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Introduction
Hirschsprung’s disease (HSCR, or congenital intestinal 
aganglionosis), is a complex developmental disorder 
characterized by the absence of parasympathetic intrinsic 
ganglion cells in submucosal and myenteric plexuses 
of the hindgut.1,2 It is attributed to the failure of enteric 
neural crest cells to migrate, proliferate or differentiate 
in the bowel wall during embryogenesis, leading to the 
aganglionosis in lower gastrointestinal tract. Severity of the 
disease is classified into short-segment HSCR (S-HSCR: 
80% of cases) when the aganglionic segment is limited in 
the rectosigmoid colon, long-segment HSCR (L-HSCR: 
15% of cases) when aganglionosis extends to the sigmoid, 
and total colonic aganglionosis (TCA: 5% of cases) when 

the entire small and large intestines are aganglionic.2-4 
Disappearance of propulsive motility in the aganglionic 
bowel would result in chronic constipation, abdominal 
distension, growth failure and bilious vomiting,5,6 with 
a series of complications such as bowel perforation and 
enterocolitis. Even with surgical treatments removing and 
bypassing aganglionic bowel, about one-third of affected 
children still suffer from constipation, faecal incontinence 
or long-term enterocolitis.7-9

As a potentially fatal birth defect, the incidence of HSCR 
is about 1/5 000 live births, but varies across different 
ethnic groups, with the highest reported rate in Asians 
(2.8/10 000 live births).2,10 There is a strong male gender 
bias with a ratio of about 4:1.35, which is much higher in 
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S-HSCR [(4.2–4.4):1] than L-HSCR [(1.2–1.9):1].11 HSCR 
has been considered to be a sex modified multifactorial 
disorder, the effect of environmental factors (like vitamin 
A deficiency)12 just playing a minor role as compared to 
genetic factors with a relative risk of about 1/200.13 And 
the genetics of HSCR is complex. Syndromic HSCR, 
such as Mowatt-Wilson or Waardenburg Shah type 4, 
presents a Mendelian mode of inheritance, while isolated 
HSCR (>70% of cases) appears to be of non-Mendelian 
inheritance with low penetrance.9 For cases with L-HSCR 
or TCA, the inheritance mode is much likely due to a 
dominant gene with incomplete penetrance, while for cases 
with S-HSCR, the inheritance pattern is multifactorial or 
compatible with a recessive gene with low penetrance.11 

Since 1994, positional cloning and candidate gene studies 
have identified a number of genes with mutations in HSCR 
patients, including RET, GDNF, GFRA1, NRTN, PHOX2B, 
NKX2.1, SOX10, EDNRB, EDN3, ECE-1, KIAA1279, 
ZFXH1B, NTRK3, L1CAM, TCF4, and HOXB5.10,14-23 

Most of them encode proteins that are members of three 
important inter-related signaling pathways: the GDNF/
RET receptor tyrosine kinase, the endothelin type B 
receptor, and the SOX10-mediated transcription. And 
there have been much evidence that interactions existed 
between genes in those different signaling pathways.2,10,24 
RET is considered to be the most important gene involved 
in HSCR, and its sufficient expression is essential for 
the development of enteric nervous system (ENS).23,25,26 
However, coding or splice junction mutations at these 
genes account for only about 50% of familial cases and 
20% of sporadic cases, and explain just 0.1% of the 
heritability.4 Hence, there must be additional genetic 
defects responsible for HSCR. 

As effective strategies with new technologies emerged, 
genetics researchers started to apply chip-based genome/
exome-wide association study (GWAS/EWAS) and next 
generation sequencing (NGS) on target genes or whole 
genome/exome, to search novel genes and corresponding 
variants or mutations associated with different diseases, 
including HSCR. In this review, we focus on the advances 
of HSCR’s genetic etiology revealed by GWAS/EWAS 
and NGS.

Genome-wide association study and HSCR

To date, there are four well-design GWASs, one meta-
analysis and one EWAS for HSCR in different populations 
(Table 1). Published in 2009, the first GWAS of HSCR 
not only ascertained the role of RET in Chinese patients, 
but also identified a new susceptibility gene neuregulin-1 
(NRG1) that played an important role in survival and 
differentiation of the neural crest cells through binding 
and interaction with ErbB tyrosine kinase receptors.27 
The involvement of RET and NRG1 in HSCR was also 
discovered in another GWAS in Korean population.28 As 
for Caucasians, a family-based GWAS further reported 

the susceptibility of individuals with variants of RET and 
NRG1, and located a new risk locus containing class 3 
Semaphorin gene cluster (SEMA3A, SEMA3C, SEMA3D). 
Analysis in Ret wild-type and Ret-null mice showed 
specific expression of Sema3a, Sema3c, and Sema3d 
in ENS, while the knockdown of Sema3c or Sema3d in 
zebrafish embryos demonstrated the loss of migratory 
ENS precursors.29 To aggregate the data of three above-
mentioned GWAS on HSCR, Tang et al30 conduct a 
trans-ethnic meta-analysis containing totally 507 
cases and 1 191 controls. They not only confirmed the 
associations of RET, NRG1, SEMA3, and one previously 
well-established locus 4p13 (PHOX2B) in syndromic 
HSCR, but also found one novel disease-susceptibility 
locus 2p16.1 (VRK2/FANCL). Encoding a serine/threonine 
protein kinase, VRK2 was strongly implicated in central 
nervous system and neurodevelopmental disorders, and 
might interacted with receptor ErbB2, which is the co-
receptor of NRG1. More recently, another HSCR GWAS 
of Caucasians was published. It confirmed RET and 
SMEA3 as being associated with HSCR in a Danish 
cohort, and additionally reported a novel low-frequency 
variant (rs144432435) of RET. 31 

Exome-wide association study and HSCR

Most of the susceptibility variants discovered by GWASs 
are common variants with minor allele frequency (MAF) 
> 0.05, conferring relatively small effect sizes with odds 
ratios (OR) from 1.1 to 1.5. These variants could explain 
only a small fraction of genetic risk of investigated 
diseases. Therefore, rare variants and loci that are 
undetected by GWAS-used chips may have a stronger 
effect and contribute to the missing heritability.32 Exome-
chip platforms have been developed to capture low-
frequency variants in protein-coding regions and have been 
proved to be an effective complementary approach for 
genetic researches on complex diseases. An exome-wide 
association study was applied to scan the exonic variants 
for HSCR.33 In this study, Tang et al identified ten variants 
and ten novel genes associated with HSCR at P < 10−4 in 
a Chinese population. Among these SNPs, the missense 
variants in catechol-O-methyltransferase (COMT) 
and armadillo repeat gene deleted in velocardiofacial 
syndrome (ARVCF) indicated an ectopic expression in 
HSCR colons. Specially, the variant Ala72Ser in COMT 
decreased proliferation activity of neural cell via NOTCH 
signal pathway, while the mutant ARVCF suppressed cell 
migration by downregulating RHOA and ROC (Table 1).

Deep-targeted sequencing and HSCR

As NGS technologies emerged, some researchers started 
to apply deep-target sequencing on candidate genes or loci 
that have been implied in HSCR (Table 2). An early study 
in 2012 sequenced all 16 exons of the HSCR-associated 
gene NRG1 in 358 cases and 333 controls, and reported 13 
different heterozygous variants.34 RET, as the most well-
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TABLE 1 Genes associated with HSCR identified by GWAS or EWAS.
Gene Locus tagSNP Study Design Population Journal Year

NRG1 8p12 rs16879552
/rs7835688

GWAS +
 Replication

Discovery: Chinese
 (181 cases/346 controls) PNAS 2009

Replication: Chinese 
(190 cases/510 controls)

RET 10p11.21 rs2742234

RET 10p11.21 rs1864400 GWAS Korean (123 cases/432 controls) PLoS One 2014

NRG1 8p12 rs16879552

SLC6A20 3p21.31 rs4299518/rs2159272

RORA 15q22.2 rs1351544/rs8025324/

rs9920560/rs7183955

ABCC9 12p12.1 rs704192/rs704191/

rs4148669/rs704190

STIM2 4p15.2 rs11725593

DEFB129 20p13 rs6074578

LOC100509398 3q26.2 rs12639288

RET 10p11.21 rs2506030/rs2435357 GWAS + Replication Discovery : Caucasian (220 trios) / AJHG 2015

Replication: Caucasian (429 trios)

NRG1 8p12 rs4541858/rs7835688
SEMA3A/
SEMA3C 7q21.11 rs12707682/rs11766001

/SEMA3D

RET 10q11.21 rs9282834/rs2505998/ Meta-analysis of GWAS European (212 cases/202 controls) / HMG 2016

rs2505998 Chinese (173 cases/615 controls) /

Korean (122 cases/374 controls)

SEMA3C/3D 7q21.11 rs80227144

NRG1 8p12 rs7005606

PHOX2B 4p13 rs6826373

VRK2/FANCL 2p16.1 rs4672229

SSPO 7q36.1 rs10250401 EWAS Chinese (167 cases/900 controls) Mol Neurobio 2017

EEF1D 8q24.3 rs10282929

SLC34A3 9q34.3 rs35699762

ABO 9q34.2 rs1053878

BOC4L 12q24.33 rs78871841

CACNA1H 16p13.3 rs36117280

TELO2 16p13.3 exm1202536

CARD14 17q25.3 rs11652075

COMT 22q11.21 rs6267

ARVCF 22q11.21 rs80068543
SEMA3 7q21.11 rs62472985/rs117617821 GWAS Discovery: Danish (170 cases/4717 

controls)
EJHG 2018

Replication: European (416 cases/903 
controls)

MOB1AP1/
DDX6P2 13q31.1 rs12428625

RET 10p11.21 rs17653445/rs2505994/

rs4519046/rs144432435

GWAS, genome-wide association study; EWAS, exome-wide association study; PNAS, Proceedings of the National Academy of Sciences of the United 
States of America; AJHG, The American Journal of Human Genetics; HMG, Human Molecular Genetics; EJHG, European Journal of Human Genetics.
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TABLE 2 Genes associated with HSCR identified by NGS. 
Gene Locus Mutation Study Design Population Journal Year

NRG1 8p12 A28G / E134K / V266L / H347Y 
/ P356L / V486M /P24P /

TES Chinese
 (358 cases and 333 controls)

Hum Genet 2012

T169T / L483L / E239fsX10 /
 c.503-4insT

GLI1 12q13.3 R557C TES Chinese 
(20 cases and 20 controls)

Gastroenterology 2015

GLI1 12q13.3 P763S

GLI2 2q14.2 G191R

GLI3 7p14.1 H1200D
RET 10p11.21 c.254G > A / c.754G > T / c.789C 

> G / c.2308C > T / c.2333delT /
TES & Chinese

 (152 patients)
Genet Med 2017

c.2578C > T / c.2802-2A > G / 
c.229C > T / c.200insTCC

RET single gene 
screening

NRG3 10q23.1 chr10:84118524 WES Chinese
 (2 affected familial patients)

Mol Neurobio 2013

TMPRSS11E 4q13.2 chr4:69342021

SPRY1 4q28.1 chr4:124323240

OR8J3 11q12.1 chr11:55905101

PRSS1 7q34 chr7:142460335

LAMA3 18q11.2 chr18:21453118

RNF10 12q24.31 chr12:121004700

VARS2 6p21.33 chr6:30884719

KRT6A 12q13.13 chr12:52885316

PLA2G4C 19q13.33 chr19:48558271

JARID2 6p22.3 chr6:15520402

PRB4 12p13.2 chr12:11461427

BRIP1 17q23.2 chr17:59878736

GSTM4 1p13.3 chr1:110200278

NBPF16 1q21.2 chr1:148591281

NRG3 10q23.1 chr10:84733588 TES Chinese 
( 96 cases and 110 controls)

NRG3 10q23.1 chr10:84733624

NRG3 10q23.1 chr10:84118499

RET 10p11.21 3splicing9 + 1 / c.2511_2519
delCCCTGGACC:p.S837fs / WES Chinese (5 trios) + 

Caucasian (19 trios) Genome Biol 2017

c.1818_1819insGGCAC:p.
Y606fs / c.1761delG :p.G588fs /
c.1858 T > C:p.C620R / c.409 T 

> G:p.C137G /
c.1710C > A:p.C570X / 

c.526_528delGCA:p.R175del
NCLN 19p13.3 c.496C > T:p.Q166Xb

NUP98 11p15.4 c.5207A > G:p.N1736S

DENND3 8q24.3 c.1921delT:p.K640fs

TBATA 10q22.1 c.157C > T:p.R53C
LRBA 4q31.1 rs140666848 TES Dutch 

(A multi-generational family: 
Gastroenterology 2018

5 patients and 2 
functional constipation)

RET 10p11.21 c.1196C>T:p.P399L WES

NRP2 2q33.3 rs114144673

PGRMC2 4q28.2 rs41298555

OR1F1 16p13.3 rs142486394

CLUH 17p13.3 rs201361018

PELP1 17p13.2 rs199636910

PELP1 17p13.2 rs200062536
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established gene in HSCR, was also screened for somatic 
mutations through targeted exome sequencing and whole 
genome sequencing. Eight de novo mutations were found 
in 152 patients, of which six were pathogenic mosaic 
mutations.35 These findings were in line with the evidence 
that genes containing common disease-associated variants 
were likely to harbor functional rare variants in coding 
exons. Considering that aberrant hedgehog signaling could 
disrupted neural crest cells (NCCs) differentiation and 
might cause Hirschsprung’s disease, Li et al36 performed 
targeted sequencing on GLI1, GLI2, GLI3, SUFU, and 
SOX10 in 20 HSCR patients. Four rare heterozygous 
missense variants in the coding sequence of GLI1, GLI2, 
and GLI3 were located for the first time, and aberrant 
Gli activity were found to perturb the Sox10-Sufu-Gli 
regulatory loop, leading to attenuated differentiation of 
enteric NCCs and delayed gut colonization.

Whole exome/genome sequencing and HSCR

In these years, whole exome sequencing (WES) and 
whole genome sequencing (WGS) have been more 
practical in genetics research on human diseases with 
technological development.37-39 For HSCR, more risk 
genes were successfully identified via both two strategies 
(Table 2). In 2013, our group performed whole exome 
sequencing of two HSCR patients from a Han Chinese 
family, obtained a total of 15 novel nonsynonymous single 
nucleotide variants (SNVs) in 15 genes, and validated the 
involvement of NRG3 mutations in 96 additional sporadic 
cases and 110 healthy controls by targeted sequencing 
of all nine exons.40 Recently, Gui et al41 reported another 
WES study in 24 HSCR trios and identified 28 de novo 
mutations in 21 different genes. They further showed that 
the orthologues of four genes (DENND3, NCLN, NUP98, 

and TBATA) are indispensable for ENS development in 
zebrafish, and these genes are also expressed in human 
and mouse gut and/or ENS progenitors. Lately, a targeted 
exome sequencing on a linkage interval 4q31.3–4q32.3 
previously identified, coupled with a WES study identified 
several variants in LRBA, RET, GDNF, IHH, and GLI3 
in a multigenerational Dutch family with history of 
HSCR. Further functional experiments showed that these 
variants disrupted the function of their encoded proteins, 
and knockdown of ihh in zebrafish significantly reduced 
the number of enteric neurons in the gut.42 In addition, a 
WGS study43 was conducted on 9 trios where the sporadic 
probands had L-HSCR or TCA and harbored no rare 
coding variants affecting the function of RET and other 
known HSCR risk genes. The authors located de novo 
protein-altering variants in three genes CCT2, VASH1, 
and CYP26A1, and de novo SNV/indels in non-coding 
regions of NRG1, ERBB4, SEMA3A, ZEB2, and DCC. 
They further indicated that the shared genetic features of 
the patients were enriched in the extracellular matrix–
receptor (ECM–receptor) pathway, which was involved in 
the migration of enteric neurons precursors. 

Conclusions and perspectives

Unravelling the genetics of polygenic diseases is a major 
challenge in the field of human genetics. As HSCR is a 
representative example of complex multigenic disorders 
with limited treatments and poor prognosis, much effort 
has been made in the investigation on genetics and 
pathogenesis of the disease. With the applications of 
GWAS/EWAS and NGS, a sum of novel mutations and 
genes has been stated in these years as we discussed in this 
review. However, they could account for only a minority 
of the total genetic risk for HSCR. Additional pathogenic 

Gene Locus Mutation Study Design Population Journal Year

IHH 2q35 c.151C>A:p.Q51K

GLI3 7p14.1 rs121917716

GDNF 5p13.2 c.676_681delGGATG:p.G226_
C227del

CCT2 12q15 g.69993654 G > A WGS Chineses (9 trios) EJHG 2018

VASH1 14q24.3 g.77242233 A > G

CYP26A1 10q23.33 g.7481 A > G

PKD1L2 16q23.2 g.84039 G > A

TMEM175 4p16.3 g.952275 C > T

CSMD3 8q23.3 g.113841961 T > C

CCDC82 11q21 g.96117858 A > T

NRG1 8p12 g.667454 G > C, g.92222 G > T, 
g.146124 A > G

ERBB4 2q34 g.835055_835059delAAACA

SEMA3A 7q21.11 g.210732delT

ZEB2 2q22.3 g.145137510 C > T

DCC 18q21.2 g.651331 G > A

TES, targeted exome sequencing; WES, whole exome sequencing; WGS, whole genome sequencing; EJHG, European Journal of Human Genetics.
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mutations, causal variants and contributing genes are 
still to be found through more comprehensive genetics 
researches on subjects with larger sample size. Moreover, 
making use of GWAS/EWAS, NGS or both in combination 
with effective statistical analysis in silico, followed by 
the system biology approaches like high-throughput 
functional assays and appropriate models from animals 
or human induced pluripotent stem cell (HIPSC), should 
yielded huge advances in our understanding of the HSCR 
genetic basis. It may finally lead to precise prediction of 
HSCR risk and potentially to new therapies and improved 
outcomes.   
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