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Abstract

Improving seed oil yield and quality are central targets in rapeseed (Brassica napus) breed-

ing. The primary goal of our study was to examine and compare the potential and the limits

of marker-assisted selection and genome-wide prediction of six important seed quality traits

of B. napus. Our study is based on a bi-parental population comprising 202 doubled haploid

lines and a diverse validation set including 117 B. napus inbred lines derived from interspe-

cific crosses between B. rapa and B. carinata. We used phenotypic data for seed oil, protein,

erucic acid, linolenic acid, stearic acid, and glucosinolate content. All lines were genotyped

with a 60k SNP array. We performed five-fold cross-validations in combination with linkage

mapping and four genome-wide prediction approaches in the bi-parental population. Quanti-

tative trait loci (QTL) with large effects were detected for erucic acid, stearic acid, and

glucosinolate content, blazing the trail for marker-assisted selection. Despite substantial dif-

ferences in the complexity of the genetic architecture of the six traits, genome-wide predic-

tion models had only minor impacts on the prediction accuracies. We evaluated the effects

of training population size, marker density and phenotyping intensity on the prediction accu-

racy. The prediction accuracy in the independent and genetically very distinct validation set

still amounted to 0.14 for protein content and 0.17 for oil content reflecting the utility of the

developed calibration models even in very diverse backgrounds.

Introduction

Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide [1]. The

breeding goal for rapeseed is high oil yield coupled with excellent oil quality [2–4]. The latter is

mainly driven by the composition of the fatty acid components of erucic acid (C22:1), stearic

acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) [2, 3, 5]. More-

over, protein and glucosinolate content determine to a large extent the quality of the rapeseed

meal [6–8]. All of these seed traits are influenced by the environment [9–11], and their precise

estimation requires phenotyping in replicated multi-environmental field trials. Moreover,
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measuring quality traits in rapeseed is often labor-intensive. Therefore, quality traits are inter-

esting targets for genomic-assisted crop improvement.

Genomic-assisted crop improvement can either be based on marker-assisted selection [12]

or genome-wide predictions [12, 13]. In marker-assisted selection, the performance of individ-

uals is predicted using a few diagnostic markers associated with the traits under consideration

[14]. In contrast, genome-wide prediction exploits many markers without performing marker-

specific significance tests [15]. The accuracy of marker-assisted selection and genome-wide

predictions depends on the genetic architecture underlying the traits under consideration.

Marker-assisted selection is most effective if the trait is controlled by a few genes with large

effects. If the genetic architecture is complex, quantitative trait loci (QTL) detection is not reli-

able and genome-wide prediction is more powerful [16].

The presence of QTL underlying quality traits in rapeseed has been investigated in linkage and

linkage disequilibrium mapping studies [1, 3, 9–11, 17–28]. Accumulated information of the QTL

accounting for seed quality traits such as seed fatty acid has also been identified in other Brassica
species, such as B. oleracea and B. juncea [29, 30], which could provide reference for the compari-

son between species. However, linkage and linkage disequilibrium mapping, are often afflicted by

upwards biased estimates in terms of the proportion of genotypic variance explained by QTL.

Therefore, cross- or independent validations have been suggested to obtain unbiased estimates of

QTL effects but have been applied only in a limited number of studies in rapeseed [31, 32].

The potential and limits of genome-wide predictions have been examined for several major

crops, such as barley [33], wheat [15, 34–36], maize [37–42], rice [43], sunflower [44], forage

plants [45], sugar beet [46, 47], and soybean [48, 49]. The results underlined the potential of

genome-wide prediction as a powerful tool to accelerate selection gain in plant breeding.

Recent studies in rapeseed also highlighted the potential of genome-wide prediction of flower-

ing time [31, 50, 51], plant height, protein content, oil content, glucosinolate content, grain

yield [31, 51]. Nevertheless, the benefits of genome-wide prediction compared to marker-assis-

ted selection have not been examined in rapeseed. Moreover, the potential to exploit epistasis

to predict seed quality traits has not been investigated, although previous studies suggested

that epistatic interactions were important for fatty acid metabolism [11].

This study is based on a published dataset from the bi-parental TN DH population com-

prising 202 DH lines, which has been intensively used to study the genetic architecture of

important agronomic traits [9–11, 22, 23] and were genotyped with an Infinium 60K-SNP

array [52] being extensively used in Brassica [24, 53, 54]. The two parents of the TN DH map-

ping population originated from the European and Chinese genepools and have been used

widely for rapeseed breeding programs in both target regions. Our objectives were to (i) test

for the presence of QTL exhibiting reliable and large effects using five-fold cross-validations,

(ii) investigate the effect of the genetic architecture on the superiority of different genome-

wide prediction models, (iii) examine the potential to improve the prediction accuracy by

modeling digenic epistatic effects, (iv) validate the prediction accuracy in a genetically inde-

pendent population, and (v) discuss the consequences for implementing genome-wide predic-

tions in applied rapeseed breeding programs.

Materials and Methods

Plant materials and field trials

A bi-parental DH population of B. napus denoted as TN DH has been developed, comprising

202 unique lines [22]. The DH lines were derived from a microspore culture based on the F1

cross between Tapidor and Ningyou7. The parent Tapidor is a European winter cultivar with

low erucic acid and glucosinolate content in the seeds. The parent Ningyou7 is a Chinese
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semi-winter cultivar with high erucic acid and glucosinolate content in seeds. The TN DH

mapping population along with its two parents was grown in 11 winter and semi-winter eco-

type environments (S1 Table). The phenotypic data was generated and used in a previous link-

age mapping study, which was based on a limited set of markers [9–11, 22, 23]. The

experimental design was a randomized complete block design with 3 replications. Every plot

comprised three rows with a total plot size of 3.0 to 4.0 m2.

Phenotypic data was collected for six important seed quality traits for each DH line and par-

ent: seed oil content (%) and protein content (%), which were separately defined as the per-

centages of the oil and protein in the total seed dry weight, respectively; three important

components of the fatty acid in the seed oil: the erucic acid content (%), the linolenic acid con-

tent (%), and the stearic acid content (%); and the content of glucosinolates in the total seed

dry weight (µmol/g). The quality traits were determined based on near infrared reflectance

spectroscopy measuring three technical and three biological replicates. The details of the phe-

notyping are outlined in detail in previous studies [10, 11, 22].

A total of 117 genetically independent B. napus inbred lines were used in this study for vali-

dating the prediction accuracy based on the TN DH population. The validation population

was developed based on hundreds of crosses between B. rapa and B. carinata accessions [55,

56]. The validation population was grown in one semi-winter environment (Wuhan, China)

in 2013–2014 in a trial with three replicates. Every plot comprised two rows with a total plot

size of 2.0 to 3.0 m2. Seed oil content and protein content was measured using the same

method as that used for the TN DH population.

Phenotypic data analyses

The best linear unbiased estimates (BLUEs) of phenotypic values and variance components

were estimated by the following linear mixed model using ASREML-R software [57]:

Traits � Genotypeþ Environmentþ Genotype : Environmentþ Environment : Rep:

The genotype effects were treated as fixed effects and the other effects were treated as ran-

dom. To estimate variance components, all effects were treated as random. Broad-sense herita-

bility was calculated as the ratio of genotypic to phenotypic variance:

H2 ¼
s2

G

s2
G þ

s2
GxE
NE
þ

s2
E

NE�NR

;

where NE refers to the number of environments, NR is the average number of replications per

location, s2
G is the genotypic variance, s2

GxE is the variance of genotype times environment

interaction, and s2
E refers to the error variance.

Genotypic data analyses

The 202 DH lines of the TN DH population and the two parents were previously fingerprinted

using a 60k SNP array based on an Illumina Infinium assay [52]. Quality control was per-

formed and those markers have been removed which are either monomorphic, have missing

values of>5%, a minor allele frequency<5%, or degree of heterozygosity >5% in the DH pop-

ulation. After applying the quality check outlined above, 180 DH lines with 13,678 high-quality

SNP markers remained. By aligning the marker sequence of the 13,678 SNPs to the reference

“Darmor-bzh” genome of B. napus version 4.1[58] via BLAST analysis, 9,628 SNP markers

could be assigned a unique physical position in the genome with the parameters of 100% align-

ment, E value <10−20 and mismatch <2 (S2 Table). After removing redundant SNPs in full
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linkage disequilibrium (LD), 1,527 markers representing recombination loci (referred to as

representative markers) remained (S2 Table). The 1,527 representative markers included 1,052

representative markers from 1,052 genetic bins and 475 single markers. From each of the

genetic bins, one marker with the least missing rate and the best available physical alignment

position was selected as representative marker. In this way, a total of 1,527 representative

markers were obtained and used for the subsequent analysis. Pairwise LD between markers

was calculated as the squared Pearson moment correlation coefficient using R package genetics

[59]. The 117 lines of the validation population were genotyped using the same SNP array and

the 1,527 representative markers selected in the TN DH population were used for prediction.

QTL mapping and genome-wide prediction

For the QTL mapping, the SNP markers were coded according to the F1metric [60]. The

genome-wide QTL mapping method is based on the inclusion of cofactors [7] obtained by

stepwise multiple linear regressions using the Bayesian information criterion [61]. The

genome-wide scan was conducted comparing the full model comprising the SNP and all cofac-

tors versus a reduced model including only cofactors. We used a false-discovery rate (FDR) of

P<0.1 to test for significance. The proportion of the phenotypic variance explained (PVE) by

all QTLs, was estimated using the adjusted R2 values fitting a multiple regression [62].

We performed a five-fold cross-validation of the QTL mapping in which the total popula-

tion of 180 DH lines was randomly divided into two groups with 100 replications according to

the ratio of 4:1 (one group with 144 lines and the other group with 36 lines). One hundred and

forty-four lines were used as the training set and the remaining 36 were used as the test set.

QTL mapping was performed in each training set and estimated QTL effects were used to pre-

dict the genetic values of the lines of the test set. The prediction accuracy was defined as the

correlation between the predicted and observed phenotypic values standardized with the

square root of the heritability.

For the genome-wide prediction, four different models were used in this study. We imple-

mented three methods exploiting the additive marker effect: genomic best linear unbiased pre-

diction (GBLUP), ridge regression best linear unbiased prediction (RR-BLUP) [63], and

BayesCπ [64]. To accelerate computation speed and eliminate the impact of LD on the predic-

tion accuracy of BayesCπ, we removed SNPs with r2>0.95. For BayesCπ, the Gibbs sampling ran

20,000 times, and the first 6,000 cycles were used as burn in. We also implemented an extended

GBLUP model denoted as EG-BLUP, which models digenic epistatic effects as well as additive

effects [65]. The accuracies of all these genome-wide prediction methods were determined based

on the adjusted entry means for the 180 genotypes applying five-fold cross-validation. Details of

the implementation of the models have been described elsewhere [41, 42, 65]. We performed

100 cross-validation runs and estimated the accuracy as the Pearson correlation coefficient

between predicted and observed values standardized with the square root of the heritability.

To evaluate the dependence of prediction accuracy on training set size, we applied cross-

validation with randomly selected subsets of n (n = 48, 80, 112, 144) lines from the full data to

form the training set and used the remaining lines as the test set. To evaluate the dependence

of prediction accuracy on marker density, we selected subsets of m (m = 100, 1,000, 5,000,

13,678) evenly distributed markers from the full dataset and applied five-fold cross-validations

using all 180 lines. The sampling procedure was randomly repeated 100 times for each scheme,

and the prediction accuracies were averaged across the 100 cross-validation runs. We focused

in the above outlined analyses of sampling of marker subsets and training set sizes on the traits

seed oil content and protein content. The traits were selected because oil content was evaluated

in a large number of 11 environments and protein content exhibited a high heritability.

Genome-Wide Prediction for Important Seed Quality Traits in Brassica napus
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We also evaluated the prediction accuracy using an independent validation population. The

marker effects were estimated based on RR-BLUP and the TN DH population. Marker effects

were used to predict the performance of the 117 individuals of the validation population. The

prediction accuracy was again estimated as the Pearson correlation coefficient between pre-

dicted and observed values standardized with the square root of the heritability. Heritability

was estimated using the variance components estimated for the TN DH population.

Results

Intensive field evaluation of the TN DH population resulted in high-quality

phenotypic data

We combined the information on seed protein content with previously published data for

other seed quality traits of the TN DH population. We observed a wide variation of BLUEs

approximating a normal distribution for most traits, except for erucic acid content (Fig 1, S3

Table). The analyses across environments revealed significant (P<0.001) variances for geno-

types, environments, and interactions between genotypes and environments (Table 1). Broad-

sense heritability estimates were high for the six traits, ranging from 0.81 for protein content

to 0.98 for erucic acid content. Consequently, the intensive phenotyping resulted in high-qual-

ity data representing an excellent source for dissecting the genetic basis of the six traits.

In total, 80% of the pairwise trait comparisons were significantly (P<0.001) associated with

Pearson moment correlation coefficients ranging from -0.84 between erucic acid content and

stearic acid content to 0.66 between erucic acid content and glucosinolate content (Fig 1).

Interestingly, protein content was only poorly associated with erucic acid, glucosinolate, and

stearic acid content. This lack of associations points to independent biochemical pathways and

genes controlling the two classes of traits.

Large differences in the complexity of the genetic architecture of the six

seed quality traits

Altogether, 151 SNP markers passed the FDR significance level of P<0.1 in the genome-wide

QTL mapping scan (Figs 2 and S1). The QTL numbers for the six traits ranged from 8 to 59

and were distributed across 19 chromosomes of B. napus. Phenotypic variance explained by a

single putative QTL exceeded 5% for 27 SNPs and reached 45% for a QTL located on chromo-

some C03 controlling erucic acid content (Table 2). A second major QTL was detected on

chromosome A08 for erucic acid content, explaining 31% of the phenotypic variance. How-

ever, the majority of the QTLs, especially those influencing oil and protein content, exhibited

only minor effects. Among the detected QTLs, seven were putative pleiotropic QTLs influenc-

ing two traits. For instance, the marker “Bn-scaff_15794_1-p347392”, which was physically

aligned to C03 and detected as a putative pleiotropic QTL, explained 26% and 45% of the phe-

notypic variance for stearic acid and erucic acid concentration, respectively.

We used five-fold cross-validation to reliably estimate the potential of marker-assisted

selection (MAS). The average accuracy of MAS ranged from 0.47 for protein content to 0.81

for erucic acid content (Table 3). These values were substantially lower compared to the non-

cross-validated results (Table 2), underlining the need to validate findings of linkage mapping.

Accuracies of genome-wide prediction in the TN DH population

We used four different models to investigate the efficiency of genome-wide prediction for the

six seed quality traits. Genomic selection significantly showed higher prediction accuracies

than MAS for all traits, with the most pronounced differences observed for linolenic acid, oil,

Genome-Wide Prediction for Important Seed Quality Traits in Brassica napus
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and protein content (Table 3). The average prediction accuracy of RR-BLUP was the highest,

while BayesCπ performed best for erucic acid and glucosinolate content. The most complex

model comprising main and epistatic effects, EG-BLUP, performed best for linolenic acid con-

tent. In general, traits with high heritability could be predicted with higher accuracy compared

to traits with low heritability.

As expected for a bi-parental mapping population, a large number of markers were in tight

LD and could thus be grouped into genetic bins because of the absence of recombination

events. We reduced the co-linearity among markers and removed redundant markers in full

linkage disequilibrium, resulting in a subset of 1,527 SNP markers (S2 Table, S2 Fig). Predic-

tion accuracy increased on average by 3% using the reduced 1,527 representative marker set

compared to genomic selection based on all SNPs (Table 3).

Fig 1. Distributions and pairwise correlations for Best Linear Unbiased Estimates of six seed traits evaluated for 202

lines of the TN DH population in multi-environmental field trials. All correlations passed significance tests with P-values

less than 0.001 except for the correlation between protein content and erucic acid, glucosinolates, and stearic acid content.

doi:10.1371/journal.pone.0166624.g001
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Effects of marker density, training population size, and number of

environments on prediction accuracy

Genome-wide prediction based on RR-BLUP performed best on average and, in addition, was

computationally efficient. Therefore, we conducted comprehensive analyses on the factors

driving the accuracy in genome-wide prediction exclusively based on RR-BLUP. We varied

the training population size and marker density and examined the accuracy of genome-wide

predictions in our study. The accuracy remained in the range of 0.44 to 0.67 for all traits using

only 48 lines as the training set (Fig 3). Interestingly, prediction accuracy reached a peak with

1,000 randomly selected markers and decreased only marginally for a subset of 100 markers.

The prediction accuracy increased by ~4% for all six traits when using a representative set of

markers compared to the 1,527 random evenly distributed markers (Table 2). Thus, our results

indicated that to improve the accuracy of genome-wide prediction in a bi-parental population,

the population size is more important than the density of markers.

We further studied the effects of the number of environments and training population size

on the accuracy of genomic selection by focusing on oil and protein content. The traits were

selected because oil content was evaluated in a large number of 11 environments and protein

content exhibited a high heritability. We randomly selected training sets comprising n = 48,

80, 112, and 144 lines evaluated for oil content evaluated in subsets of environments (k = 2,

3,. . ., 11 for oil content; k = 2, 3, 4, 5 for protein content). The accuracy was estimated as the

Pearson moment correlation coefficient between predicted genotypic values and the adjusted

entry means of all remaining lines evaluated across all environments. This type of cross-valida-

tion allows for the study of the prediction accuracy assuming reduced phenotyping intensity.

As the test set was not evaluated in any of the environments, their performance could not be

estimated by phenotypic correlations between environments. The prediction accuracies based

on phenotypic data from only two environments were 0.73 for oil content and 0.60 for protein

content (Fig 4). Compared to the accuracy evaluated with the full dataset, the accuracy

decreased only in the range of 3% to 6%. The accuracy remained at 0.55 for oil content when

only 48 lines and 2 environments were used.

Accuracies of genome-wide prediction for seed oil content and protein

content validated in a diverse population of 117 B. napus lines

A panel of 117 diverse lines was genotyped and phenotyped in one environment in order to

validate the prediction accuracies of seed oil content and protein content. A total of 1148 com-

mon genetic bin markers across the AC genome, were screened for the two populations. Since

Table 1. Estimates of variance components (σ2) and broad-sense heritability (h2) for the TN DH population with 202 lines evaluated for six seed

traits in multi-environmental field trials.

Source*/Traits Oil content Protein content Erucic acid content Linolenic acid content Stearic acid content Glucosinolate content

s2
G 2.64 0.53 198.19 0.04 0.08 229.38

s2
G�E 0.71 0.42 11.84 0.01 0 120.82

s2
E 1.17 0.61 7.78 0.02 0.01 54.55

Heritability 0.96 0.81 0.98 0.82 0.94 0.9

Mean 42.76 21.69 24.91 8.79 0.81 74.16

Range 38.87–47.35 19.13–24.3 0.77–46.76 8.13–9.55 0.27–1.50 30.31–101.17

Nr. of environments 11 5 5 2 2 6

*All variances pass a significance test with P values less than 0.001.

doi:10.1371/journal.pone.0166624.t001
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Fig 2. Manhattan plots based on composite interval QTL mapping for the six seed quality traits. The x-axis represents the corresponding physical

position of each SNP of the 13,678 SNPs across the genome from chromosome A01 to A10 and C01 to C09. Those markers without unique alignment to

the reference genome were arranged in the axis noted as “not assigned”. The Y-axis represents the corresponding false-discovery rate (FDR) of each QTL

indicating the significance for QTL calling. The PVE, i.e. proportion of the phenotypic variance explained by each QTL, is listed in Table 2.

doi:10.1371/journal.pone.0166624.g002
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Table 2. Significant marker-trait associations and the proportion of explained phenotypic variance (PVE) detected in a genome-wide association

mapping approach for six quality traits of TN DH population.

Trait No. Marker P values PVE Genetic Chr. Physical Detected in previous studies

bin code1 position (bp) 2

Oil content 1 Bn-A10-p5869175 4.09E-14 4.27 612 A10 5499050 TN-qOC-A10-1 (Jiang et al. 2014)[10]

2 Bn-A09-p739088 9.01E-10 2.96 551 A09 131541

3 Bn-A07-p16379135 3.29E-05 0.01 485 A07 18348848 SG-qOC-A7 (Zhao et al. 2012)[66]

4 Bn-A07-p15802174 5.96E-06 0.7 single

marker

A07 NA3

5 Bn-A04-p1684695 5.22E-11 5.86 806 C04 25032235

6 Bn-A01-p27774666 2.64E-06 0.5 single

marker

C01 38105589

7 Bn-scaff_15695_1-p294894 3.31E-05 0.25 854 C05 29927748

8 Bn-scaff_16361_1-p930064 0.000142 1.23 956 C08 NA3

9 Bn-scaff_20942_1-p440106 5.21E-06 9.49 694 C02 NA3

10 Bn-scaff_17637_1-p204439 6.89E-06 2.74 945 C08 12326547

11 Bn-scaff_16565_1-p1169320 4.06E-08 1.18 698 C02 12445051 TN-qOC-C2-2 (Jiang et al. 2014)[10]

12 Bn-scaff_15838_1-p2253503 6.36E-09 2.94 660 C01 2629345 TN-qOC-C1-1 (Jiang et al. 2014)[10]

13 Bn-A05-p1308471 7.76E-07 0.06 309 A05 1423576 SG-qOC-A5 (Zhao et al. 2012)[66]

14 Bn-Scaffold000217-p20168 2.05E-05 0.37 361 C05 NA3

15 Bn-scaff_20901_1-p1705574 5.59E-13 4.91 839 C05 2309449

16 Bn-scaff_23761_1-p249628 4.09E-15 16.44 single

marker

C03 57481703 TN-qOC-C3-3 (Jiang et al. 2014)[10]

17 Bn-A02-p27799727 1.92E-05 0.93 139 A02 24756539 DY-qOC-A2-2 (Delourme et al. 2006)[1]; Z5-qOC-A2-1 (Sun

et al. 2012)[67]

18 Bn-scaff_16231_1-p2213239 1.30E-13 5.75 949 C08 20090489

19 Bn-A03-p15397187 4.40E-07 3.81 195 A03 14446606 TN-qOC-A3-3 (Jiang et al. 2014)[10]

20 Bn-scaff_16545_1-p238397 4.80E-16 6.43 508 C08 14155605

21 Bn-A06-p7949147 1.09E-09 1.35 388 A06 NA3

22 Bn-scaff_16130_1-p1013445 3.94E-08 1.79 911 C07 28755038

23 Bn-scaff_16130_1-p1039452 7.23E-06 2.28 911 C07 28772215

24 Bn-A06-p24132842 1.79E-07 2.49 421 A06 23129285 Z5-qOC-A6-1 (Sun et al. 2012)[67]

25 Bn-scaff_22728_1-p357789 4.28E-06 0.88 160 C03 6154024 TN-qOC-C3-3 (Jiang et al. 2014)[10]; OIL.C3.s.1(Niklas

Körber et al.2016)[68]

26 Bn-A03-p764274 3.67E-06 0.06 141 A03 632475

27 Bn-scaff_18936_1-p890286 1.50E-06 1.48 731 C03 3419666 OIL.C3.s.1(Niklas Körber et al. 2016)[68]

Protein

content

1 Bn-scaff_15838_3-p256767 8.37E-11 7.13 121 A02 NA3

2 Bn-A03-p21225846 7.85E-08 0.08 211 A03 19974471

3 Bn-A04-p12670129 7.18E-05 1.96 269 A04 13394800 qThrC-4-2(Xu et al.2015)[69]

4 Bn-A03-p20150479 4.68E-06 2.65 209 A03 19014117

5 Bn-scaff_16361_1-p300435 8.14E-06 0.5 63 A01 11871025

6 Bn-A09-p5190180 3.69E-05 0.02 556 A09 4862135

7 Bn-scaff_17526_1-p860459 9.60E-05 5.21 977 C09 1679866 qMetC-19-9(Xu et al.2015)[69]

8 Bn-scaff_16449_1-p251526 9.17E-07 0.42 709 C02 NA3

9 Bn-A09-p33595011 1.08E-11 2.85 single

marker

NA3 NA3

10 Bn-A01-p8058255 7.87E-17 9.49 50 A01 7238500 qPC-1(Huang et al.2016)[70]

11 Bn-A09-p15975138 2.03E-06 1.91 567 A09 NA3

12 Bn-scaff_17119_1-p349622 6.35E-20 10.98 778 C03 NA3

13 Bn-scaff_17119_1-p414142 6.82E-15 5.37 778 C03 57158030

14 Bn-scaff_27815_1-p367403 6.45E-05 2.65 431 A07 1626003

15 Bn-A01-p27125649 4.28E-05 1.35 87 A01 NA3

16 Bn-Scaffold000217-p38276 7.56E-05 1.78 361 C05 NA3

17 Bn-scaff_20901_1-p647270 1.44E-13 10.05 840 C05 3389245 qAlaC-15-4 (Wen et al.2015)[71]

18 Bn-scaff_16231_1-p2213239 5.32E-05 8.59 949 C08 20090489

19 Bn-scaff_23799_1-p6782 3.97E-06 1.76 single

marker

NA3 NA3

20 Bn-scaff_22728_1-p349077 7.20E-07 2.77 160 C03 6162734 qMetC-13-6 (Xu et al.2015)[69]

(Continued)
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Table 2. (Continued)

Trait No. Marker P values PVE Genetic Chr. Physical Detected in previous studies

bin code1 position (bp) 2

Erucic acid 1 Bn-scaff_15803_1-p800874 1.11E-07 0.36 58 C01 14815203

2 Bn-scaff_15747_1-p167954 2.16E-06 0.08 675 C01 NA3

3 Bn-scaff_19614_1-p36023 1.66E-06 0.11 675 C01 13532546

4 Bn-A03-p24897111 4.39E-05 1.08 223 A03 NA3

5 Bn-scaff_18039_1-p206042 4.22E-11 2.08 682 C01 33006005

6 Bn-scaff_15844_1-p119216 1.68E-12 0.63 single

marker

C01 33345268

7 Bn-A03-p23609934 3.90E-06 0.1 219 A03 NA3

8 Bn-A01-p3664698 8.21E-05 1.95 33 A01 NA3

9 Bn-scaff_16397_1-p21961 2.35E-07 0.38 885 C06 32884939 ERA.C6.s.1(Niklas Körber et al.2016)[68]

10 Bn-scaff_15794_1-p347392 2.97E-24 45.35 775 C03 55942754 qC3-3(Wang et al.2015)[11]

11 Bn-A09-p19718581 9.53E-15 0.63 568 A09 NA3

12 Bn-scaff_17984_1-p123918 5.88E-05 3.54 569 A09 NA3

13 Bn-A08-p13221380 5.64E-06 31.31 510 A08 10967853 qA8-5(Wang et al.2015)[11]

14 Bn-C14160250-p3687 5.39E-10 0.98 509 A08 NA3

15 Bn-A06-p7636729 4.83E-07 0.11 388 A06 7278355

16 Bn-A06-p7459428 3.40E-05 0.69 single

marker

A06 NA3

17 Bn-A03-p14811204 1.05E-07 0.03 191 A03 NA3

18 Bn-A03-p8177695 1.19E-10 1.91 173 A03 7472584

Linoleic acid 1 Bn-A02-p1890913 1.40E-13 0.23 655 NA3 NA3

2 Bn-A02-p2451470 7.90E-17 1.76 655 NA3 NA3

3 Bn-A02-p7105435 1.89E-14 0.22 single

marker

A02 4150237

4 Bn-A10-p510846 1.01E-12 8.55 610 A10 2998077

5 Bn-A10-p1193336 2.13E-09 3.29 609 A10 NA3

6 Bn-A10-p2092612 7.56E-11 0.11 single

marker

A10 NA3

7 Bn-A09-p3546619 1.99E-22 4.68 single

marker

C04 1322839

8 Bn-A02-p10850012 3.55E-06 9.07 118 A02 7665679

9 Bn-A02-p12145607 1.07E-11 0.12 123 A02 NA3

10 Bn-A09-p20863459 1.06E-20 1.99 single

marker

NA3 NA3

11 Bn-A09-p1631944 7.56E-05 5.13 554 A09 2294691 LIA.A9.w.1(Niklas Körber et al.2016)[68]

12 Bn-scaff_22749_1-p250319 2.31E-07 0.6 129 C02 26414418

13 Bn-A07-p16846624 7.65E-15 1.68 485 A07 18775516

14 Bn-A01-p27968584 1.06E-26 0.93 single

marker

NA3 NA3

15 Bn-A02-p18438691 0.000162 3.28 single

marker

A02 NA3

16 Bn-A02-p19070958 1.17E-05 1.08 131 A02 18106292

17 Bn-scaff_18855_1-p795432 1.72E-14 0.06 757 C03 31378910

18 Bn-scaff_16135_1-p196922 0.00032 0.03 532 A08 15018355

19 Bn-A10-p15742689 1.45E-29 2.59 648 A10 15807427

20 Bn-A05-p18147040 2.03E-11 1.09 248 A09 12040388

21 Bn-scaff_16372_1-p19665 0.000194 1.27 769 C03 48510330 qC3-2(Wang et al.2015)[11]

22 Bn-scaff_20294_1-p438293 6.85E-06 3.77 887 C06 NA3

23 Bn-A10-p15442975 9.97E-22 2.37 652 A10 16049734

24 Bn-scaff_17799_1-p2773426 1.55E-06 ~0.00 990 C09 39884740

25 Bn-A09-p33542334 5.40E-05 0.83 single

marker

A09 NA3

26 Bn-A01-p22016353 5.40E-39 5.44 76 A01 18645502

27 Bn-A05-p114598 2.39E-06 0.01 single

marker

A05 128946

(Continued)
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Table 2. (Continued)

Trait No. Marker P values PVE Genetic Chr. Physical Detected in previous studies

bin code1 position (bp) 2

28 Bn-A01-p9810552 4.72E-33 0.04 single

marker

A01 8432723

29 Bn-A01-p8108178 1.57E-22 1.96 50 A01 NA3

30 Bn-scaff_17821_1-p21053 3.33E-10 3.01 777 C03 56695853 qC3-3(Wang et al.2015)[11]; qC18:2-13-5(Wen

et al.2015)[71]

31 Bn-A09-p19688476 5.00E-07 0.02 568 A09 NA3

32 Bn-A05-p472271 1.39E-06 0.37 307 A05 583644

33 Bn-scaff_15838_1-p2253503 3.85E-12 7.51 660 C01 2629345 qC18:2-11-3(Wen et al.2015)[71]

34 Bn-scaff_15585_1-p1020764 3.37E-08 0.96 279 C04 44431942

35 Bn-scaff_15676_1-p341508 2.92E-29 2.23 858 C05 NA3

36 Bn-scaff_19170_1-p1107619 4.39E-06 0.08 10 C04 18803084

37 Bn-scaff_19170_1-p588356 8.41E-15 0.85 10 C04 NA3

38 Bn-A10-p3329131 1.54E-08 3.3 433 A07 4431854

39 Bn-Scaffold000164-p120459 6.78E-07 0.22 83 A01 20722278

40 Bn-scaff_21956_1-p160710 3.46E-11 0.72 821 C04 39249761

41 Bn-scaff_16876_1-p171510 3.75E-18 0.11 817 NA3 NA3

42 Bn-scaff_16876_1-p303006 1.11E-16 0.46 816 C04 34584781

43 Bn-A01-p24830111 5.08E-13 0.43 82 A01 20561797

44 Bn-A08-p16562035 1.20E-06 0.28 522 A08 14030898 qA8-5(Wang et al.2015)[11]; LIA.A8.w.1(Niklas Körber

et al.2016)[68]

45 Bn-scaff_16069_1-p3780494 4.12E-12 0.04 929 C07 40184750

46 Bn-scaff_16545_1-p110342 4.09E-05 0.01 508 A08 7961925 qA8-6(Wang et al.2015)[11]

47 Bn-scaff_27204_1-p1544 6.30E-05 0.42 1045 C07 NA3

48 Bn-A08-p11212494 1.06E-05 0.47 509 A08 NA3

49 Bn-scaff_16130_1-p1039452 0.000253 0.07 911 C07 28772215

50 Bn-scaff_15705_1-p1818177 2.15E-11 0.29 918 C07 35089587

51 Bn-A02-p2962298 5.75E-13 0.09 single

marker

A02 NA3

52 Bn-A03-p10883930 6.17E-10 0.08 1051 A03 NA3

53 Bn-scaff_19111_1-p177344 0.000399 0.2 744 C03 10482820

54 Bn-A03-p9098773 2.74E-09 0.39 173 A03 8405389

55 Bn-scaff_23799_1-p6782 1.32E-14 0.88 single

marker

NA3 NA3

56 Bn-A03-p2491346 1.29E-09 0.24 150 A03 2036063

57 Bn-A01-p24020451 2.95E-17 0.15 single

marker

A01 20087415

58 Bn-A03-p764274 5.12E-06 0.73 141 A03 632475

59 Bn-A02-p2287712 4.39E-10 1.09 single

marker

NA3 NA3

Stearic acid 1 Bn-A10-p9436205 5.05E-09 1.5 single

marker

A10 10869232 qA10-2(Wang et al.2015)[11]

2 Bn-A10-p1919293 3.42E-06 0.04 607 A10 1780462

3 Bn-scaff_15747_1-p396080 1.09E-07 0.85 677 C01 14488446

4 Bn-A01-p2688662 2.70E-05 7.74 27 A01 2194542 qA1-5(Wang et al.2015)[11]

5 Bn-scaff_17423_1-p100318 0.000119 0.48 single

marker

A09 NA3

6 Bn-A01-p15497190 4.41E-05 5 57 A01 12941895 qA1-5(Wang et al.2015)[11]

7 Bn-Scaffold000178-p33587 1.95E-07 1.45 single

marker

A09 NA3

8 Bn-scaff_15794_1-p347392 5.21E-41 25.67 775 C03 55942754 qC3-3(Wang et al.2015)[11]

9 Bn-A04-p16528010 4.43E-05 0.47 288 A04 16689032

10 Bn-A04-p17358519 7.05E-07 2.44 single

marker

C04 46402393

11 Bn-A06-p112339 4.94E-08 4.83 364 A06 NA3

12 Bn-Scaffold000217-p6025 8.40E-12 6.06 361 A05 22747105

(Continued)
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we observed the highest accuracies for RR-BLUP in the TN DH population, we also used this

method for prediction. The prediction accuracy amounted to 0.14 for protein content and 0.17

for oil content based on the genetic bin markers.

Discussion

Erucic acid, stearic acid, and glucosinolate content are promising targets

for marker-assisted selection

Understanding the genetic basis of seed oil yield and quality is important for efficient rapeseed

breeding [10]. Previous studies revealed differences in the complexity of the genetic architec-

ture of the six quality traits examined in our study [1, 3, 9–11, 17, 20, 22, 72], which were fur-

ther substantiated using five-fold cross-validations (Table 2; S3 Table). Oil, protein, and

linolenic content are characterized by the absence of a reliable large-effect QTL, while erucic

acid, stearic acid, and glucosinolate content are to a large degree controlled by a few QTL

exhibiting large effects. For instance, the major QTL located in A08 and C03 (Table 2) totally

explained 76.66% of the phenotypic variance for erucic acid, which has been widely identified

previously in TN DH population and other mapping populations of B. napus [21, 22, 24, 73].

The major QTL located on C03 and explaining 16.44% of the phenotypic variance for oil con-

tent was identified in both of TN DH population and KN DH population [74]. The QTL with

large genetic effects for total seed glucosinolates located in A08, C01 and C03, were also identi-

fied previously in this and other mapping populations [9, 19, 75]. These QTLs are interesting

targets for marker-assisted selection, which can be applied in rapeseed breeding in

Table 2. (Continued)

Trait No. Marker P values PVE Genetic Chr. Physical Detected in previous studies

bin code1 position (bp) 2

13 Bn-scaff_16614_1-p373513 1.71E-11 0.59 single

marker

NA3 NA3

14 Bn-A03-p2297079 7.65E-08 1.94 single

marker

A03 1863826

15 Bn-A01-p28047872 1.18E-07 1.78 single

marker

NA3 NA3

16 Bn-A08-p13239816 3.77E-08 21.16 510 A08 10991898 qA8-5(Wang et al.2015)[11]

17 Bn-scaff_15699_1-p577914 4.02E-05 0.49 509 C08 16728901

18 Bn-A06-p23865356 2.19E-09 1.55 420 A06 22856806

19 Bn-A03-p8924852 1.16E-12 3.39 173 A03 8233061

Glucosinolate 1 Bn-scaff_15747_1-p108596 2.11E-06 13 676 C01 14196095 TN-q.mcG-C1d(Feng et al.2012)[9]

2 Bn-scaff_19168_1-p31612 4.39E-05 1.42 79 C01 36005339

3 Bn-A04-p12259499 1.21E-05 0.24 269 A04 13248240 TN-q.mcG-A4c(Feng et al.2012)[9]

4 Bn-A04-p13930713 1.36E-07 1.16 single

marker

A04 NA3

5 Bn-scaff_15918_1-p229987 3.20E-10 2.86 722 C02 42160463 TN-q.mcG-C2b(Feng et al.2012)[9]

6 Bn-scaff_15794_1-p437864 1.45E-25 18.07 774 C03 55837809 TN-q.mcG-C3c(Feng et al.2012)[9]

7 Bn-C14160250-p3687 2.05E-19 17.14 509 A08 NA3

8 Bn-A03-p7838070 2.94E-07 3.97 170 A03 7130138 TN-cqS-Aro-GST-A3a(Feng et al.2012)[9]

Total/average 151 1.94E-05 3.221133333

1 More detailed information of each genetic bin is listed in S2 Table.
2 The physical position is presented by the start position of each SNP with unique position to the reference genome of B. napus, Darmor-bzh 4.1, and more

information is also available in S2 Table.
3 Not available because of absent of alignment or multiple alignment positions.

The FDR (false-discovery rate) significance level is P<0.1for the detection of associated markers.

doi:10.1371/journal.pone.0166624.t002
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combination with the enrichment of target alleles for F2 populations prior to producing DH

populations. Besides of the consistent identified QTL, we also detected several new QTLs

accounting for these seed quality traits with minor effects in TN DH population compared to

the previous QTL identification in this population [10, 11, 22], which possibly because of the

improved detection power using the high density SNP markers compared to the previous QTL

identification using the relatively low-density markers. For example, the QTL “Bn-Scaf-

fold000217-p20168” in C05, “Bn-scaff_16130_1-p1013445” and “Bn-scaff_16130_1-p1039452”

located in C07 was newly identified for seed oil content of this population compared to that

detected in Jiang et al., (2014). It is important to note that due to the absence of a physical posi-

tion of 2,828 SNPs without alignment to the reference genome, we could not compare those

QTL without unique physical position with previous studies.

Genetic architecture marginally impacts the choice of the genome-wide

prediction model

Previous simulation studies revealed that equal shrinkage of marker effects as applied in

RR-BLUP can be inappropriate for traits influenced by QTLs exhibiting large effects [13, 76].

In these cases, Bayesian models such as BayesB or BayesCπ, which allow specific shrinkage of

every marker [77], are expected to outperform RR-BLUP. The superiority of BayesB over

RR-BLUP has been reported for glucosinolate content in a previous genome-wide prediction

study based on a diverse panel of 391 rapeseed lines derived from nine families [31]. Superior-

ity of Bayes models versus RR-BLUP has also been observed for flowering time in the TN DH

population [50]. In accordance with this observation, prediction accuracies for erucic acid and

glucosinolate content were maximized when applying BayesCπ, with improvements of 8–10%

compared to RR-BLUP (Table 2). In contrast, for stearic acid, RR-BLUP outperformed

BayesCπ despite the presence of large-effect QTL. This is most likely due to two reasons. First,

the ratio between the phenotypic variance explained by the two large-effect QTL versus that

explained by the remaining small-effect QTL is approximately 1 to 1 for stearic acid content,

while this ratio is 5 to 1 for erucic acid and glucosinolate content. Second, one large-effect

Table 3. Average prediction accuracy of four genomic selection methods and marker assisted selection (MAS) for six seed quality traits of the TN

DH population.

Marker Type Method Oil content Protein content Erucic acid Linolenic acid Stearic acid Gluco-sinolates Average

13,678 SNPs RR-BLUP 0.74 0.65 0.81 0.73 0.78 0.69 0.73

BayesCπ 0.75 0.62 0.89 0.49 0.61 0.79 0.69

EG-BLUP 0.72 0.62 0.79 0.74 0.75 0.67 0.72

GBLUP 0.72 0.61 0.77 0.73 0.75 0.67 0.71

MAS 0.52 0.47 0.81 0.51 0.74 0.64 0.62

1,527 representative SNPs* RR-BLUP 0.76 0.66 0.83 0.75 0.81 0.72 0.76

BayesCπ 0.76 0.64 0.88 0.45 0.61 0.79 0.69

EG-BLUP 0.75 0.64 0.81 0.76 0.79 0.71 0.74

GBLUP 0.76 0.64 0.82 0.75 0.8 0.72 0.75

MAS 0.59 0.45 0.74 0.54 0.68 0.62 0.6

1,527 random SNPs* RR-BLUP 0.72 0.63 0.81 0.72 0.77 0.69 0.72

*The 1,527 representative SNPs are specifically selected from the 1,527 individual genetic bins of the TN DH population, while the 1,527 random SNPs are

randomly selected from the total 13,678 polymorphic SNPs of the TN DH population. Marker assisted selection (MAS) is based on markers significantly

associated with the respective traits outlined in detail in the Material and Methods.

doi:10.1371/journal.pone.0166624.t003
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Fig 3. Average prediction accuracy of genomic selection applying RR-BLUP based on (a) varying training population sizes and (b) number of

markers.

doi:10.1371/journal.pone.0166624.g003
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QTL controlling stearic acid is reflected in several marker-trait associations with SNPs being

in tight linkage disequilibrium (r2 >0.8), while the QTLs are reflected by only a limited num-

ber of SNPs for erucic acid and glucosinolate content.

Epistasis, the interaction between genes [78], is an additional potential force influencing the

choice of the biometrical model for genome-wide prediction [65]. Previous linkage and linkage

disequilibrium mapping studies in rapeseed indicated that epistatic effects are involved in fatty

acid metabolism [11, 47]. Consequently, we implemented EG-BLUP for genome-wide predic-

tion, which explicitly considers digenic additive by additive epistatic effects [65]. We observed,

however, higher prediction accuracies of EG-BLUP compared to the other genome-wide pre-

diction models only for linolenic acid content (Table 2). Moreover, the gains in prediction

accuracy were only marginal. These negligible benefits are in contrast to the non-cross-vali-

dated results of previous linkage and linkage disequilibrium studies [11, 47] and point to the

strong need to validate the role of epistatic effects. In summary, the accuracy of genomic selec-

tion does not crucially depend on the choice of a suitable genome-wide prediction model and

is an attractive alternative to marker-assisted selection.

Implementation of genome-wide prediction in rapeseed breeding

The successful implementation of genome-wide prediction in rapeseed breeding requires that

a certain threshold of prediction accuracy is realized [40, 79]. Previous model studies in wheat

and maize suggested a threshold for the prediction accuracy of 0.5 [80, 81]. We chose two

important traits, oil content and protein content, to illustrate the size of the training popula-

tion, the number of environments, and the marker density required to reach a prediction accu-

racy of 0.5 for the bi-parental population.

In accordance with previous studies based on bi-parental populations [82–85], approxi-

mately one thousand markers were required before the prediction accuracy plateaued (Fig 3).

Increasing the number of markers introduced problems due to collinearities. Prediction accu-

racies were higher for a reduced a set of 1,527 SNPs, which represented recombination loci in

the population, in contrast to the full 13,678-marker set (Table 3). Thus, to improve the accu-

racy of genome-wide prediction in a bi-parental population, the population size indicating

recombination events obtained is more important than the density of markers.

The number of lines has a greater impact on the prediction accuracy than the number of

environments (Figs 3 and 4). The prediction accuracy is already stagnating at three environ-

ments, and thus it is more efficient to invest in training population size. For protein content,

approximately 144 lines evaluated in two environments were needed to reach an accuracy of

0.6. For oil content, prediction accuracy amounted to 0.6 when the training population was

decreased to 80 lines and the number of environments reduced to two. These results suggest

that genome-wide prediction can be successfully implemented in bi-parental populations even

with small training population sizes and is an attractive complement to phenotypic selection to

improve seed quality traits.

The prediction accuracy within bi-parental populations is of central importance examining

the potential to implement genome-wide prediction in breeding programs exploiting the dou-

ble-haploid technology. Moreover, it is of interest to study the potential to use the prediction

model also in unrelated populations. We examined an extreme validation scenario for the pre-

diction of seed oil and protein content using a genetically diverse sample of 117 lines which

were based on crosses between B. rapa and B. carinata accessions [55, 56]. The prediction

accuracy in this independent and genetically very distinct validation population still amounted

to 0.14 for protein content and 0.17 for oil content. While interpreting the prediction accura-

cies it has to be considered that the validation population exhibits genome segments from B.
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rapa/B. carinata. However, the used Brassica 60K-SNP array was developed based on the AC

genome sequence of B. rapa, B. olearaca and B. napus. Thus, the lack of unique polymorphisms

of B. carinata is expected to impair the prediction accuracies. Taking this into consideration,

our independent validation reflects the high quality of the developed calibration models even

in very diverse backgrounds highlighting the prospects of genome-wide prediction for routine

rapeseed breeding programs.

Supporting Information

S1 Fig. Quantile-quantile plots of association mapping for six traits using different meth-

ods. The green lines are the -log10 P-values of the linear regression method. The red lines are

the -log10 P-values of the stepwise multiple linear regression method. The expected uniform

Fig 4. Prediction accuracy of oil content and protein content using marker data for 1,527 representative SNPs according to different

numbers of environments and training set size.

doi:10.1371/journal.pone.0166624.g004
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S2 Fig. Decay of linkage disequilibrium with physical distance. Within each physical dis-

tance class, marker pairs are clustered into five groups with varying r2 values.
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S1 Table. Locations, years and environments for the field experiment.
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S2 Table. The physical alignment information of the SNPs of the TN DH population to the

reference "Darmor-bzh" genome of B. napus.
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ulation across environments.
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2. Möllers C. Potential and future prospects for rapeseed oil. In: Gunstone FD (ed) Rapeseed and canola

oil—production, processing, properties and uses. Oxford, UK: Blackwell Publishing; 2004.

Genome-Wide Prediction for Important Seed Quality Traits in Brassica napus

PLOS ONE | DOI:10.1371/journal.pone.0166624 November 23, 2016 17 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166624.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166624.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166624.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166624.s005
http://dx.doi.org/10.1007/s00122-006-0386-z
http://dx.doi.org/10.1007/s00122-006-0386-z
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000241261000014


3. Zhao JY, Dimov Z, Becker HC, Ecke WG, Mollers C. Mapping QTL controlling fatty acid composition in

a doubled haploid rapeseed population segregating for oil content. Mol Breeding. 2008; 21(1):115–25.

doi: 10.1007/s11032-007-9113-y PMID: WOS:000251321400010.

4. Abbadi A, Leckband G. Rapeseed breeding for oil content, quality, and sustainability. Eur J Lipid Sci

Tech. 2011; 113(10):1198–206. doi: 10.1002/ejlt.201100063 PMID: WOS:000297012300004.

5. Velasco L, Becker H. Estimating the fatty acid composition of the oil in intact-seed rapeseed (Brassica

napus L.) by near-infrared reflectance spectroscopy. Euphytica. 1998; 101(2):221–30. doi: 10.1023/

A:1018358707847

6. Bell JM. Nutrients and toxicants in rapeseed meal: a review. Journal of animal science. 1984; 58

(4):996–1010. PMID: 6202670.

7. Liu Z, Hirani AH, McVetty PBE, Daayf F, Quiros CF, Li GY. Reducing progoitrin and enriching glucora-

phanin in Brassica napus seeds through silencing of the GSL-ALK gene family. Plant Mol Biol. 2012; 79

(1–2):179–89. doi: 10.1007/s11103-012-9905-2 PMID: WOS:000303410400014.

8. Vageeshbabu HS, Chopra VL. Genetic and biotechnological approaches for reducing glucosinolates

from rapeseed-mustard meal Plant Biochemistry and Biotechnology. 1997; 6(2):53–62.

9. Feng J, Long Y, Shi L, Shi JQ, Barker G, Meng JL. Characterization of metabolite quantitative trait loci

and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica

napus. New Phytol. 2012; 193(1):96–108. doi: 10.1111/j.1469-8137.2011.03890.x PMID:

WOS:000298300800014.

10. Jiang CC, Shi JQ, Li RY, Long Y, Wang H, Li DR, et al. Quantitative trait loci that control the oil content

variation of rapeseed (Brassica napus L.). Theoretical and Applied Genetics. 2014; 127(4):957–68. doi:

10.1007/s00122-014-2271-5 PMID: WOS:000333353400016.

11. Wang XD, Long Y, Yin YT, Zhang CY, Gan L, Liu LZ, et al. New insights into the genetic networks affect-

ing seed fatty acid concentrations in Brassica napus. Bmc Plant Biol. 2015; 15. doi: 10.1186/s12870-

015-0475-8 PMID: WOS:000351903900001.

12. Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits.

Genetics. 1990; 124(3):743–56. PMID: 1968875; PubMed Central PMCID: PMC1203965.

13. Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense

marker maps. Genetics. 2001; 157(4):1819–29. PMID: 11290733; PubMed Central PMCID:

PMC1461589.

14. Bernardo R. Molecular markers and selection for complex traits in plants: Learning from the last 20

years. Crop Sci. 2008; 48(5):1649–64. doi: 10.2135/cropsci2008.03.0131 PMID:

WOS:000259792100001.

15. Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC. Bridging the gap between marker-assisted and

genomic selection of heading time and plant height in hybrid wheat. Heredity. 2014; 112(6):638–45. doi:

10.1038/hdy.2014.1 PMID: WOS:000336501000009.

16. Heslot N, Jannink JL. An alternative covariance estimator to investigate genetic heterogeneity in popu-

lations. Genet Sel Evol. 2015; 47:93. doi: 10.1186/s12711-015-0171-z PMID: 26612537; PubMed Cen-

tral PMCID: PMC4661961.

17. Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ. QTL analysis of an intervar-

ietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity.

2003; 90(1):39–48. doi: 10.1038/sj.hdy.6800176 PMID: WOS:000181165800008.

18. Chen YB, Qi L, Zhang XY, Huang JX, Wang JB, Chen HC, et al. Characterization of the quantitative trait

locus OilA1 for oil content in Brassica napus. Theoretical and Applied Genetics. 2013; 126(10):2499–

509. doi: 10.1007/s00122-013-2150-5 PMID: WOS:000324873400006.

19. Gajardo HA, Wittkop B, Soto-Cerda B, Higgins EE, Parkin IAP, Snowdon RJ, et al. Association mapping

of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol Breeding.

2015; 35(6). doi: 10.1007/S11032-015-0340-3 PMID: WOS:000356310400017.

20. Hu XY, Sullivan-Gilbert M, Gupta M, Thompson SA. Mapping of the loci controlling oleic and linolenic

acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.).

Theoretical and Applied Genetics. 2006; 113(3):497–507. doi: 10.1007/s00122-006-0315-1 PMID:

WOS:000239002300012.

21. Lu GY, Harper AL, Trick M, Morgan C, Fraser F, O’Neill C, et al. Associative Transcriptomics Study Dis-

sects the Genetic Architecture of Seed Glucosinolate Content in Brassica napus. DNA Res. 2014; 21

(6):613–25. doi: 10.1093/dnares/dsu024 PMID: WOS:000347101100004.

22. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, et al. A comparative linkage map of oilseed rape and its use

for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics. 2006; 114

(1):67–80. doi: 10.1007/s00122-006-0411-2 PMID: WOS:000242154000008.

Genome-Wide Prediction for Important Seed Quality Traits in Brassica napus

PLOS ONE | DOI:10.1371/journal.pone.0166624 November 23, 2016 18 / 22

http://dx.doi.org/10.1007/s11032-007-9113-y
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000251321400010
http://dx.doi.org/10.1002/ejlt.201100063
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000297012300004
http://dx.doi.org/10.1023/A:1018358707847
http://dx.doi.org/10.1023/A:1018358707847
http://www.ncbi.nlm.nih.gov/pubmed/6202670
http://dx.doi.org/10.1007/s11103-012-9905-2
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000303410400014
http://dx.doi.org/10.1111/j.1469-8137.2011.03890.x
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000298300800014
http://dx.doi.org/10.1007/s00122-014-2271-5
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000333353400016
http://dx.doi.org/10.1186/s12870-015-0475-8
http://dx.doi.org/10.1186/s12870-015-0475-8
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000351903900001
http://www.ncbi.nlm.nih.gov/pubmed/1968875
http://www.ncbi.nlm.nih.gov/pubmed/11290733
http://dx.doi.org/10.2135/cropsci2008.03.0131
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000259792100001
http://dx.doi.org/10.1038/hdy.2014.1
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000336501000009
http://dx.doi.org/10.1186/s12711-015-0171-z
http://www.ncbi.nlm.nih.gov/pubmed/26612537
http://dx.doi.org/10.1038/sj.hdy.6800176
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000181165800008
http://dx.doi.org/10.1007/s00122-013-2150-5
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000324873400006
http://dx.doi.org/10.1007/S11032-015-0340-3
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000356310400017
http://dx.doi.org/10.1007/s00122-006-0315-1
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000239002300012
http://dx.doi.org/10.1093/dnares/dsu024
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000347101100004
http://dx.doi.org/10.1007/s00122-006-0411-2
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000242154000008


23. Zou J, Jiang CC, Cao ZY, Li RY, Long Y, Chen S, et al. Association mapping of seed oil content in Bras-

sica napus and comparison with quantitative trait loci identified from linkage mapping. Genome /

National Research Council Canada = Genome / Conseil national de recherches Canada. 2010; 53

(11):908–16. PMID: WOS:000285555000007.

24. Li F, Chen BY, Xu K, Wu JF, Song WL, Bancroft I, et al. Genome-Wide Association Study Dissects the

Genetic Architecture of Seed Weight and Seed Quality in Rapeseed (Brassica napus L.). DNA Res.

2014; 21(4):355–67. doi: 10.1093/dnares/dsu002 PMID: WOS:000344243900002.

25. Downey RK, Craig BM. Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L). J Am

Oil Chem Soc. 1964: 41:475–478.

26. Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D. The two genes homologous to

Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus.

Theor Appl Genet. 1998: 96: 852–858.

27. Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, et al. Associative transcriptomics of traits in

the polyploid crop species Brassica napus. Nat Biotechnol. 2012; 30(8):798–802. doi: 10.1038/nbt.

2302 PMID: 22820317.

28. Wu G, Wu Y, Xiao L, Li X, Lu C. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a

deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet. 2008: 116(4):491–9.

doi: 10.1007/s00122-007-0685-z PMID: 18075728.

29. Barker GC, Larson TR, Graham IA, Lynn JR, King GJ. Novel insights into seed fatty acid synthesis and

modification pathways from genetic diversity and quantitative trait Loci analysis of the Brassica C

genome. Plant Physiol. 2007: 144(4):1827–42. doi: 10.1104/pp.107.096172 PMID: 17573542; PubMed

Central PMCID: PMC1949901.

30. Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK. Molecular tagging of erucic

acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in

FAE1 gene. Theor Appl Genet. 2004: 108(4):743–9. doi: 10.1007/s00122-003-1481-z PMID:

14564400.

31. Wurschum T, Abel S, Zhao YS. Potential of genomic selection in rapeseed (Brassica napus L.) breed-

ing. Plant Breeding. 2014; 133(1):45–51. doi: 10.1111/pbr.12137 PMID: WOS:000330800600006.

32. Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, et al. Genome-wide associ-

ation analyses reveal complex genetic architecture underlying natural variation for flowering time in

canola. Plant Cell Environ. 2016; 39(6):1228–39. doi: 10.1111/pce.12644 PMID: 26428711 in process.

33. Zhong S, Dekkers JC, Fernando RL, Jannink JL. Factors affecting accuracy from genomic selection in

populations derived from multiple inbred lines: a Barley case study. Genetics. 2009; 182(1):355–64.

doi: 10.1534/genetics.108.098277 PMID: 19299342; PubMed Central PMCID: PMC2674832.

34. Rutkoski JE, Heffner EL, Sorrells ME. Genomic selection for durable stem rust resistance in wheat.

Euphytica. 2011; 179(1):161–73. doi: 10.1007/s10681-010-0301-1 PMID: WOS:000289305300015.

35. Crossa J, de los Campos G, Perez P, Gianola D, Burgueno J, Araus JL, et al. Prediction of Genetic Val-

ues of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers. Genetics. 2010;

186(2):713–U406. doi: 10.1534/genetics.110.118521 PMID: WOS:000282807400022.

36. Zhao YS, Li Z, Liu GZ, Jiang Y, Maurer HP, Wurschum T, et al. Genome-based establishment of a high-

yielding heterotic pattern for hybrid wheat breeding. P Natl Acad Sci USA. 2015; 112(51):15624–9. doi:

10.1073/pnas.1514547112 PMID: WOS:000366916000042.

37. Albrecht T, Wimmer V, Auinger HJ, Erbe M, Knaak C, Ouzunova M, et al. Genome-based prediction of

testcross values in maize. Theoretical and Applied Genetics. 2011; 123(2):339–50. doi: 10.1007/

s00122-011-1587-7 PMID: WOS:000291600800012.

38. Bernardo R. Genomewide markers as cofactors for precision mapping of quantitative trait loci. Theoreti-

cal and Applied Genetics. 2013; 126(4):999–1009. doi: 10.1007/s00122-012-2032-2 PMID:

WOS:000316766000011.

39. Bernardo R. Genomewide Selection of Parental Inbreds: Classes of Loci and Virtual Biparental Popula-

tions. Crop Sci. 2014; 54(6):2586–95. doi: 10.2135/cropsci2014.01.0088 PMID:

WOS:000346571900020.

40. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, et al. Genomic and

metabolic prediction of complex heterotic traits in hybrid maize. Nature genetics. 2012; 44(2):217–20.

doi: 10.1038/ng.1033 PMID: 22246502.

41. Zhao YS, Zeng J, Fernando R, Reif JC. Genomic Prediction of Hybrid Wheat Performance. Crop Sci.

2013; 53(3):802–10. doi: 10.2135/cropsci2012.08.0463 PMID: WOS:000319527000008.

42. Zhao YS, Gowda M, Wurschum T, Longin CFH, Korzun V, Kollers S, et al. Dissecting the genetic archi-

tecture of frost tolerance in Central European winter wheat. J Exp Bot. 2013; 64(14):4453–60. doi: 10.

1093/jxb/ert259 PMID: WOS:000326724700025.

Genome-Wide Prediction for Important Seed Quality Traits in Brassica napus

PLOS ONE | DOI:10.1371/journal.pone.0166624 November 23, 2016 19 / 22

http://www.ncbi.nlm.nih.gov/pubmed/WOS:000285555000007
http://dx.doi.org/10.1093/dnares/dsu002
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000344243900002
http://dx.doi.org/10.1038/nbt.2302
http://dx.doi.org/10.1038/nbt.2302
http://www.ncbi.nlm.nih.gov/pubmed/22820317
http://dx.doi.org/10.1007/s00122-007-0685-z
http://www.ncbi.nlm.nih.gov/pubmed/18075728
http://dx.doi.org/10.1104/pp.107.096172
http://www.ncbi.nlm.nih.gov/pubmed/17573542
http://dx.doi.org/10.1007/s00122-003-1481-z
http://www.ncbi.nlm.nih.gov/pubmed/14564400
http://dx.doi.org/10.1111/pbr.12137
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000330800600006
http://dx.doi.org/10.1111/pce.12644
http://www.ncbi.nlm.nih.gov/pubmed/26428711
http://dx.doi.org/10.1534/genetics.108.098277
http://www.ncbi.nlm.nih.gov/pubmed/19299342
http://dx.doi.org/10.1007/s10681-010-0301-1
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000289305300015
http://dx.doi.org/10.1534/genetics.110.118521
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000282807400022
http://dx.doi.org/10.1073/pnas.1514547112
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000366916000042
http://dx.doi.org/10.1007/s00122-011-1587-7
http://dx.doi.org/10.1007/s00122-011-1587-7
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000291600800012
http://dx.doi.org/10.1007/s00122-012-2032-2
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000316766000011
http://dx.doi.org/10.2135/cropsci2014.01.0088
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000346571900020
http://dx.doi.org/10.1038/ng.1033
http://www.ncbi.nlm.nih.gov/pubmed/22246502
http://dx.doi.org/10.2135/cropsci2012.08.0463
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000319527000008
http://dx.doi.org/10.1093/jxb/ert259
http://dx.doi.org/10.1093/jxb/ert259
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000326724700025


43. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, et al. Genomic Selection and Association

Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition,

Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice

Breeding Lines. PLOS Genet. 2015; 11(2). ARTN e1004982 doi: 10.1371/journal.pgen.1004982 PMID:

WOS:000352081800038.

44. Reif JC, Zhao YS, Wurschum T, Gowda M, Hahn V. Genomic prediction of sunflower hybrid perfor-

mance. Plant Breeding. 2013; 132(1):107–14. doi: 10.1111/pbr.12007 PMID: WOS:000313893100014.

45. Hayes BJ, Cogan NOI, Pembleton LW, Goddard ME, Wang JP, Spangenberg GC, et al. Prospects for

genomic selection in forage plant species. Plant Breeding. 2013; 132(2):133–43. doi: 10.1111/pbr.

12037 PMID: WOS:000317422300001.

46. Hofheinz N, Borchardt D, Weissleder K, Frisch M. Genome-based prediction of test cross performance

in two subsequent breeding cycles. Theoretical and Applied Genetics. 2012; 125(8):1639–45. doi: 10.

1007/s00122-012-1940-5 PMID: WOS:000310952400004.

47. Wurschum T, Reif JC, Kraft T, Janssen G, Zhao Y. Genomic selection in sugar beet breeding popula-

tions. BMC genetics. 2013; 14:85. doi: 10.1186/1471-2156-14-85 PMID: 24047500; PubMed Central

PMCID: PMC3848454.

48. Bao Y, Vuong T, Meinhardt C, Tiffin P, Denny R, Chen SY, et al. Potential of Association Mapping and

Genomic Selection to Explore PI 88788 Derived Soybean Cyst Nematode Resistance. Plant Genome-

Us. 2014; 7(3). doi: 10.3835/plantgenome2013.11.0039 PMID: WOS:000345157300003.

49. Shu YJ, Yu DS, Wang D, Bai X, Zhu YM, Guo CH. Genomic selection of seed weight based on low-den-

sity SCAR markers in soybean. Genet Mol Res. 2013; 12(3):2178–88. doi: 10.4238/2013.July.3.2

PMID: WOS:000331717400002.

50. Li L, Long Y, Zhang LB, Dalton-Morgan J, Batley J, Yu LJ, et al. Genome Wide Analysis of Flowering

Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L.

PLOS One. 2015; 10(3). doi: 10.1371/journal.pone.0119425 PMID: WOS:000351425400084.

51. Jan HU, Abbadi A, Lucke S, Nichols RA, Snowdon RJ. Genomic Prediction of Testcross Performance

in Canola (Brassica napus). PLOS One. 2016; 11(1). ARTN e0147769 doi: 10.1371/journal.pone.

0147769 PMID: WOS:000369528600057.

52. Zhang Y, Thomas CL, Xiang JX, Long Y, Wang XH, Zou J, et al. Construction of a high-density SNP-

based genetic linkage map in Brassica napus and QTL meta-analysis of root traits under contrasting

phosphorus supply in two growth systems. 2016:under review.

53. Liu LZ, Qu CM, Wittkop B, Yi B, Xiao Y, He YJ, et al. A High-Density SNP Map for Accurate Mapping of

Seed Fibre QTL in Brassica napus L. PLOS One. 2013; 8(12). doi: 10.1371/journal.pone.0083052

PMID: WOS:000329116700026.

54. Qian LW, Qian W, Snowdon RJ. Sub-genomic selection patterns as a signature of breeding in the allo-

polyploid Brassica napus genome. Bmc Genomics. 2014; 15. doi: 10.1186/1471-2164-15-1170 PMID:

WOS:000347731500002.

55. Xiao Y, Chen L, Zou J, Tian E, Xia W, Meng J. Development of a population for substantial new type

Brassica napus diversified at both A/C genomes. Theor. Appl. Genet. 2010; 121, 1141–1150. doi: 10.

1007/s00122-010-1378-6 PMID: WOS:000281794100012.

56. Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D, et al. Broadening the avenue of intersubgenomic heterosis

in oilseed Brassica. Theor. Appl. Genet. 2010; 120, 283–290. doi: 10.1007/s00122-009-1201-4 PMID:

WOS:00027280370000951.

57. Butler D, Cullis B, Gilmour A, Gogel B. ASREML-R, Reference Manual Version 3 Queensland Depart-

ment of Primary Industries and Fisheries: Brisbane. 2009.

58. Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, et al. Early allopolyploid evolution in

the post-Neolithic Brassica napus oilseed genome. Science. 2014; 345(6199):950–3. doi: 10.1126/

science.1253435 PMID: WOS:000340524700051.

59. Warnes GR. “The Genetics Package,” R News; 2003.

60. Falconer D, Mackay T. Introduction to Quantitative Genetics 4th edn Longman: Harlow. 1996.

61. Schwarz G. Estimating the Dimension of a Model. Ann Statist. 1978; 6:461–4.

62. Utz HF, Melchinger AE, Schon CC. Bias and Sampling Error of the Estimated Proportion of Genotypic

Variance Explained by Quantitative Trait Loci Determined From Experimental Data in Maize Using

Cross Validation and Validation With Independent Samples. Genetics. 2000; 154(3):1839–49. PMID:

10866652; PubMed Central PMCID: PMC1461020.

63. Whittaker JC, Thompson R, Denham MC. Marker-assisted selection using ridge regression. Genet

Res. 2000; 75(2):249–52. PMID: 10816982.

Genome-Wide Prediction for Important Seed Quality Traits in Brassica napus

PLOS ONE | DOI:10.1371/journal.pone.0166624 November 23, 2016 20 / 22

http://dx.doi.org/10.1371/journal.pgen.1004982
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000352081800038
http://dx.doi.org/10.1111/pbr.12007
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000313893100014
http://dx.doi.org/10.1111/pbr.12037
http://dx.doi.org/10.1111/pbr.12037
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000317422300001
http://dx.doi.org/10.1007/s00122-012-1940-5
http://dx.doi.org/10.1007/s00122-012-1940-5
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000310952400004
http://dx.doi.org/10.1186/1471-2156-14-85
http://www.ncbi.nlm.nih.gov/pubmed/24047500
http://dx.doi.org/10.3835/plantgenome2013.11.0039
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000345157300003
http://dx.doi.org/10.4238/2013.July.3.2
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000331717400002
http://dx.doi.org/10.1371/journal.pone.0119425
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000351425400084
http://dx.doi.org/10.1371/journal.pone.0147769
http://dx.doi.org/10.1371/journal.pone.0147769
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000369528600057
http://dx.doi.org/10.1371/journal.pone.0083052
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000329116700026
http://dx.doi.org/10.1186/1471-2164-15-1170
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000347731500002
http://dx.doi.org/10.1007/s00122-010-1378-6
http://dx.doi.org/10.1007/s00122-010-1378-6
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000281794100012
http://dx.doi.org/10.1007/s00122-009-1201-4
http://www.ncbi.nlm.nih.gov/pubmed/WOS:00027280370000951
http://dx.doi.org/10.1126/science.1253435
http://dx.doi.org/10.1126/science.1253435
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000340524700051
http://www.ncbi.nlm.nih.gov/pubmed/10866652
http://www.ncbi.nlm.nih.gov/pubmed/10816982


64. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selec-

tion. BMC bioinformatics. 2011; 12:186. doi: 10.1186/1471-2105-12-186 PMID: 21605355; PubMed

Central PMCID: PMC3144464.

65. Jiang Y, Reif JC. Modeling Epistasis in Genomic Selection. Genetics. 2015; 201(2):759–+. doi: 10.

1534/genetics.115.177907 PMID: WOS:000362838500030.

66. Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, et al. Molecular mapping of Arabidopsis thaliana lipid-

related orthologous genes in Brassica napus. Theor Appl Genet. 2012; 124(2):407–21. doi: 10.1007/

s00122-011-1716-3 PMID: 21993634.

67. Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, et al. Design of new genome- and gene-sourced primers

and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLOS One.

2012; 7(10):e47037. 10.1371. PMID: 23077542 PMCID: PMC3470593. doi: 10.1371/journal.pone.

0047037

68. Körber N, Bus A, Li J, Parkin IA, Wittkop B, Snowdon RJ, et al. Agronomic and Seed Quality Traits Dis-

sected by Genome-Wide Association Mapping in Brassica napus. Front Plant Sci. 2016; 7:386.

10.3389. PMID: 27066036 PMCID: PMC4814720. doi: 10.3389/fpls.2016.00386

69. Xu JF, Long Y, Wu JG, Xu HM, Wen J, Meng J, et al. QTL mapping and analysis of the embryo and

maternal plant for three limiting amino acids in rapeseed meal. Eur Food Res Technol.2015, 240:147–

158. doi: 10.1007/s00217-014-2316-7

70. Huang XQ, Huang T, Hou GZ, Li L, Hou Y, Lu YH. Identification of QTLs for seed quality traits in rape-

seed (Brassica napus L.) using recombinant inbred lines (RILs). Euphytica (2016) 210:1–16. doi: 10.

1007/s10681-016-1675-5

71. Wen J, Xu JF, Long Y, Wu JG, Xu HM, Meng JL, et al. QTL mapping based on the embryo and maternal

genetic systems for non-essential amino acids in rapeseed (Brassica napus L.) meal. J Sci Food Agric.

2016; 96(2):465–73. doi: 10.1002 PMID: 25645377.

72. Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W. Oil content in a European x Chinese rapeseed

population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop

Sci. 2005; 45(1):51–9. PMID: WOS:000226435300007

73. Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, et al. The identification and mapping of

candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. TAG Theo-

retical and applied genetics Theoretische und angewandte Genetik. 2011; 122(6):1075–90. doi: 10.

1007/s00122-010-1512-5 PMID: 21184048.

74. Wang XD, Wang H, Long Y, Li D, Yin Y, Tian J, et al. Identification of QTLs associated with oil content in

a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs compari-

son in B. napus. PLOS One. 2013: 8(12):e80569. doi: 10.1371/journal.pone.0080569 PMID: 24312482;

PubMed Central PMCID: PMC3846612.

75. Fu Y, Lu K, Qian LW, Mei JQ, Wei DY, Peng XH, et al. Development of genic cleavage markers in asso-

ciation with seed glucosinolate content in canola. Theoretical and Applied Genetics. 2015; 128

(6):1029–37. doi: 10.1007/s00122-015-2487-z PMID: WOS:000354633800003.

76. Xu R. Measuring explained variation in linear mixed effects models. Statistics in medicine. 2003; 22

(22):3527–41. doi: 10.1002/sim.1572 PMID: 14601017.

77. Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R. Additive genetic variability and the

Bayesian alphabet. Genetics. 2009; 183(1):347–63. doi: 10.1534/genetics.109.103952 PMID:

19620397; PubMed Central PMCID: PMC2746159.

78. Park YC. Theory for the number of genes affecting quantitative characters: II. Biases from drift, domi-

nance, inequality of gene effects, linkage disequilibrium and epistasis. TAG Theoretical and applied

genetics Theoretische und angewandte Genetik. 1977; 50(4):163–72. doi: 10.1007/BF00277737

PMID: 24407765.

79. Albrecht T, Auinger HJ, Wimmer V, Ogutu JO, Knaak C, Ouzunova M, et al. Genome-based prediction

of maize hybrid performance across genetic groups, testers, locations, and years. Theoretical and

Applied Genetics. 2014; 127(6):1375–86. doi: 10.1007/s00122-014-2305-z PMID:

WOS:000336756200009.

80. Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME. Plant Breeding with Genomic Selection: Gain per Unit

Time and Cost. Crop Sci. 2010; 50(5):1681–90. doi: 10.2135/cropsci2009.11.0662 PMID:

WOS:000281060300010.

81. Longin CFH, Mi XF, Wurschum T. Genomic selection in wheat: optimum allocation of test resources

and comparison of breeding strategies for line and hybrid breeding. Theoretical and Applied Genetics.

2015; 128(7):1297–306. doi: 10.1007/s00122-015-2505-1 PMID: WOS:000356148000006.

82. Lorenzana RE, Bernardo R. Accuracy of genotypic value predictions for marker-based selection in bipa-

rental plant populations. Theoretical and Applied Genetics. 2009; 120(1):151–61. doi: 10.1007/s00122-

009-1166-3 PMID: WOS:000271939900013.

Genome-Wide Prediction for Important Seed Quality Traits in Brassica napus

PLOS ONE | DOI:10.1371/journal.pone.0166624 November 23, 2016 21 / 22

http://dx.doi.org/10.1186/1471-2105-12-186
http://www.ncbi.nlm.nih.gov/pubmed/21605355
http://dx.doi.org/10.1534/genetics.115.177907
http://dx.doi.org/10.1534/genetics.115.177907
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000362838500030
http://dx.doi.org/10.1007/s00122-011-1716-3
http://dx.doi.org/10.1007/s00122-011-1716-3
http://www.ncbi.nlm.nih.gov/pubmed/21993634
http://www.ncbi.nlm.nih.gov/pubmed/23077542
http://dx.doi.org/10.1371/journal.pone.0047037
http://dx.doi.org/10.1371/journal.pone.0047037
http://www.ncbi.nlm.nih.gov/pubmed/27066036
http://dx.doi.org/10.3389/fpls.2016.00386
http://dx.doi.org/10.1007/s00217-014-2316-7
http://dx.doi.org/10.1007/s10681-016-1675-5
http://dx.doi.org/10.1007/s10681-016-1675-5
http://www.ncbi.nlm.nih.gov/pubmed/25645377
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000226435300007
http://dx.doi.org/10.1007/s00122-010-1512-5
http://dx.doi.org/10.1007/s00122-010-1512-5
http://www.ncbi.nlm.nih.gov/pubmed/21184048
http://dx.doi.org/10.1371/journal.pone.0080569
http://www.ncbi.nlm.nih.gov/pubmed/24312482
http://dx.doi.org/10.1007/s00122-015-2487-z
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000354633800003
http://dx.doi.org/10.1002/sim.1572
http://www.ncbi.nlm.nih.gov/pubmed/14601017
http://dx.doi.org/10.1534/genetics.109.103952
http://www.ncbi.nlm.nih.gov/pubmed/19620397
http://dx.doi.org/10.1007/BF00277737
http://www.ncbi.nlm.nih.gov/pubmed/24407765
http://dx.doi.org/10.1007/s00122-014-2305-z
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000336756200009
http://dx.doi.org/10.2135/cropsci2009.11.0662
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000281060300010
http://dx.doi.org/10.1007/s00122-015-2505-1
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000356148000006
http://dx.doi.org/10.1007/s00122-009-1166-3
http://dx.doi.org/10.1007/s00122-009-1166-3
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000271939900013


83. Heffner EL, Jannink JL, Iwata H, Souza E, Sorrells ME. Genomic Selection Accuracy for Grain Quality

Traits in Biparental Wheat Populations. Crop Sci. 2011; 51(6):2597–606. doi: 10.2135/cropsci2011.05.

0253 PMID: WOS:000295839200031.

84. Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, Prasanna BM, et al. Evaluation of Genomic

Selection Training Population Designs and Genotyping Strategies in Plant Breeding Programs Using

Simulation. Crop Sci. 2014; 54(4):1476–88. doi: 10.2135/cropsci2013.03.0195 PMID:

WOS:000338773100018.

85. Zhang X, Perez-Rodriguez P, Semagn K, Beyene Y, Babu R, Lopez-Cruz MA, et al. Genomic prediction

in biparental tropical maize populations in water-stressed and well-watered environments using low-

density and GBS SNPs. Heredity. 2015; 114(3):291–9. doi: 10.1038/hdy.2014.99 PMID:

WOS:000349671000006.

Genome-Wide Prediction for Important Seed Quality Traits in Brassica napus

PLOS ONE | DOI:10.1371/journal.pone.0166624 November 23, 2016 22 / 22

http://dx.doi.org/10.2135/cropsci2011.05.0253
http://dx.doi.org/10.2135/cropsci2011.05.0253
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000295839200031
http://dx.doi.org/10.2135/cropsci2013.03.0195
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000338773100018
http://dx.doi.org/10.1038/hdy.2014.99
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000349671000006

