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PPIs represent an important resource in

bioinformatics. A major challenge is to

extend our knowledge of PPIs, which are

highly relevant for the development of

novel virus-like particles that can deliver

therapeutics to targeted cells and tissues.

Here, we use these PPI databases and the

protein sequence information to train

deep Siamese neural network

architecture while using transfer learning

and apply them to predict new virus-host

PPIs with high accuracy.
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THE BIGGER PICTURE The development of novel cell and tissue-specific therapies requires a profound
knowledge about protein-protein interactions (PPIs). Identifying these PPIs with experimental approaches
such as biochemical assays or yeast two-hybrid screens is cumbersome, costly, and at the same time diffi-
cult to scale. Computational approaches can help to prioritize huge amounts of possible PPIs by learning
from biological sequences plus already known PPIs. In this work, we developed an approach that is based
on recent deep protein sequence embedding techniques, whichwe integrate into a Siamese neural network
architecture. We use this approach to train models by using protein sequence information and known PPIs.
We apply the models to two use cases to predict virus protein to human host interactions. Altogether our
work highlights the potential of deep sequence embedding techniques as well as explainable artificial intel-
ligence methods for the analysis of biological sequence data.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Prediction and understanding of virus-host protein-protein interactions (PPIs) have relevance for the devel-
opment of novel therapeutic interventions. In addition, virus-like particles open novel opportunities to deliver
therapeutics to targeted cell types and tissues. Given our incomplete knowledge of PPIs on the one hand and
the cost and time associated with experimental procedures on the other, we here propose a deep learning
approach to predict virus-host PPIs. Our method (Siamese Tailored deep sequence Embedding of Proteins
[STEP]) is based on recent deep protein sequence embedding techniques, which we integrate into a Siamese
neural network. After showing the state-of-the-art performance of STEP on external datasets, we apply it to
two use cases, severe acute respiratory syndrome coronavirus 2 and John Cunningham polyomavirus, to
predict virus-host PPIs. Altogether our work highlights the potential of deep sequence embedding tech-
niques originating from the field of NLP as well as explainable artificial intelligence methods for the analysis
of biological sequences.
INTRODUCTION

Viral infections can cause severe tissue-specific damage to hu-

man health. In case of the infection of brain cells, severe neuro-

logical disorders can be the consequence.1 Accordingly, predic-
This is an open access article under the CC BY-N
tion and understanding of tissue-specific virus-host interactions

is important for designing targeted therapeutic intervention stra-

tegies. At the same time virus-like particles (VLPs), such as John

CunninghamVLPs, open novel opportunities to deliver therapeu-

tic compounds to targeted brain cells and tissues, because
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these proteins have the ability to cross the blood-brain barrier.2

Hence, it is also relevant from a therapeutic perspective to know

the binding of VLPs to potential drug receptors in the brain.

The knowledge about virus-host interactions covered in data-

bases like VirHostNet3 is limited. While various experimental ap-

proaches exist to measure PPIs, including yeast two-hybrid

screens, biochemical assays, and chromatography,4 these

methods are often time consuming, laborious, costly, and diffi-

cult to scale to large numbers of possible PPIs. Thus, computa-

tional methods have been proposed that use various types of

protein information to predict PPIs. Older approaches focused

on predicting PPIs either using structure and/or genomic context

of proteins.5 Other approaches6,7 suggested classical machine

learning algorithms (such as support vector machines) in combi-

nation with manually engineered features derived from protein

sequences to predict PPIs.

In recent years, deep learning-based approaches8–11 have

become popular and have increasingly superseded traditional

machine learning approaches for the prediction of PPIs. Often

these approaches use known PPIs from established PPI data-

bases (e.g., BioGrid, IntAct, STRING, human protein references

database, VirHostNet)3,12–15 to generate datasets to train deep

neural network architectures. Some of thesemethods use recent

network representation learning techniques to complete a

known virus-host PPI graph.16 Other authors focused on protein

sequences to predict PPIs. For example, Sun et al.8 and Wang

et al.9 proposed using a stacked autoencoder. Chen et al.17

developed a deep learning framework using a Siamese neural ar-

chitecture to predict binary and multi-class PPIs. Tsukiyama

et al.10 recently proposed a long short-term memory (LSTM)-

based model on top of a classical word2vec embedding of

sequences to predict human-virus PPIs by using protein se-

quences. Using the same embedding technique, Liu-Wei

et al.18 developed an approach that predicts host-virus PPIs

for multiple viruses considering their taxonomic relationships.

In the last few years, transfer learning-based approaches from

the natural language processing (NLP) area have massively

impacted the field of protein bioinformatics.19–21 These methods

are trained on a huge amount of protein sequences to learn infor-

mative features of protein sequences. For instance, Elnaggar

et al.19 used 2.1 billion protein sequences for the pre-training

of ProtTrans, a collection of transformer models originally stem-

ming from the NLP field. Such methods allow the transformation

of a protein sequence into a vector representation, which can

subsequently be used efficiently for various downstream tasks,

e.g., protein family classification.22 There are several advantages

of using the available pre-trained transformer models, such as

avoiding the error-prone design of hand-crafted features to

encode protein sequences and, correspondingly, a much more

efficient development of new AI models with a potentially higher

prediction performance.

In this article, we introduce a novel deep learning architecture

combining the recently published ProtBERT19 deep sequence

embedding approach with a Siamese neural network to predict

PPIs by using the primary sequences of protein pairs. While

recent publications generally follow a similar strategy, they

have used more traditional sequence embedding methods.10

To our knowledge, our work thus constitutes the first attempt

to evaluate the use of the most recent, pre-trained transformer
2 Patterns 3, 100551, September 9, 2022
models to obtain a deep learning-based biological sequence

embedding for PPI prediction. After evaluating the promising

prediction performance of our method (Siamese Tailored deep

sequence Embedding of Proteins [STEP]), we use it for two

cases: (i) predicting interactions of the John Cunningham polyo-

mavirus (JCV) major capsid protein VP1 (UniProt:P03089) with

human receptors in the brain, and (ii) predicting interactions of

the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) spike glycoprotein (UniProt:P0DTC2) with human recep-

tors. Predicted interactions in both cases demonstrate a clear

interpretation in the light of existing literature knowledge, hence

supporting the biological relevance of predictions made by our

method.

In this study, we make four contributions to the state-of-the-

art. First, we construct a novel deep learning architecture

STEP for virus-host PPI prediction that requires only the protein

sequences as the input and discards the need of handcrafted or

other types of features. Second, we demonstrate that using

transformer-based models for PPI prediction achieves at least

state-of-the-art performance for PPI prediction. In computer

vision and NLP, such transformer-based models have shown

that they are well suited for learning contextual relationships

hidden in sequential data. However, these have not yet been

applied to the field of PPI prediction. Hence, we use and build

on the huge effort of Elnaggar et al.,19 who published a pre-

trained ProtBERT model that was trained on more than 2 billion

amino acid sequences. In addition, we demonstrate that using

transfer learning in STEP achieves state-of-the-art performance,

for which we evaluated STEP onmultiple publicly available virus-

host and host-host PPI datasets. Third, we predict interactions

for two viruses that are known to cause serious diseases and

provide an interpretation on those predictions demonstrating

the support through existing literature knowledge. Last, we

show how experimental explainable AI (XAI) techniques could

be used to identify regions in protein amino acid sequences

that attribute to the prediction of PPI.

RESULTS

Comparative evaluation of STEP with state-of-the-
art work
We performed a head-to-head comparison of our STEP archi-

tecture (Figure 2) on three different datasets published by Tsu-

kiyama et al.,10 Guo et al.,23 and Sun et al.8 Tsukiyama et al.10

recently published the LSTM-PHV Siamese model, which uses

a more traditional word2vec sequence embedding. The dataset

published by the authors consists of host-virus PPIs that were

retrieved through the Host-Pathogen Interaction Database24

3.0. In total, the dataset consists of 22,383 PPIs with 5,882 hu-

man and 996 virus proteins. Additionally, it includes artificially

sampled negative instances with the positive to negative ratio

of 1:10. The authors themselves compared LSTM-PHV on their

dataset against a random Forest approach by Yang et al.25

Guo et al.23 published a yeast PPI dataset and used support vec-

tor machines to build a PPI detection model. Sun et al.8 created a

dataset using human protein references database, which con-

tains human-human PPIs. Tsukiyama et al.10 and Guo et al.23

performed a five-fold cross-validation (CV) experiment, whereas

Sun et al.8 used a 10-fold CV setting. We evaluated our STEP



Table 1. Overview of the results of comparative evaluation of STEP on LSTM-PHV,10 yeast,23 and human PPI8 datasets

AUC AUPR F1 MCC

Comparative analysis on host-virus PPI dataset from Tsukiyama et al.10 via 5-fold CV

Tsukiyama et al.10 97.58% (±0.13%) 93.86% (±0.35%) 91,00% (±0.53%) 90.30% (±0.53%)

STEP (ours) 98.72% (±0.16%)* 95.71% (±0.51%)* 91.53% (± 0.65%)* 90.82% (±0.72%)*

Comparative analysis on single independent host-virus PPI test dataset from Tsukiyama et al.10

Yang et al.25 96.30% 81.00% 72.40% 69.70%

Tsukiyama et al.10 97.30% 93.80% 91.10%* 90.40%*

STEP (ours) 98.50%* 94.50%* 89.69% 88.76%

Comparative analysis on Yeast PPI dataset from Guo et al.23 via 5-fold CV

Guo et al.23 NA NA 87.34% (±1.33) 75.09% (±2.51%)

Chen et al.17 NA NA 97.09% (±0.23%) 94.17% (±0.48%)

STEP (ours) 99.61% (±0.10%) 99.58% (±0.17%) 97.37% (±0.27%)* 94.77% (±0.54%)*

Comparative analysis on Human PPI dataset from Sun et al.8 via 10-fold CV

Sun et al.8 NA NA 97.15% NA

STEP (ours) 99.74% (±0.03%) 99.66% (±0.04%) 98.84% (±0.09%)* 97.67% (±0.18%)

NA, not available in original publication.

For LSTM-PHV and Yeast PPI datasets, we applied a 5-fold CV similar to the authors of the given studies. For the Human PPI dataset of Sun et al.,8 we

applied a 10-fold CV for training the STEP models. The highest values are marked with asterisks. More details of each experiment can be found in

Tables S1–S3.
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architecture using the exact same datasets with the exact same

data splits as the authors of the compared methods. STEP was

initialized with the hyperparameters shown in Table S1. Table 1

shows the results of all experiments, demonstrating at least

state-of-the-art performance of our method. Additionally, we

can conclude that our approach compared on exactly the

same data published by Tsukiyama et al.10 performs similar to

their LSTM-PHV method and better than the approach by

Yang et al25

Finally, we also evaluated our STEP architecture on two addi-

tional tasks, namely, PPI type prediction and a PPI binding affin-

ity estimation using the data and the CV setup provided by Chen

et al.17 For both tasks, we reached at least state-of-the-art per-

formances with our approach (see Note S1.1. and Table S4).

Prediction of JCV major capsid protein VP1 interactions
We split the brain tissue-specific interactome dataset including

all positive and pseudo-negative interactions into training

(60%), validation (20%), and test (20%) datasets. The validation

set was used for tuning hyperparameters of the model only (see

Table S5). After tuning on the validation set, we used our best

model tomake predictions on the hold-out test set. Figure 1 illus-

trates the area under receiver operator characteristic curve

(AUC) and precision-recall curve (AUPR). The model achieved

an AUC and AUPR of 88.78% and 88.32% on the unseen test

set, respectively. Also, on an extended test set with a ratio

1:10 of positive to pseudo-negative samples the results are quite

stable (see Table S6).

We used this STEP-brain model to predict interactions of the

JCV major capsid protein VP1 with all human receptors. Table 2

shows the top 10 predicted interactions that are ranked by the

score retrieved by the logistic output function of the model.

File S3 contains all the predicted interactions. According to the

method of integrated gradients, large parts of the VP1 sequence
contribute to our model’s prediction of the PPI with the top

ranked receptor KIAA1549 (Figure S4). More specifically, signal

peptide N-regions in KIAA1549 negatively contribute to the pre-

dicted class, whereas the beginning of the non-cytoplasmic

domain region is contributing positively.

Altogether, we observed a strong enrichment of VP1 interac-

tions predicted with olfactory, serotonin, amine, taste, and

acetylcholine receptors (Figure S2). Notably, neurotransmitter

(and specifically serotonin) receptors have previously been sug-

gested to be the entry of the virus into myelin-producing glial

brain cells,26 causing progressive multifocal leukoencephalop-

athy as a fast progressing and life-threatening neurodegenera-

tive disorder.27 Furthermore, we found an enrichment of tyrosine

kinase activity (Figure S3), which is in line with the fact that tyro-

sine kinase inhibitors have been suggested as therapy against

JCV.28,29

We further performed an enrichment analysis with InterPro30

protein domains for the predicted interactions between JCV

major capsid protein VP1 and human receptors (Figure S5,

Table S7). In line with the gene ontology (GO) enrichment anal-

ysis, the two top-ranked protein domains Inter-Pro:IPR006029

and Inter-Pro:IPR006202 are neurotransmitter-gated ion

channel transmembrane domains that open transiently upon

binding of specific ligands, which then allow transmission

of signals at chemical synapses.31,32 Furthermore, the recep-

tor-type tyrosine-protein phosphatase/carbonic anhydrase

domain is enriched, which is in line with the enrichment of tyro-

sine kinase activity found via GO analysis. The enriched do-

mains Inter-Pro:IPR013106 (immunoglobulin V-set domain)

and Inter-Pro:IPR007110 (immunoglobulin-like domain) are

both immunoglobulin-like domains that are involved in cell-

cell recognition, cell surface receptors, and immune system

response,33 which play a role in the recognition of a virus

protein.
Patterns 3, 100551, September 9, 2022 3



Figure 1. Receiver operator characteristic (ROC) curve (left) andAUPR (right) obtained by applying the STEP-brainmodel on unseen test data
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Prediction of SARS-CoV-2 spike glycoprotein
interactions
We performed a nested CV procedure on the given SARS-CoV-2

interactions dataset. We used five outer and five inner loops to

validate the generalization performance and while performing

the hyperparameter optimization in the inner loop. In each outer

run, we created a stratified split of the interactome into train (4/5)

and test (1/5) datasets. In the nested run, we further split the

outer train dataset into train (1/5) and validation (1/5) datasets,

which were used to optimize the hyperparameters of the model

using the respective training data. The performance of the clas-

sifiers was evaluatedwith AUC andwas averaged over all nested

runs. The best identified hyperparameters (see Table S8) were

used to train the models in the outer loop. We retrieved a final

generalization performance of 83.42% (±3.91%) AUC and

84.02% (±4.58%) AUPR that was calculated by averaging the

prediction results of the outer loop (see Table 3). On an extended

test set with a ratio 1:10 of positive to pseudo-negative samples,

the results are stable for the AUC; however, the AUPR decreases

significantly (Tables S9 and S10).

We used the STEP-virus-host model obtained from the best

outer fold to predict interactions of the SARS-CoV-2 spike pro-

tein (alpha, delta, and omicron variants) with all human receptors

that were not already contained in VirHostNet (see Tables S11–

S13). File S4 contains all the predicted interactions for the omi-

cron variant. Interestingly, for all virus variants the sigma intracel-

lular receptor 2 (GeneCards:TMEM97; UniProt:Q5BJF2) was the

only one predicted with an outstanding high probability (of >70%

in all cases) (Tables S11–S13). The sigma 1 and 2 receptors are

thought to play a role in regulating cell survival, morphology, and

differentiation.34,35 In addition, the sigma receptors have been

proposed to be involved in the neuronal transmission of SARS-

CoV-2.36 They have been suggested as targets for therapeutic

intervention.37–39 Our results suggest that the antiviral effect

observed in cell lines treated with sigma receptor binding ligands

might be due to a modulated binding of the spike protein, thus

inhibiting virus entry into cells. In this context, an analysis via

the integrated gradients method shows that only parts of the

sigma 2 receptor and the SARS-CoV-2 spike protein contribute

to our model’s prediction of the PPI (Figure S6). More specif-

ically, the non-cytoplasmic domain and EXPERA domains

demonstrate positive integrated gradient scores, i.e., the exis-
4 Patterns 3, 100551, September 9, 2022
tence of these domains influences our model to make the ac-

cording prediction.

DISCUSSION

Huge advancements have been made recently by applying deep

learning algorithms from NLP to protein bioinformatics. Protein

language models such as ProtTrans and ProtBERT,19 which

are trained on billions of protein sequences, learn informative

features through the transformation of sequences to vector rep-

resentations. These models previously showed their predictive

power in various tasks such as prediction of secondary structure

or classification of membrane proteins.19

In our work, we used ProtBERT within a specifically designed

Siamese neural network architecture to predict PPIs by only us-

ing the primary sequences of protein pairs. We trained our

models following a positive unlabeled (PU) learning scheme

and performed an extensive evaluation and hyperparameter

optimization of our models, demonstrating high prediction per-

formances for virus protein to human receptor interactions of

JCV and SARS-CoV-2. An additional head-to-head comparison

with the recently published method by Tsukiyama et al.10 using a

more traditional word2vec sequence embedding combined with

an LSTM unit revealed state-of-the-art prediction performance

of our STEP approach.

Interactions predicted by our proposed model between JCV

major capsid protein VP1 and receptors in brain cells showed

a strong enrichment of different neurotransmitters, including se-

rotonin receptors, which is in line with the current literature. For

the SARS-Cov-2 spike protein, our model interestingly predicted

for all virus variants an interaction with the sigma intracellular re-

ceptor 2, which might explain the cytopathic effects of sigma re-

ceptor binding ligands reported in the literature.38–40 In both

cases, recent techniques coming from the field of XAI allowed

us to interpret model predictions and identify those parts of pro-

tein sequences that, according to our model, mostly influence

the prediction of respective PPIs. Of course, a validation of these

predictions would require experimental procedures that are

beyond the scope of this article.

Altogether, our work demonstrates the potential of modern

deep learning-based biological sequence embeddings and

modern XAI techniques for bioinformatics. While in this article



Table 2. Top 10 predicted interactions of the JCVmajor capsid protein VP1 and human receptors ranked by the probability obtained by

our model

Rank

Receptor

protein ID Receptor protein name Score (in %) Associated GO molecular function

1 Q9HCM3 UPF0606 protein KIAA1549 99.31 –

2 O94991 SLIT and NTRK-like protein 5 99.09 protein binding

3 Q7Z443 polycystic kidney disease protein 1-like 3 98.68 calcium channel activity, sour taste receptor activity

4 O60840 voltage-dependent L-type calcium

channel subunit alpha-1F

98.63 high voltage-gated calcium channel activity, metal ion

binding

5 P13611 versican core protein 98.51 calcium ion binding, hyaluronic acid binding,

glycosaminoglycan binding, extracellular matrix structural

constituent conferring compression resistance

6 P23471 receptor-type tyrosine-protein

phosphatase zeta

98.33 protein tyrosine phosphatase activity, integrin binding,

protein binding, phosphatase activity, hydrolase activity,

phosphoprotein phosphatase activity, transmembrane

receptor protein tyrosine phosphatase activity

7 Q8N2Q7 neuroligin-1 98.33 neurexin family protein binding, signaling receptor activity,

identical protein binding, cell adhesion molecule binding,

scaffold protein binding, PDZ domain binding,

amyloid-beta binding

8 Q9BZV3 interphotoreceptor matrix proteoglycan 2 98.23 heparin binding, hyaluronic acid binding, extracellular

matrix structural constituent

9 P41968 melanocortin receptor 3 98.19 peptide hormone binding, G protein-coupled receptor

activity, melanocyte-stimulating hormone receptor activity,

neuropeptide binding, melanocortin receptor activity

10 P23470 receptor-type tyrosine-protein

phosphatase gamma

98.14 protein tyrosine phosphatase activity, identical protein

binding, phosphatase activity, transmembrane receptor

protein tyrosine phosphatase activity, hydrolase activity,

phosphoprotein phosphatase activity
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we focused on JCV and SARS-CoV-2, our proposed model

could in future work be easily trained to predict interactions of

other viruses as well and, thus, contribute to the emerging set

of computational methods that might help to respond to future

epidemic and pandemic situations more effectively. In addition,

there is the potential to use our method in the context of modern

drug development approaches, which use virus-like particles to

deliver compounds to specific tissues and receptors.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for code and data should be directed to and

will be fulfilled by the lead contact, Holger Fröhlich (holger.froehlich@scai.

fraunhofer.de).

Materials availability

This study did not generate any physical materials.

Data and code availability

The data and source code are available at https://github.com/SCAI-

BIO/STEP.

Construction of datasets

Primary data sources

The following primary resources were used to create training and test datasets

in this work:

1. UniProt protein sequence dataset41 containing human protein se-

quences.

2. UniProt mapping dataset41 containing mappings to other databases.
3. VirHostNet dataset3 including virus-host interactions of SARS-CoV-2

spike glycoprotein.

4. PPT-Ohmnet dataset42 (https://snap.stanford.edu/biodata/datasets/

10013/10013-PPT-Ohmnet.html, accessed November 18, 2021) con-

taining brain tissue-specific protein-protein-interactions.

5. The GO43 receptor protein dataset containing annotation of proteins

as receptors and parts of protein complexes.

6. Sequences of JCV major capsid protein VP1 (https://www.uniprot.

org/uniprot/P03089, accessed on 18 November 2021) and SARS-

CoV-2 spike glycoprotein (https://www.uniprot.org/uniprot/P0DTC2,

accessed November 18, 2021).

7. Pathogen-host PPI training and test set provided by Tsukiyama et al.10

(http://kurata35.bio.kyutech.ac.jp/LSTM-PHV/download_page, ac-

cessed November 18, 2021) (used for comparative analysis).

8. Yeast PPI dataset from Guo et al.23 (used for comparative analysis).

9. Human PPI dataset from Sun et al.8 (used for comparative analysis).

10. PPI type prediction dataset SHS27k from Chen et al.17 (used for

comparative analysis).

11. PPI binding affinity estimation dataset from Chen et al.17 (used for

comparative analysis).

Construction of brain-specific protein-protein interactome dataset

We chose the PPT-Ohmnet database42 that includes tissue-specific human

PPIs collected from various sources. PPT-Ohmnet only takes physical PPIs

into account that are supported by experimental evidence (https://snap.

stanford.edu/biodata/datasets/10013/10013-PPT-Ohmnet.html). More spe-

cifically, interactions contained in PPT-Ohmnet were collected from various

curated databases such as TRANSFAC, IntAct, and MINT.44 The tissue infor-

mation for an interaction was inferred through the low-throughput tissue-spe-

cific gene expression data.45 The protein-protein interactome can be consid-

ered as a graph, in which the proteins represent nodes and the interactions

between them are considered as edges. Furthermore, every edge contains
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Table 3. Results of the outer loop folds retrieved during the

nested CV of STEP-virus-host model by using the test set with a

ratio of 1:1 positive to pseudo-negative instances

Outer fold AUC AUPR

1 88.17% 89.93%

2 86.83% 88.62%

3 77.03% 77.73%

4 82.52% 81.67%

5 82.56% 82.15%

Mean 83.42% (± 3.91%) 84.02% (±4.58%)
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the information about the tissue type. In total, there are 144 tissue types with

4,510 proteins (nodes) and about 3,666,563 non-unique edges (interactions)

in the whole PPT-Ohmnet graph. More details about the creation and content

of the PPT-Ohmnet database can be found in Menche et al.44 and Greene

et al.45

We extracted all tissue types and manually filtered the ones specific for the

brain. In total, 36 brain-specific tissue types could be found from a total of 144

in the PPT-Ohmnet database (Figure S1). Using the information about brain

tissue specific co-expression of proteins, we filtered the PPT-Ohmnet

interactome. The final brain tissue-specific interactome contains 3,548 pro-

teins (nodes) and 977,990 non-unique edges (interactions). Furthermore, the

interactome contains 56,021 unique edges, from which 1,466 PPIs that

interact with themselves were excluded. In total, 54,555 PPIs were used for

further analysis. Figure S1 shows the distribution of proteins and their interac-

tions for each brain-specific tissue type. File S1 contains the brain-specific tis-

sue types.

We further enriched each interaction with information about the experi-

mental detection methods that were used. This information is not included in

PPT-Ohmnet; hence, we used BioGRID and IntAct as the two largest PPI da-

tabases to extract the experimental procedures, such as ‘‘pull down,’’ ‘‘two

hybrid,’’ by which the interactions were originally discovered. The list of exper-

imental procedures was further manually curated to filter out detection

methods considered as unreliable. Only PPIs detected by methods consid-

ered as reliable were used for further processing.

To train deep learning models, we retrieved the sequences of all proteins in

our PPIs from theUniProt database.We downloaded the human proteins data-

set from the manually curated part of UniProt—the so-called SwissProt.41

Next, we extracted for all proteins their sequences and metadata such as

name, ID, and label. In total, sequences for 20,396 human proteins could be

found. Finally, we filtered the PPIs and human receptor proteins for which

we found the sequences.

Construction of SARS-CoV-2 protein-protein interactome dataset

As a second dataset, we used the VirHostNet3 database to collect all PPIs be-

tween SARS-CoV-2 and human proteins. We extracted for all human and

SARS-CoV-2 proteins their sequences and metadata such as name, ID, and

label from SwissProt. Our VirHostNet interactome contained 334 PPIs

involving 338 proteins between SARS-CoV-2 and Homo sapiens.

Collection of human receptor proteins

To extract human receptor proteins, we first performed a search in GO for the

term ‘‘receptor.’’ The GO branch annotation ‘‘cellular components’’ was used

to filter only for proteins. The GO annotation ‘‘organism’’ was used to filter for

human proteins. In total, 2,075 results were found, in which 2,059 human re-

ceptor proteins and 16 human protein complexes were included. For further

analyses, we only focused on human receptor proteins, for which we retrieved

associated protein sequences from SwissProt. In total, sequences for 2,027

human receptor proteins could be found. File S2 includes the list of identified

human receptor proteins.

Preparation for PU learning

The goal of PPI detection is to learn amodel that is able to detect whether there

exists an interaction between two proteins. This task is often considered as a

binary classification problem that can be solved by training a classifier to

distinguish between positive and negative instances. However, the available

PPI databases just contain positive, true interactions. Interactions not listed
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in a PPI databasemight still exist, but are possibly unknown today. PU learning

is a scheme where a machine learning algorithm only has access to positive

and unlabeled instances.46,47 In PU learning all non-existent or unknown

PPIs can be considered as ‘‘unlabeled’’ or as ‘‘pseudo-negatives’’; however,

they might also contain an unknown fraction of positive instances. Therefore,

PU learning amounts to constructing a binary classifier that ranks instances

with respect to the positive class conditional probability.

A popular strategy of PU learning is to first focus on the selection of reliable

negative instances. In a second step, a conventional binary classifier is trained

on positive and selected negative instances.46 There are two types of strate-

gies to sample pseudo-negative instances: random sampling or similarity-

based sampling. With the random sampling strategy, the negative instances

are created by randomly exchanging one of the partners in an interaction pro-

tein pair. While the similarity-based sampling considers the sequence similar-

ity (or dissimilarity) of proteins. An example of this strategy is the dissimilarity-

random-sampling method,48 also used by Tsukiyama et al.,10 which follows

the hypothesis that, if two viral proteins have similar sequences, a human pro-

tein that interacts with one of them cannot be paired with the other as a nega-

tive example. A sampling of highly dissimilar negative samples might result in

overly optimistic classification performances.10 Therefore, in our work, we

applied the random sampling approach to create negative instances. A major

challenge in this context is the high-class imbalance between positive and un-

labeled training instances in our data. Hence, we decided to randomly sub-

sample an equal number of pseudo-negatives.

Architecture and transfer learning of STEP

We used a deep Siamese neural network architecture while using transfer

learning to learn relevant, latent features of PPI pairs based on protein

sequences.

ProtBERT: Pre-trained embeddings of protein sequences

ProtBERT19 is a pre-trained model trained on approximately 2 billion protein

sequences using a masked language modeling objective.49 It is based on

the BERT model49 that was developed for the natural language domain. Here-

by, ProtBERT considers protein sequences as sentences and the so-called

building blocks of proteins—amino acids—as vocabulary. The ProtBERT

model, specifically the BFD variant19 used in this work, consists of 30 layers

with 16 attention heads and 1,024 hidden layers. It was trained by using the

Lamb50 optimizer for around 23.5 days on 128 compute nodes each containing

1,024 tensor processing units. During training, the language model learns to

extract the biophysical characteristics of proteins from billions of protein

sequences.

Siamese neural network architecture

Given a pair of proteins, we first obtained their sequences. These sequences

were then fed into a Siamese model architecture (Figure 2), in which the pre-

trained ProtBERT model was used to obtain embeddings of both protein

sequences. There are various ways to infer the relation between sequence

embeddings. Some researchers focus on concatenation and others focus

on element-wise multiplication (also known as Hadamard product) of both

sequence embeddings. In this work, we implemented an integration layer

that uses the Hadamard product to combine the sequence embeddings, as

it is often found to be the most effective way to model symmetric characteris-

tics of proteins.17

Classification head for PU learning

On top of the integration layer, we added a classification head represented by

multiple hidden layers (Figure 2). We designed the classification head as a

bottleneck-shaped architecture with a combination of dropout and linear

layers, which ended in an output layer using a logistic function and thus al-

lowed to rank protein pairs as either more likely to interact (positive) or not

(negative). Notably, a network with bottleneck structure introduces a gradual

decrease of the number of neurons per layer that allows the network to focus

on relevant information and discards redundant or irrelevant information.

Evaluation criteria

We evaluated our models using an independent test dataset. This consisted of

a defined fraction of known PPIs taken at random and excluded from training

plus a specified fraction of pseudo-negatives that were not part of the training

set. The performance was measured using the AUC and the AUPR.

It should be re-emphasized that in our data negative samples are those pro-

tein pairs for which an interaction is unknown. Therefore, we evaluated the



Figure 2. Architecture of our STEP model that uses the Siamese neural network while using the ProtBERT embeddings
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ability of our models to enrich true positives at the beginning of a predicted

ranking of potential PPIs. This ability is exactly reflected by AUC and AUPR

measures, which are thus frequently used in the literature about PU learning.47

Notably, from a theoretical point of view the AUC estimated via PU learning

and the one from a fully labeled dataset are provably linearly correlated.51

Hyperparameter optimization

To tune our system, we performed an extensive Bayesian hyperparameter

optimization52 using the training data. Owing to the huge amount of training

time for a single trial, hyperparameter candidates were evaluated using a sin-

gle validation set consisting of a specified fraction of known PPIs plus an equal

amount of sub-sampled negatives. For each trial, intermediate and final perfor-

mances were assessed using the AUC measure and captured in an SQL

database for later analyses. The captured data were also used by the pruning

process of Optuna to stop unpromising trials at an early stage.53 Each optimi-

zation trial was executed on a 23 A100 NVIDIA GPUswith VMEMof 32 GB and

five trials were executed parallelly by using 103GPUs in total. The whole opti-

mization process took 10 full days by executing 116 trials in total. The evalu-

ated hyperparameter ranges and the best parameters are illustrated in

Tables S5 and S8.

Making STEP models explainable: An analysis of integrated

gradients

One of the main criticisms of modern deep learning approaches is their often-

perceived black box character. To address this concern, we aimed to under-

stand the influence of individual amino acids on model predictions. For that

purpose, we used the integrated gradients method,54 which offers an intuitive

and mathematically sound approach to explain predictions made by a deep

neural network. Integrated gradients require no modifications to the trained

model. Given an input sample (x˛Rn), integrated gradients rely on a base-

line/reference input sample (x0 ˛Rn), which we constructed using the concat-

enation of one class, multiple padding, and one separator token. For a STEP

model F : Rn/½0; 1�, integrated gradients are then obtained by accumulating

the partial derivatives vFðxÞ
vxi

with respect to input feature i while moving from the

reference x0 to the observed input x:54

IntegratedGradsiðxÞ =
�
xi � x0i

�
3

Z1

a = 0

vFðx0 +a3 ðx � x0ÞÞ
vxi

da

We used 1,000 steps to approximate the integrated gradients, as suggested

by Sundararajan et al.54 for highly nonlinear networks.

Gene set enrichment analysis

To better understand the biology of all ranked predictions in the individual use

cases, we performed a gene set enrichment analysis to investigate an enrich-

ment of gene sets listed in the Molecular Signatures Database55 (MsigDB). We

downloaded molecular function gene sets of the GO included as the collection

C5 from MsigDB (v7.4, MsigDB/c5.go.mf.v7.4.symbols.gmt and MsigDB/

c5.go.bp.v7.4.symbols.gmt). We considered a GO term to be statistically sig-

nificant if, after applying the multiple hypothesis testing correction with the

Benjamini-Hochberg method,56 its adjusted p value was less than 0.01.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100551.

ACKNOWLEDGMENTS
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