidates for negative regulators of the IFN-ab production

are the E1A proteins. Previously, they were shown to inhibit Stat1

signal transduction [86], which plays a role in positive feedback

signaling by means of the IFN-ab receptor.

Adenoviruses, toxic effects and therapeutic applications
Because the adenoviral vectors used in this study correspond to

some of those used in gene therapy trials, the present findings in

mice may have important implications for Ad gene therapy

applications. The adverse effects observed in therapeutic trials,

such as systemic inflammatory response and toxicity [6,7,9] can be

at least partly explained by the enhanced susceptibility of the Ad-

infected host to microbial components, such as LPS [72] and

lipopeptides (unpublished results) from incoming secondary

pathogens or from the patient’s own flora. Our in vitro finding of

a strongly enhanced TNF-a response to LPS in Ad5-GFP-infected

human DCs suggests that enhanced susceptibility to LPS may

develop also in patients treated with adenoviral vectors. As shown

here, this hypersensitivity is mediated by viral-induced IFN-ab,
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which is in accordance with the role of IFN-ab as a key mediator

of sensitization to LPS [87,88]. The increased mCD14 expression

on LPS target cells and epigenetic changes on promoters of

relevant genes (both shown here), may at least in part explain the

role of IFN-ab in the development of Ad induced LPS

hypersensitivity.

Type I interferon induction was recently found in recombinant

Ad-treated human cells, especially in pDCs [46,89] and in

monocyte-derived DCs in the present study. Moreover, this

response was observed also in patients administered with

recombinant adenoviral vectors [42,90]. Since as shown here,

IFN-a pre-treatment is capable of increasing susceptibility to LPS

of human DCs in vitro, we assume that Ad-induced IFN-ab can

induce LPS hypersensitivity in humans in vivo. Undesirable

complications mediated by IFN-ab can occur not only during

gene therapy, but also in immunocompromised patients where

Ads are major pathogens [1]. Our finding that blocking SAPK/

JNK signaling inhibits the IFN-ab response to Ads, is of potential

interest for prevention or treatment of the direct and indirect

adverse effects of IFN-ab in Ad gene therapy.

Materials and Methods

Mouse strains
Wt C57BL/6, C57BL/10 and 129Sv mice, as well as all

knockout mice were bred under SPF conditions at the MPI.

Breeding pairs of IRF-32/2 and IRF-72/2 mice were kindly

provided by T. Taniguchi and K. Honda, (Department of

Immunology, Graduate School of Medicine, University of Tokyo,

Tokyo), of the TRIF and Unc 93B2/2 mice by B. Beutler (Scripps

Research Institute, La Jolla) and of MyD882/2 mice by M. Kopf

(TH Zürich) and R. Landmann (Department Forschung, Kanton-

spital Basel). MDA-52/2 femurs were provided by M. Colonna

(Washington University School of Medicine, St. Louis). IRF-3-

[30], IRF-7- [29], Myd88- [91], TRIF- [92], TLR-9- [93], Unc

93B [94] MDA-5 [25] deficient mice and CD11c-diphtheria toxin

receptor (DTR)/GFP transgenic mice [54] were on a C57BL/6

background, TLR2/4-deficient mice [95] on C57BL/10 back-

ground and IFNabR-deficient mice [96] on 129Sv and for the

lethality experiments on C57BL/6 background. When the strain

of the mouse was not indicated C57BL/6 mice were used. Mice of

both sexes, 8-12 weeks of age were used for the experiments. All of

the experimental procedures were in accordance with institutional,

state and federal guidelines on animal welfare.

Viruses
Human Ads of species B (Ad serotype 3) and C (Ad R700, an

Ad serotype 5 derivative, Ad serotype 2, Ad2Ts1 and Ad5-GFP an

early gene expression defective Ad were grown, purified and

stored as previously described [5,72]. The ratio of infectious/total

viral particles was determined on susceptible cells and was typically

1:20–50. If not otherwise stated, Ad2Ts1 used for the experiments

was grown at non-permissive temperature 38.5uC (resulting in the

absence of incorporation of the adenoviral protease L3/23 into

viral capsids). Empty particles were identified by their light density

in CsCl density gradients and the absence of viral DNA and were

purified simultaneously with mature virions. UV inactivation of

Ad was done as described previously [5,72] using the minimal

essential dose preventing viral gene expression and replication in

susceptible cells. Heat inactivation was done at 56 uC for 60 min

[44]. All virus preparations were LPS-free (less than 1 pg LPS/

1011 viral particles) as determined by the Limulus amebocyte

lysate test (Pyroquant Diagnostic GMBH, Mörfelden, Germany).

Cell culture, inhibitors, plasmids and transfection
MEFs, BMMs and GM-CSF induced BMDCs were generated

as described [95,97]. The purity of BMMs was higher than 98%,

of BMDCs approximately 80%. BM derived pDCs were generated

in the presence of Flt3L and CD11c+ CD11b2 B220+ CD62L+

pDCs were MoFlo sorted (purity higher than 95%) as described

[55]. MEFs were grown in a-MEM (Invitrogen). Immature,

monocyte derived human DCs were obtained by incubating

adherent monocytes with GM-CSF as described [98] Human

mDCs were infected with the indicated amounts of Ads in growth

medium containing 2% of donor serum. Mouse L-929 cells were

grown in DMEM with 10% FCS. MAPK inhibitors UO126

(MEK1/2, Cell Signaling), SB203580 (p38, Sigma) and SP600125

(SAPK/JNK Calbiochem) were used at 15 mM in vitro and

SP600125 at 20 mg/kg in vivo. Bafilomycin-A1 (Sigma) was used at

100 nM. The plasmids pmaxGFP (Amaxa) and RIG-IC

[64,99,100] were purified with the Endo-Free Plasmid kit (Qiagen)

and PEG purification. RV leader RNA was generated by in vitro

transcription (MEGA shortscript Kit; Ambion) from a synthetic

DNA template: 59ACATTTTTGCTTTGCAATTGACAATGT-

CTGTTTTTTCTTTGATCTGGTTGTTAAGCGTTATAGT-

GAGTCGTATTACGCG-39 annealed with 59-AATTCGCG-

TAATACGACTCACTATA-39. RNA was purified using mini

Quick Spin RNA Columns (Roche). siRNA mediated knockdown

of DAI/Zbp1 was done using DAI/Zbp1 targeting siRNAs (On-

Target Plus Smartpool reagent, Dharmacon). For the induction of

type I IFNs MEFs and BMDCs were transfected with nucleic acids

complexed with Lipofectamine 2000 (Invitrogen) in 96-well plates

according to the instructions of the manufacturer. L-929 cells were

cotransfected with siRNAs and pmaxGFP using Lipofectamine

2000 according to the suggestions of the supplier. Subsequently

GFP positive cells were purified by FACS sorting for further

analysis. BMDCs were co-transfected with siRNAs or RIG-IC

together with pmaxGFP using the nucleoporator apparatus and

the mouse dendritic cell nucleofector kit (Amaxa) according to the

suggestions of the supplier and gene expression was analyzed in

FACS-sorted GFP positive cells.

Spleen cell fractionation, FACS sorting and depletion of
DC subsets

Splenocytes of 3–5 spleens were separated into CD11c+ and

CD11c2 cells by magnetic adsorption cell sorting (MACS;

Miltenyi Biotec). Both fractions were further purified by FACS

sorting using anti CD11c-biotin and Streptavidin-PE-Cy5 (BD

PharMingen). For the analysis and isolation of splenocytes and

CD11c+ subsets, anti-CD11c-biotin, anti-mouse CD11b-Alexa

Fluor 647, Gr-1 FITC, B220 PE, F4/80 PE, anti-mouse CD14-

Alexa Fluor 647 and anti-mouse TLR4/MD2-Alexa Fluor 647

antibodies and Streptavidin-PE-Cy5 (BD PharMingen) and anti-

Siglec H-biotin from Hycult Biotechnology were used. 4–

206104 cells in the different fractions were sorted using MoFlo

(Dako Cytomation, Glostrup,) to a typical purity of 95%–97%. To

deplete mDCs, CD11c-DTR/GFP mice were injected i.p. with

DT (4 ng/g body weight; Sigma-Aldrich) as described. pDCs were

depleted from naı̈ve mice with 500 mg i.p. injected rat anti–

mPDCA-1 mAb (Miltenyi Biotec) 24 h prior to Ad infection.

Detection of secreted cytokines and intracellular proteins
Murine IFN-ab activity was measured using an L-929 cell line

(provided by B. Beutler and Z. Jiang, Scripps Research institute,

La Jolla) as described [18] Human IFN-ab bioactivity was

measured using the HL116 cells from G. Uzé as described

[101]. The contribution of IFN-a or IFN-b to the total IFN-ab
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activity was determined by pre-incubating plasma for 1 h with

excess amounts of neutralizing anti–IFN-b antibody (Yamasa

Corporation, Japan) or control antibody. Murine TNF-a was

measured by a bioassay as described [95]. IL-6 was detected with

an ELISA from Pharmingen BD. Human TNF-a was detected

with an ELISA from R&D Biosystems. JNK/SAPK MAPKs were

detected on immunoblots with antibodies detecting all or

phosphorylated isophorms of the proteins (Cell Signaling).

Zbp1/DAI and b-actin were detected on immunoblots with

antibodies from Santa Cruz Biotechnology.

Conventional RT-PCR, real-time RT-PCR, analysis of IFN-áâ
subtypes and Chromatin Immunoprecipitation

Total RNA was isolated from organs and cells with guanidi-

nium-thiocyanate-phenol-chloroform extraction or with TRI

reagent (Sigma). To exclude DNA contamination, RNA samples

were treated with RNase free DNase I (Fermentas). cDNA was

prepared using Expand reverse transcriptase (Roche) and oligo-

dT. Conventional RT-PCRs were performed with primers as

follows. b-actin: GTC CAC ACC CGC CAC CAG TTC G and

GGA ATA CAG CCC GGG GAG CAT CGT C, IFN-b: CCT

TTG CAC CCT CCA GTA ATA G and GAC GGA GAA GAT

GCA GAA GAG T, IFN-a: ATG GCT AGR CTC TGT GCT

TTC CT and AGG GCT CTC CAG AYT TCT GCT CTG,

Ad2 E1A: GTT ATT ACC GAA ATG GCC GCC AGT CT and

CTT CGG GGG CCG TCA CGT CTA AAT CAT AC.

Real-time PCR quantification of RNA expression was done

using the LightCycler II system (Roche) and the Quantitect SYBR

Green PCR Kit (Qiagen) according to the instructions of the

manufacturers. Arbitrary units of relative expression were

generated by dividing the value obtained for IFN-a, -b or IL-6

by the value of b-actin and multiplying the result by 1000. The

detection limits for the IFN-a and IFN-b PCRs were 150 and 30

copies/reaction, respectively. The following primers were used for

real-time RT-PCR: b-actin: TGG AAT CCT GTG GCA TCC

ATG AAA and TAA AAC GCA GCT CAG TAA CAG TCC G,

IFN-b: CCT TTG CAC CCT CCA GTA ATA G and GAC

GGA GAA GAT GCA GAAGAG T, IFN-a: TCT GAT GCA

GGT GGG and AGG GCT CTC CAG ACT TCT GCT CTG,

IL-6: GTG ACA ACC ACG GCC TTC CCT AC and TGC

AAG TGC ATC ATC GTT GTT CAT, Zbp1/DAI: GAC GAC

AGC CAA AGA AGT GA and GAG CTA TGT CTT GGC

CTT CC. The IFN-a primers are consensus sequences from

previous publications [102,103], detecting all IFN-a mRNAs. To

determine the levels of different IFN-ab subtypes the HT7900

quantitative PCR system (Applied Biosystems) was used. cDNAs

were measured in duplicates or triplicates using the following gene-

specific assays (TaqMan Gene Expression Assays, Applied

Biosystems): IFN-alpha2 (Mm00833961_s1), IFN-alpha4

(Mm00833969_s1), IFN-alpha5 (Mm00833976_s1), IFN-alpha6

(Mm02524285_g1), IFN-alpha9 (Mm00833983_s1), IFN-alpha11

(Mm01257312_s1), IFN-alpha12 (Mm00616656_s1), IFN-al-

pha13 (Mm00781548_s1), IFN-alpha14 (Mm01703465_s1),IFN-

beta (Mm00439546_s1). The gene for mouse hypoxanthine

guanine phosphoribosyl transferase-1 (HPRT-1,

Mm00446968_m1) was used to calibrate the mRNA levels.

Quantitative analysis was performed using the SDS 2.1 software

(Applied Biosystems). mRNA levels were calculated by the

following formula: relative expression = 2‘(2(Ct(Target)-Ct(En-

dogenous control))*f, with f = 10 000 as an arbitrary factor.

Chromatin Immunoprecipitation (ChIP) assays were performed

as described [104]. Briefly, cells were cross-linked with 1%

formaldehyde and sonicated nuclear extracts were mock-immu-

noprecipitated or immunoprecipitated with anti-tetraacetylated

histone H4 (Upstate). Recovered DNA aliquots from these samples

and from input extracts were amplified with real-time PCR using

the LightCycler II system (Roche) and Quantitect SYBR Green

PCR Kit (Qiagen). Enrichments at specific chromatin loci are

shown as the amount of immunoprecipitated DNA in the percent

of total input chromatin. The following primers were used: IL-6

promoter: TGG GGA TGT CTG TAG CTC ATT and CAT

AGC GGT TTC TGG AAT TGA, TNF promoter: GGG CAG

CCC CAG AGG GAA TGA ACT C and TAT GGC AGA GGC

TCC GTG GAA AAC TCA CT, Topoisomerase 3b promoter:

AGT CCG AGA ACA GCC TGG GT and AGT TGT GCT

GCC CAC AGA GG, l5 promoter: TCC CCA TTG CCA GAT

AGA GAC ACA and TGG GCC CAA CAG ATT AAC ACA

GAG.

Transmission electron microscopy
BMDCs were cold synchronized with saturating amounts of

Ad2 and Ad2-ts1 (60 mg/ml, 0.25 ml per 46104 cells on a 12 mm

glass coverslip) for 1 h, washed and incubated at 37uC for the

indicated times. The samples were fixed with 2.5% glutaraldehyde

in 0.1 M ice-cold Na-Cacodylate buffer (pH 7.2) containing

0.5 mg/ml ruthenium red for 1 h, washed with 0.1 M Na-

Cacodylate buffer (pH 7.2), post-fixed with 2% OsO4 in the same

buffer containing 0.5 mg/ml ruthenium red for 1 h at room

temperature, and embedded in Epon as described [105]. Virus

particles at the plasma membrane, endosomes and the cytosol

were determined, and results expressed as means of analyzed cells

(n) with standard errors of the mean.

Data analysis and statistics
Data was analyzed using Prism GraphPad 4.0 software. Data in

all figures are presented as mean, error bars show SEM. Statistical

analysis was performed with the unpaired t-test (*: P,0.05; **:

P,0.01; ***: P,0.005).

List of accession numbers/ID numbers for proteins
mentioned in the text

1. DEFINITION interferon-beta.

ACCESSION AAA72488

2. DEFINITION interleukin 6 [Mus musculus].

ACCESSION NP_112445

3. DEFINITION tumor necrosis factor [Mus musculus].

ACCESSION NP_038721

4. DEFINITION CD14 [Mus musculus].

ACCESSION CAA32166

5. DEFINITION toll-like receptor 9 [Mus musculus].

ACCESSION NP_112455

6. DEFINITION toll-like receptor 4 [Mus musculus].

ACCESSION NP_067272

7. DEFINITION toll-like receptor 2 [Mus musculus].

ACCESSION NP_036035

8. DEFINITION MyD88 [Mus musculus].

ACCESSION AAC53013

9. DEFINITION TRIF [Mus musculus].

ACCESSION BAA76376

10. DEFINITION interferon induced with helicase C domain 1

(MDA-5) [Mus musculus].

ACCESSION NP_082111
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11. DEFINITION DEAD/H box polypeptide RIG-I [Mus

musculus].

ACCESSION NP_766277 XP_990501

12. DEFINITION Z-DNA binding protein 1 [Mus musculus].

ACCESSION NP_067369

Supporting Information

Figure S1 IFN-ab induction in response to Ads. Induction

kinetics of IFN-ab in the plasma of B6 mice (4–6/group) after the

indicated time-points of i. p infection with 3.661010 viral particles

of intact Ad R700. 6 h and 8 h values were analyzed for statistical

significance using the unaired t-test. (A). Control of UV

inactivation of Ads. B6 mice were infected intraperitoneally with

Ad3 or UV inactivated Ad3 and 1.261010 particles/mouse and

the expression of Ad E1A mRNA was measured in the spleen and

liver 16 h after infection. BMDCs were infected with native or

inactivated Ad in vitro with (5400 particles/cell) and analyzed for

E1A mRNA expression 8 h after infection (B). BMDCs were

infected in vitro with Ad5 GFP and UV inactivated Ad5 GFP

(5400 particles/cell). The expression of GFP was controlled by

FACS analysis 16 h after infection (C).

Found at: doi:doi:10.1371/journal.ppat.1000208.s001 (311 KB

TIF)

Figure S2 IFN-ab and IL-6 induction in response to Ads. Kinetics

of the IFN-ab response to UV inactivated Ad R700 (A) or Ad5 GFP

(B) in B6 mice. Groups of B6 mice (4–6/group) were infected i.p. with

3.661010 viral particles or of UV inactivated Ad R700 (A) or Ad5

GFP (B) and plasma for IFN measurement was collected at the

indicated time-points. IFN-ab and IL-6 responses to graded doses of

Ad R700. B6 mice (4–6/group) were infected with 46109 (1),

1.261010 (2), 3.661010 (3) and 7.261010 (4) of native (empty bars) or

UV-inactivated (filled bars) Ad R700 viral particles/mouse, i.p. Mice

were bled 6 hours after infection and the levels of IFN-ab (C) and IL-

6 (D) in plasma were determined. Representative experiments of two

are shown. Effiect of heat inactivation on Ad entry. BMDCs from B6

mice were infected with native or heat inactivated Ad3 (5400

particles/cell) and the presence of internalized Ad DNA was detected

with PCR 16 h later (E) in nuclear extracts as described [66].

Found at: doi:doi:10.1371/journal.ppat.1000208.s002 (203 KB

TIF)

Figure S3 Induction of IFN-ab in pDCs and in human DCs.

IFN-ab response of in vitro generated mouse mDC and pDC to

Ad3. BM derived GM-CSF- induced mDCs and FLt3L-induced

pDCs generated from B6 mice were mock-infected or infected

with 600, 1800 and 5400 viral particles of Ad3/cell. Cell-free

supernatants for IFN-ab measurement were collected 16 h after

infection (A). Absence of IFN-ab induction in L-929 cells by Ad.

L-929 cells were infected with 1800 and 5400 Ad2 particles/cell or

left uninfected. IFN-ab was measured in cell-free supernatants

16 h after infection (B, left). The expression of E1A and b-actin

mRNAs was measured 16 h after Ad2 infection by RT-PCR (B,

right). IFN-ab response of human primary DCs to Ad. Human

monocyte derived DC were mock-infected or infected with of Ad5

GFP or Ad3 (16 200 particles/cell). IFN-ab was measured in cell-

free supernatants 24 h after infection. (C)

Found at: doi:doi:10.1371/journal.ppat.1000208.s003 (181 KB

TIF)

Figure S4 Purification and analysis of lymphocyte subsets in the

spleen of Ad infected mice. Groups of B6 mice (4–6/group) were

infected i.p. with 3.661010 viral particles of Ad3 and spleens for

analysis were removed 8 h after infection. Pooled splenocytes were

analyzed with the respective antibodies by FACS. Gates used for

the analysis and purification of splenocytes and DC subsets are

shown for representative samples. FACS sorting of DC subsets (A–

D) To isolate pDCs, CD11c+ MACS enriched cells were

subdivided as CD11cint, CD11b2 cells (A) and then Gr-1+,

B220+ (B) cells. mDCs were isolated from CD11c+ cells (A) as

CD11b+, Gr-12 cells (C). From CD11c+, CD11b2 cells (C) a F4/

80+ subpopulation was obtained (D).

Found at: doi:doi:10.1371/journal.ppat.1000208.s004 (252 KB

TIF)

Figure S5 Analysis of DC depletion after diphteria toxin (DT)

treatment in the spleen of CD11c-DTR and B6 mice. CD11c-

DTR and B6 mice (4 animals/group) were injected with DT i. p or

left untreated. 24 h later the animals were infected with 1.261010

viral particles of Ad3 and DC populations in splenocytes from

individual animals were analyzed with flow cytometry using the

indicated antibodies. The percentage of the respective population

in a representative animal is given in the plot panels (A–B).

Found at: doi:doi:10.1371/journal.ppat.1000208.s005 (704 KB

TIF)

Figure S6 Analysis of pDC depletion after anti mPDCA-1

antibody treatment. Mice were untreated (2aPDCA-1; 4

animals/group) or injected with 500 mg of anti-mPDCA-1

antibody (+aPDCA-1; 4 animals/group) injected with Ad3 and

the pDC (A) and mDC (B) populations were analyzed in

splenocytes of individual mice with flow cytometry. Representative

data for one mouse/group are shown.

Found at: doi:doi:10.1371/journal.ppat.1000208.s006 (524 KB

TIF)

Figure S7 Intracellular TLR signaling is not required for Ad5-

GFP induction of IFN-ab. Wt and TLR9 2/2 or Unc93B 2/2

mice (4 animals/group) were infected with 161010 Ad5 GFP

particles i. p. and IFN-ab was determined in plasma 6 h after

infection (A). Cytokine response of various TLR deficient mice to

TLR ligands. Wt, TLR9, MyD88, TRIF and TLR2/4 deficient

mice were challenged with 10 nmol CpG ODN 1668 or with 1 mg

of LPS i.p. as indicated. IFN-ab was measured in plasma 2 h after

stimulation (B, left). Wt and TLR2/4 deficient mice were injected

with 40 mg of lipopeptide i. p. (Pam3CysK4) and plasma TNF-a
levels were measured 2 h after challenge (B, right).

Found at: doi:doi:10.1371/journal.ppat.1000208.s007 (162 KB

TIF)

Figure S8 Role of IFN-ab feedback signaling in Ad-infected

BMDCs. BMDCs from wt and IFNabR 2/2 mice were mock-

infected or infected with 600, 1800 and 5400 Ad3 particles/cell.

IFN-ab was measured in cell-free supernatants 16 h after

infection. One representative experiments of three is shown.

Found at: doi:doi:10.1371/journal.ppat.1000208.s008 (75 KB

TIF)

Figure S9 IRF-7 but not IRF-3 is required for Ad5GFP induced

IFN-ab production in vivo. Wt, IRF-3 and IRF-7 deficient mice

were injected with 161010 particles of Ad5 GFP i. p. and plasma

IFN-ab levels were measured 6 h after infection.

Found at: doi:doi:10.1371/journal.ppat.1000208.s009 (98 KB

TIF)

Figure S10 Knock-down of DAI/Zbp1 in L-929 cells. L-929

were transfected with pmaxGFP alone (4 mg DNA/1.66106 cells)

or together with DAI/Zbp1 targeting siRNAs (4 mg DNA and

200 pmol siRNA/1.66106 cells) with Lipofectamine 2000. Forty-

two hours later the cells were stimulated with B-DNA: poly(dA-

dT)?poly(dT-dA) (2 mg/ml) complexed with Lipofectamine 2000
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for 6 hrs or left unstimulated and GFP+ cells were purified with

FACS-sorting. Knockdown of DAI/Zbp1 mRNA (A) and protein

(B) was measured with real-time RT-PCR and with immunoblot-

ting, respectively. Expression of IFN-b mRNA was measured with

real-time RT-PCR (C).

Found at: doi:doi:10.1371/journal.ppat.1000208.s010 (179 KB

TIF)

Figure S11 Adenovirus induced IL-6 production is dependent

on JNK signaling. BMDC cultures from B6 mice were pretreated

with the indicated MAPK inhibitors or with diluent for 15 min

and then infected with 1800 and 5400 viral particles of Ad3/cell or

were mock infected. IL-6 levels were measured from cell-free

supernatants taken 6 h after infection. A representative experi-

ment of three is shown.

Found at: doi:doi:10.1371/journal.ppat.1000208.s011 (108 KB

TIF)

Figure S12 The role of viral endosomal escape in adenovirus

triggered cytokine responses. Empty Ad particles do not induce

type I IFN in vivo. B6 mice (4/group) were infected with 1.261010

viral particles of mature Ad3 and with an equivalent dose of empty

Ad3 particles. Plasma samples were taken 8 hours after infection

and the levels of IFN-ab were measured (A). Comparison of the

induction of IL-6 of mice infected with wild-type Ad2 or the

endosomal escape deficient Ad2Ts1 virus. B6 Mice (4/group) were

infected with 3.661010 Ad2 or Ad2Ts1 grown at 38.5uC (Ts1), i.

p. IL-6 was measured 4 and 8 h after infection in plasma samples.

(B) Comparison of the cytokine responses of BMDCs infected with

Ad2 or Ad2Ts1 (Ts1). BMDCs from B6 mice were infected with

1800, 5400, and 16 200 particles of Ad2/cell or with 32 400

particles of Ts1/cell or were mock-infected. IFN-ab (C) and IL6

(D) were measured in cell-free supernatants 16 h after infection.

Comparison of Ad vector and Ad2Ts1 induced IFN-ab produc-

tion of human monocyte derived DCs. Cells were infected with

16 200 particles of Ad5 GFP or Ad2 Ts1/cell or were mock-

infected. IFN-ab was measured in cell-free supernatants 24 h after

infection (E).

Found at: doi:doi:10.1371/journal.ppat.1000208.s012 (175 KB

TIF)

Figure S13 Bafilomycin A1 inhibits Ad3 triggered IFN-ab and

IL-6 production in vitro. BMDC cultures derived from C57BL/6

mice were pretreated with the 100 nM bafilomycin A1 (black bars)

or with diluent (empty bars) for 15 min and then infected with

1800, 5400, and 16 200 viral particles of Ad3/cell or were mock

infected. IFN-ab (A) and IL-6 (B) levels were measured from the

cell-free supernatants taken 6 h after infection. Representative

experiments of three are shown.

Found at: doi:doi:10.1371/journal.ppat.1000208.s013 (127 KB

TIF)

Figure S14 Adenovirus triggered LPS hypersensitivity. Low

doses of Ads can induce LPS hypersensitivity. B6 mice (3/group)

were infected with 56108 (1) or 56109 (2) particles of Ad5 GFP or

left uninfected. Expression of IFN-b in spleen and plasma IFN-ab
was measured using RT-PCR and bioassay, respectively (A). In a

separate experiment mice were infected as described above and

16 h later challenged with 1 mg of LPS i. p. TNF-a levels were

measured in plasma 2 h later. (B). Ad infection and IFN-a
treatment augments LPS induced TNF-a production of human

DCs. Human monocyte derived DCs were mock-treated, or pre-

infected with Ad5 GFP or Ad3 (16 200 particles/cell) or pre-

treated with 50 U/ml hIFN-a. 16 h later the cells were stimulated

with 1 mg/ml LPS overnight. TNF-a was measured in cell-free

supernatants (C). Ad infection increases minimally the expression

of TLR4/MD2 on splenic macrophages. Wt and IFN-abR 2/2

mice were infected with 161010 Ad5 GFP particles i. p. or left

uninfected. Expression of TLR4/MD2 was measured on the

surface of F4/80+ splenic macrophages by FACS 16 h after

infection (D).

Found at: doi:doi:10.1371/journal.ppat.1000208.s014 (335 KB

TIF)
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