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2Hz EA Reduces Heroin Withdrawal-Induced Hyperalgesia and
Heroin Relapse by Downregulating P2X3 Receptors in
DRG Neurons
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Electroacupuncture (EA) has effective analgesic effects. Our previous study demonstrated that the upregulation of P2X3 receptors
in the dorsal root ganglia (DRG) might participate in heroin withdrawal-induced hyperalgesia. The aim of this study is to further
explore whether 2Hz EA reduces heroin relapse associated with its analgesic effect and whether P2X3 receptors in the DRG are
involved in this process. 2Hz EA was adopted to treat the heroin SA rats in the present study. Heroin-seeking and pain sensitivity
were evaluated. The expression of P2X3 receptors in the DRG was detected. Our results showed that compared with the control
group, the reinstatement, thermal hyperalgesia, and mechanical allodynia of the heroin-addicted group were increased sig-
nificantly.The expression of P2X3 receptors in the DRGwas increased markedly. After being treated using 2Hz EA, reinstatement
was reduced, hyperalgesia was decreased, and the upregulated expression of P2X3 receptors in the DRG had decreased sig-
nificantly compared to that in the heroin-addicted group. Consequently, our results indicated that 2Hz EA was an effective
method for treating heroin-induced hyperalgesia and helping prevent relapse, and the potential mechanismmight be related to the
downregulation of P2X3 receptor expression in the DRG.

1. Introduction

The essential problem in the treatment of opioid (including
heroin) addiction is the high rate of relapse [1]. The neu-
robiological mechanisms underlying opioid relapse and
cravings are complex [2]. Opioid addiction is generally
considered the biological basis of “psychological” depen-
dence, while withdrawal symptoms, especially abnormal
pain, contribute to drug cravings [3, 4]. Clinical investiga-
tions have also demonstrated that hyperalgesia after long-
term opiate exposure might induce drug cravings during
prolonged opiate abstinence [5]. Results have indicated that
hyperalgesia induced by opioid withdrawal might be one of
the important causes of opioid relapse and craving.

Several periphery molecular targets have been pro-
posed to understand the hyperalgesia induced by opioid

withdrawal, such as morphine receptors (MORs) [6, 7],
N-methyl-D-aspartate receptors (NMDA-R) [8], and tran-
sient receptor potential vanilloid-1 (TRPV1) [9]. However,
the precisemechanism underlying opioid withdrawal-induced
hyperalgesia is still unclear. Type 2X purinergic receptors
(P2X) are part of the P2 purinergic family of proteins and the
ligand-gated cation channels [10]. All P2X subtypes are
found on sensory neurons, and P2X3 receptors have the
highest level of expression (in terms of both mRNA and
protein) on small nociceptive sensory neurons in dorsal root
ganglia (DRG) [11]. Observations with antagonists selective
for P2X3 receptors [12] and models of P2X3 receptor
knockout mice [13] have confirmed that P2X3 receptors play
an important role in chronic neuropathic pain [14]. Many
studies have found that P2X3 receptors are upregulated in
the DRG of chronic neuropathic pain models [15]. In
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addition, we demonstrated that the expression of P2X3
receptors in the DRG was increased obviously in the de-
velopment of peripheric hyperalgesia induced by heroin
withdrawal in heroin SA rats [16].

Electroacupuncture (EA) is a procedure in which fine
needles are inserted into an individual at discrete points, and
then electrical stimulation is applied, aiming to relieve
chronic pain [17]. Our previous study and other reports have
demonstrated that 2Hz EA has analgesic effects in vivo
[18, 19]. The USA National Acupuncture Detoxification
Association reported that EA could prevent the development
of morphine tolerance in rats [20]. Previous studies by our
groups and others also found that 2Hz EA treatment could
significantly reduce conditional cue-induced heroin-seeking
in heroin SA rats [21, 22].

There is still a lack of evidence to support the notion that
2Hz EA reduces heroin relapse via its analgesic effect by
affecting the expression of P2X3 receptors in the DRG.
Therefore, in the present study, 2Hz EA was adopted to treat
heroin SA model rats. The rate of heroin relapse was
evaluated with a reinstatement experiment, and the pain
sensitivities were examined using paw thermal and me-
chanical withdrawal tests. The expression of P2X3 receptors
in the DRG was observed using immunofluorescence. Our
results will partly elucidate the analgesic effect of 2Hz EA
that may assist in suppressing heroin relapse and the po-
tential mechanism through P2X3 receptors in the DRG.

2. Materials and Methods

2.1. Animals. Male Sprague Dawley rats, weighting 275–
300 g at the beginning of the experiments, were purchased
from Vital River Laboratory Animal Technology Co., Ltd,
Beijing, China. The animals were maintained under a 12 h
reversed light/dark cycle (with darkness starting from 8:00
am) with controlled room temperature and humidity. Tap
water was made available ad libitum, and food was restricted
to 20 g per day to keep animal weight constant [23, 24]. All
procedures were performed in accordance with the National
Institutes of Health Guide for the Care and Use of Labo-
ratory Animals and with the approval of Animal Care and
Use Committee of Jianghan University.

2.2. Heroin Self-Administration Rat Model. The heroin self-
administration rat model that represented heroin relapse
behaviours and was used to induce hyperalgesia was devel-
oped with a progressive fixed ratio programme. Experimental
apparatus, procedures for surgery, and self-administration
training were described in our previous report [23].

In short, after a vein intubation operation, heroin SA
training was carried out in operant chambers encased in
sound- and light-attenuating cubicles, which were equipped
with fans that provided ventilation (AniLab Software &
Instruments Co., Ltd., Ningbo, China). Animals were
allowed to self-administer heroin (30 μg/kg per infuse)
under a fixed ratio 1 (FR 1) schedule of reinforcement, and
we observed nose pokes for 3 h each day. The acquisition

sessions were carried out until stable heroin intake was
reached (typically within 10–12 days). Twenty-four rats
developed a stable pattern of heroin intake. Thereafter, these
rats were randomly divided into three groups (n� 8 per
group): a heroin-addicted group, a sham EA group, and a
2Hz EA group. The same experimental procedures were
used for the rats in the control group (n� 8) except the
heroin was substituted with the same volume of saline.

2.3. Extinction and 2Hz EA Treatment. The rats were ab-
stinent from heroin for two weeks, during which time they
lived in their individual home cages. Heroin-reinforced
behaviours can be extinguished, which, in most cases, took
place around days 12–14 after abstinence from heroin. At the
same time, the rats in the 2Hz EA group were treated with a
2Hz EA stimulus (1mA and 0.1ms pulse width) for 30min
on the zusanli (ST36) and sanyinjiao (SP6) acupoints every
day during the extinction period according to methods
reported in the literature [25]. In other words, rats were kept
in special canvas holders with their hind legs and tails ex-
posed. Two 0.3mm diameter stainless steel needles were
inserted into each hind leg in the acupoints ST36 (5mm
lateral to the anterior tubercle of the tibia) and SP6 (3mm
proximal to the superior border of the medial malleolus, at
the posterior border of the tibia). The anatomical location of
acupuncture points stimulated in rats corresponded to the
acupoints in rat as described previously [21]. Constant
current electric stimulation produced by modified current-
constant Han’s Acupoint Nerve Stimulator (LH202; Huawei
Co Ltd, Beijing, China) was administered via the two nee-
dles. The frequency of stimulation used was 2Hz. The in-
tensity of the stimulation was 1.0mA, lasting for 30min.
Rats of the sham EA group were treated with an acupuncture
stimulus for 30min on the same acupoints every day during
the extinction period without electrical stimulation.

2.4. Reinstatement. After extinction, cue-induced rein-
statement was examined to verify whether the addictive
behaviour was successfully induced. During testing, the rats
were reintroduced to the operant cages for 2 h training. At
the beginning of the training, the rats were administered a
conditioned cue priming (the house light extinguished, and
the injection pump noise and the red nose poke light were
turned on). A single active nose poke was obtained with
conditioned cue priming, but no heroin injection. The
number of active nose pokes and inactive nose pokes was
recorded.

2.5. Nociceptive Behavioural Test. Thermal and mechanical
nociceptive responses were used to verify whether noci-
ceptive behaviour was induced and assessed using a dynamic
plantar instrument with a radiant heat source and von Frey
hairs, respectively (UGO Basile, Comerio, Italy). Evaluation
of paw withdrawal thresholds (PWTs) was performed
according to the methods described in the literature [19].
Concretely, the rats were acclimatized to the apparatus that
consisted of three individual perspex boxes on a glass table.
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Amobile radiant heat source was located under the table and
focused onto the desired paw, and the heat was increased
gradually until a withdrawal response was evoked, and the
latency of heat needed to cause the withdrawal response was
recorded. In order to prevent tissue damage, an automatic
cutoff at 30 sec was set. Rats were also placed on a wire mesh
floor in clear cylindrical plastic enclosures. Following 20min
of acclimation, a von Frey filament was placed on the plantar
surface of the right hind paw and the force was increased
gradually until a withdrawal response was evoked, and the
amount of force needed to cause the withdrawal response
was recorded. The threshold, expressed in second or grams,
was considered the time or force that induced a withdrawal
response, with a 30 s or 50 g limit. Each trial was repeated 3
times at approximately 5-minute intervals, and the mean
value to produce a withdrawal response was determined.

Testing was conducted before drug exposure (baseline,
BL), extinction/EA treatment, and after cue-induced rein-
statement. The experimental timeline and details are illus-
trated in Figure 1.

2.6. Immunohistochemical Staining. Immediately after no-
ciceptive behavioural testing, the rats were systemically
perfused with 4% paraformaldehyde during 2–3% iso-
flurane-induced anesthesia. The L5-6 DRG were then iso-
lated and postfixed overnight in 4% paraformaldehyde in
PBS. After paraffin embedding, DRG paraffin tissue blocks
were cut into 4 μm thick slices. After dewaxing and rehy-
dration, microwave antigen retrieval, and endogenous
peroxidase blocking, slices were incubated with rabbit anti-
P2X3 (1 : 200 dilution; Alomone Labs, Jerusalem, Israel) and
diluted in PBS overnight at 4°C. After 3 rinses in PBS, the
sections were incubated with fluorescent secondary antibody
(1 : 200 dilutions; Abcam, Cambridge, UK) in the dark at
37°C for 40min. After three washes again in PBS, sections
were mounted and covered with glycerol. The sections were
examined with fluorescence microscopy (Olympus BX51,
Japan), and photographs were taken with a filter set for Cy3
(excitation 540–580 nm/emission 560–620 nm). The optical
densities of P2X3 were counted in a blind fashion on 16–20
randomly selected L5-6 DRG sections from 8 animals per
condition. The results are expressed as relative optical
density from these sections. Negative controls in which PBS
was used instead of the primary antibody were processed in
the same manner.

2.7. Statistical Analyses. All the results are expressed as the
mean± SEM. The statistical significance of the results was
analysed using one-way or two-factor repeated ANOVA. All
statistical analyses were performed using SPSS forWindows,
version 11.5 (SPSS Inc., Chicago, IL, USA). When signifi-
cance was found using ANOVA procedures, post hoc an-
alyses were conducted using the Fisher LSD test. p< 0.05 was
considered statistically significant.

3. Results

3.1. Effects of 2Hz EA on Conditional Cue-Induced Heroin
Reinstatement. The heroin self-administration rat model

represented heroin relapse behaviours, which were developed
with a progressive fixed ratio programme. The experimental
apparatus, procedures for surgery, and self-administration
training followed our previous report [23]. As shown in
Figure 2, the number of active nose pokes (representing
conditional cue-induced reinstatement) significantly in-
creased in the heroin-addicted group and sham EA group
when compared to that in the control group (p< 0.01). The
number of active nose pokes significantly decreased in the
2Hz EA group compared with that in the heroin-addicted
group (p< 0.01). In contrast, no significant differences
(p> 0.05) were observed in the number of inactive nose pokes
during reinstatement among the control, heroin-addicted,
sham EA group, and 2Hz EA groups, which suggested that
rats retained good discrimination between active nose pokes
and inactive nose pokes. These results indicated that a suc-
cessful heroin-addicted rat model was verified, and 2Hz EA,
but not sham EA treatment, significantly reduced the con-
ditional cue-induced reinstatement behaviours in heroin-
addicted rats.

3.2. Effects of 2Hz EA on Thermal and Mechanical
Hypersensitivity. Hyperalgesic responses were measured
on the d − 1 prior to heroin self-administration (baseline),
on d 10 prior to extinction and 2Hz EA treatment, and
after d 24 cue-induced reinstatements. As shown in Figure 3,
whether it is on d − 1 or on d 10, there were no significant
group differences so as to the thermal nociceptive threshold
and mechanical withdrawal threshold.

As illustrated in Figure 3(a), after reinstatements, the
thermal nociceptive threshold of heroin-addicted rats was
significantly decreased compared with that of the control
group (p< 0.01), indicating the development of thermal
hypersensitivity. Interestingly, the thermal threshold in the
2Hz EA-treated group increased significantly compared
with that in the heroin-addicted rats (p< 0.05). Similar
results were observed in mechanical withdrawal threshold
measurements. As illustrated in Figure 3(b), the mechanical
withdrawal threshold of heroin-addicted rats was signifi-
cantly decreased compared with that of the control group
(p< 0.01), indicating the development of mechanical hy-
persensitivity. Similarly, the mechanical thresholds in the
2Hz EA-treated group also increased significantly compared
with those in the heroin-addicted rats (p< 0.01). There was
no significant difference in either thermal or mechanical
withdrawal threshold between the sham EA group and the
heroin-addicted group (p> 0.05). Our results indicated that
2Hz EA treatment could significantly reduce hyperalgesic
behaviours in heroin-addicted rats.

3.3. Effects of 2Hz EA on Expression of P2X3 Receptors.
P2X3 receptor expression in the L5∼6 DRG neurons was
observed using immunofluorescence (Figure 4). Immuno-
fluorescence pictures (Figure 4(a)) and image analysis
(Figure 4(b)) showed that the expression of the P2X3 re-
ceptor (average optical density) increased in heroin-addicted
rats compared with that in the control group (p< 0.01)
(n� 8 for each group). The average optical density of the

BioMed Research International 3



P2X3 receptor in the 2Hz EA therapy group reduced sig-
nificantly compared with that in the heroin-addicted rats
(p< 0.05). The P2X3 downregulation effect in the sham EA
group was not obvious (p> 0.05). It was suggested that 2Hz
EA treatment could significantly reduce the upregulated
expression of P2X3 receptors in the DRG in heroin-addicted
rats.

4. Discussion

There is still a lack of evidence to support the notion that
2Hz EA reduces relapse in heroin SA rats and that this
relapse reduction is associated with the analgesic effect that
occurs via affecting the expression of P2X3 receptors in the
DRG. In the present study, 2Hz EA was used to treat heroin
SAmodel rats. We demonstrated that 2Hz EA, but not sham
EA, reduced the hyperalgesia induced by heroin and con-
tributed to prevention relapse. This effect was partially as-
sociated with the downregulation of the expression of P2X3
receptors in the DRG. The neurobiological mechanisms
underlying opioid relapse and craving are complex [2].

Generally, both the mesocorticolimbic dopamine system
and the nigrostriatal dopamine system contribute to drug-
seeking [26]. Accumulated data have demonstrated that
hyperalgesia induced by opioid withdrawal might be one of
the important reasons for opioid relapse and craving [3–5,
27, 28]. Our previous study used a heroin SA rat model,
which is similar to the addictive behaviours of drug addicts
[29], to provide evidence of hyperalgesia in heroin relapse
rats [16]. EA is applied to relieve several kinds of chronic
pain in traditional Chinese medicine. It was demonstrated
that EA had an analgesic effect on different types of pain in
vivo [18, 19]. In the animal model, 2Hz EA significantly
attenuates morphine-induced conditioned place preference
(CPP) [30] and behavioural sensitization [31]. Yang et al.
[32] and Yoon et al. [33] reported that 2Hz EA can suppress
morphine and ethanol self-administration. Studies by our
group and others have also found that 2Hz EA treatment
could significantly reduce conditional cue-induced heroin-
seeking in heroin SA rats [21, 22]. Therefore, although other
electroacupuncture frequencies (such as 100Hz) may also
have a certain analgesic and prevention effect on relapse
[34], only the influence of low frequency (2Hz) has been
investigated in our present study.

In the present study, the effects of 2Hz EA on rein-
statement and thermal andmechanical hypersensitivity were
chosen to explore whether 2Hz EA could inhibit heroin-
induced hyperalgesia and suppress cravings.

In fact, we found that the thermal and mechanical
hyperalgesia in the 2Hz EA-treated group were decreased
significantly compared with that in heroin-addicted rats.
Additionally, 2Hz EA treatment significantly reduced
conditional cue-induced reinstatement behaviour in heroin-
addicted rats. These data suggested that 2Hz EA could
inhibit hyperalgesia induced by heroin withdrawal and re-
duce relapse behaviours in heroin-addicted rats. P2X3 re-
ceptors in the DRG play an important role in nociceptive
transduction during chronic neuropathic and inflammatory
pain but are seldom discussed in hyperalgesia induced by
heroin addiction. Previous work has shown that the process
of P2X3 receptor antagonism inhibits inflammatory
hyperalgesia and involves the spinal opioid system [35]. In
addition, P2X3 receptor antagonists can block and reverse
spinal morphine tolerance [36]. It is suggested that the P2X3
receptor might play an important role in opioid- (including
heroin-) induced periphery hyperalgesia. Our previous
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Figure 1: Experimental timeline and diagram of the heroin self-administration (SA) and pain behavioural tests (thermal and mechanical
nociceptive responses). Pain behavioural tests were performed on d − 1 prior to heroin self-administration, on d 10 prior to extinction and
2Hz EA treatment, and after d 24 cue-induced reinstatements.
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Figure 2: 2Hz electroacupuncture treatment attenuated condi-
tioned cue-induced reinstatement in rats. Values are given in
mean± SEM of eight animals. ∗∗p< 0.01, as compared with the
control group; ##p< 0.01, as compared with the heroin-addicted
group.
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study demonstrated that the hyperalgesia developing in
heroin relapse rats and the expression of P2X3 receptors in
DRG increased correspondingly [16]. Generally, the in-
hibitory effects of 2Hz EA on the expression of the opioid-
induced relapse might be mediated by µ- and δ-opioid
receptors, possibly via accelerating the release of enkeph-
alin [30]. Reports also showed that the analgesic effect of
EA was closely correlated with purines and purinergic
receptors [37]. Furthermore, 2 Hz EA was shown to induce
an apparent analgesic effect by inhibiting the expression of
P2X3 receptors in DRG neurons of a CCI rat model [38].
The present study found that 2 Hz EA could significantly
reduce the expression of P2X3 receptors in the DRG of
heroin-addicted hyperalgesic rats. Our results indicated
that 2Hz EA might be an effective method to treat

hyperalgesia induced by heroin, and this effect might be
closely associated with the inhibition of the expression of
P2X3 receptors in the DRG.

It is worth noting that the total DRG cell was further
divided into three subgroups: small cell, medium cell, and
large cell (the diameter of these cell subgroups were about
10–20 μm, 20–40 μm, and more than 40 μm, respectively).
The current type of recorded slow, intermediate (or mixed),
and fast types of ATP-activated current was correlated well
with cell size and performed different functions and P2X3
mainly expressed on small nociceptive neurons mediated
fast types of ATP-activated current according to others
[39–41] and our [42] previous research results. In addition,
not only neuronal pathways, but Schwann cells, satellite cells
in the dorsal root ganglia, even of the peripheral immune
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Figure 3: 2Hz electroacupuncture treatment reversed the thermal (a) andmechanical (b) hypersensitivity after reinstatement in rats. Values
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Figure 4:The differences of P2X3 receptor expressions in L5∼6 DRGs neurons in the different groups.The immunofluorescence pictures (a)
and histogram (b) of P2X3 receptors showed that expressions of P2X3 receptors increased in heroin-addicted rats and reduced in the EA
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system, microglia, and astrocytes also involved in the de-
velopment of neuropathic pain [43]. Both the expression
difference of P2X3 receptor from the perspective of DRG size
or from the perspective of satellite glial cells and other
nonneurons are all very interesting questions; we will pay
further attention to in the follow-up studies.

5. Conclusions

In summary, we showed that heroin SA rats exhibited
hyperalgesia and had increased the expression of P2X3
receptors in the DRG. 2Hz EA could effectively inhibit
hyperalgesia induced by heroin withdrawal and reduce re-
lapse behaviours in heroin-addicted rats. The expression of
P2X3 receptors in the DRG decreased correspondingly. It
was possible that P2X3 receptors were potential peripheral
targets related to hyperalgesic states induced by heroin
withdrawal. 2Hz EA might be an effective method for
treating hyperalgesia induced by heroin withdrawal and
suppressing heroin relapse partly via regulating P2X3 re-
ceptor expression in the DRG. Further study is needed to
elucidate the potential mechanism of 2Hz EA’s effect on
relapse.
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