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Perceptual learning has been widely used to study the
plasticity of the visual system in adults. Owing to the
belief that practice makes perfect, perceptual learning
protocols usually require subjects to practice a task
thousands of times over days, even weeks. However, we
know very little about the relationship between training
amount and behavioral improvement. Here, four groups
of subjects underwent motion direction discrimination
training over 8 days with 40, 120, 360, or 1080 trials per
day. Surprisingly, different daily training amounts
induced similar improvement across the four groups,
and the similarity lasted for at least 2 weeks. Moreover,
the group with 40 training trials per day showed more
learning transfer from the trained direction to the
untrained directions than the group with 1080 training
trials per day immediately after training and 2 weeks
later. These findings suggest that perceptual learning of
motion direction discrimination is not always dependent
on the daily training amount and less training leads to
more transfer.

Introduction

The human brain can achieve long-term improvement
in perceptual sensitivity as a result of learning (Fahle &
Poggio, 2002). A prevailing view on this improvement
is that “practice makes perfect,” implying that tens
of thousands of trials of training over days or weeks
are necessary to induce substantial improvement in
performance (Aberg et al., 2009; Banai & Lavner,
2014; Censor, Sagi, & Cohen, 2012; Chung, Levi, &
Li, 2006; Husk, Bennett, & Sekuler, 2007; Sigman
& Gilbert, 2000). However, several recent studies
showed that a small amount of training was sufficient
to induce perceptual learning (Amar-Halpert et al.,
2017; Hussain, Sekuler, & Bennett, 2009; Molloy et
al., 2012). Hussain et al. (2009) examined the amount
of practice needed to improve performance on texture
and face identification. In a texture identification task,
they found that 105 trials of practice on the first day
were required to enhance performance relative to the
control group at the start of testing on the second
day. In a face identification task, even only 21 trials
of practice could enhance performance relative to the
control group (Hussain et al., 2009). In a recent study
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on texture discrimination learning (Amar-Halpert et
al., 2017), participants underwent a practice for 252
trials on the first day, and then they returned for 3 daily
sessions with only five near-threshold trials per session.
Discrimination thresholds were measured on the first
day and the fifth day. Intriguingly, such short training
resulted in a remarkable learning effect. Based on this
finding, Amar-Halpert and colleagues proposed that
learning was due to a memory reactivation mechanism.

It has been shown that training beyond a certain
amount could not further benefit learning (Karni &
Sagi, 1993; Savion-Lemieux, T., & Penhune, V. B.,
2005). In a temporal–interval discrimination task,
Wright and Sabin (2007) trained subjects for either 360
or 900 trials per day for 6 days. Significant learning
occurred with both 360 and 900 training trials per
day, and 900 training trials per day did not induce
greater improvement relative to 360 training trials.
Likewise, similar effects were also observed with a
mirror-reading letter task (Ofen-Noy, Dudai, & Karni,
2003), a visual texture discrimination task (Karni &
Sagi, 1993), and an auditory identification task (Roth,
2005). Notably, overtraining could even be detrimental
to the learning effect already acquired (Ashley &
Pearson, 2012; Censor, Karni, & Sagi, 2006; Mednick
et al., 2002; Mednick, Arman, & Boynton, 2005; Ofen,
Moran, & Sagi, 2007). Mednick et al. (2005) measured
the performance on a texture discrimination task in
three 1-hour sessions and found that the performance
deteriorated steadily both within and across the first
two sessions. Because repeated within-day testing led to
a retinotopically specific decrease in performance, such
perceptual deterioration is not simply due to general
fatigue or boredom. Therefore, intensive training might
lead to limited behavior improvement.

In this study, we aimed to investigate the relationship
between daily training amount and behavioral
improvement—how does the daily training amount
modulate the magnitude and specificity of the
perceptual learning effect with a motion direction
discrimination task? We were also interested in how
long the modulation effects could persist. Participants
were trained for 40, 120, 360, or 1080 trials per day
with a visual motion direction discrimination task.
Threshold measurements were conducted before, one
day after, and two weeks after eight training days at the
trained direction and the untrained directions (30°, 60°,
and 90° away from the trained direction).

Methods

Subjects

Fifty-nine subjects (21 males) participated in the
study. Their ages ranged from 18 to 28. All subjects

were naïve to the purpose of the study and had never
participated in any perceptual learning experiment
before. They were right-handed with reported normal
or corrected-to-normal vision and had no known
neurological or visual disorders. They gave written,
informed consent in accordance with the procedures
and protocols approved by the human subject review
committee of Peking University. This study adhered to
the Declaration of Helsinki.

Stimuli and apparatus

Similar to our previous study (Chen et al., 2015),
visual stimuli were random-dot kinematograms (RDKs)
with 100% coherence (Figure 1A). All dots in a RDK
moved in the same direction (luminance: 3.76 cd/ m2;
diameter: 0.1°; speed: 10°/sec). At any one moment, 400
dots were visible within an 8° circular aperture. The dots
were presented against a gray background (luminance:
19.8 cd/m2). The visual stimuli were presented on an
IIYAMA HM204DT 22-in monitor, with a spatial
resolution of 1024 × 768 and a refresh rate of 60 Hz.
Subjects viewed the stimuli from a distance of 60 cm.
Their head was stabilized using a head and chin rest.

Designs

Fifty-nine subjects were randomly assigned into four
training groups (n = 12, 11, 12, and 12), respectively
and a control group (n = 12). Four training groups
underwent four phases (Figure 1B): pretraining
test (Pre), motion direction discrimination training,
post-training test 1 (Post1), and post-training test 2
(Post2). The control group only underwent Pre, Post1,
and Post2. Pre and Post1 took place on the days
immediately before and after training, and Post2 took
place 2 weeks after training.

During the training phase, each subject underwent
eight daily training sessions to perform a motion
direction discrimination task at a direction of θ , which
was chosen randomly from eight directions: 22.5°,
67.5°, 112.5°, 157.5°, 202.5°, 247.5°, 292.5°, and 337.5°
(0° was the rightward direction) at the beginning and
was fixed for all the sessions. For the four training
groups, a daily training session consisted of 1, 3, 9,
and 27 QUEST (Watson & Pelli, 1983) staircases of
40 trials, corresponding with 40, 120, 360, or 1080
trials, respectively. In a trial, two RDKs with motion
directions of θ + �θ /2 and θ – �θ /2 were presented
successively for 200 ms each and were separated by a
600-ms blank interval. The temporal order of these two
RDKs was randomized. Subjects were asked to make a
two-alternative forced-choice judgment of the direction
of the second RDK relative to the first one (clockwise or
counterclockwise). Informative feedback was provided
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Figure 1. Stimuli and experimental protocol. (A) Schematic description of a two-alternative forced-choice (2-AFC) trial in a QUEST
staircase for measuring motion direction discrimination thresholds. (B) Experimental protocol. Four groups of subjects underwent
motion direction discrimination training at a fixed motion direction over eight days with 1, 3, 9, or 27 QUEST staircases per day,
respectively. They were tested at 0°, 30°, 60°, and 90° away from the trained direction on the days before (Pre), immediately after
(Post1), and two weeks (Post2) after training.

after each response by brightening (correct response)
or dimming (wrong response) the fixation point, which
could facilitate learning (Goldhacker, Rosengarth,
Plank, & Greenlee, 2014). The next trial began 1 second
after feedback. The �θ varied trial by trial and was
controlled by the QUEST staircase to estimate subjects’
discrimination thresholds at 75% correct. Except for the
first staircase, each staircase started with the threshold
derived from the preceding staircase.

During the three test phases, psychophysical tests
were performed at four motion directions, which were
0°, 30°, 60°, and 90° deviated from the trained direction
all either clockwise or counterclockwise (hereafter
referred to as 0°, 30°, 60°, and 90°). The four directions
were counterbalanced for individual subjects. Ten
QUEST staircases (same as above) were completed
for each direction. Discrimination thresholds from
the 10 staircases for each direction were averaged as
a measure of subjects’ discrimination performance.
Subjects’ performance improvement at a direction was
calculated as (pretraining threshold – post-training
threshold)/pretraining threshold × 100%. Before the
test phases, subjects practiced 10 trials per direction
to get familiar with the stimuli and the experimental
procedure. In our data analyses, Bonferroni correction
was applied with t-tests and analysis of variance
(ANOVA) involving multiple comparisons. We verified
data distribution assumptions of normality and
heteroscedasticity by Shapiro–Wilk and Levene’s tests
before performing ANOVAs.

Results

Learning effect was independent of daily
training amount

To explore whether there was any difference between
groups before learning, we applied ANOVAs to
the thresholds measured before learning at the four
directions (0°, 30°, 60°, and 90°) with training amount
(1, 3, 9, and 27 QUEST staircases) as a between-subject
factor. No difference was found at these directions,
0°: F (3, 43) = 0.207, p = 0.891; 30°: F (3, 43) =
1.045, p = 0.382; 60°: F (3, 43) = 0.860, p = 0.469;
90°: F (3, 43) = 2.088, p = 0.116. Therefore, there
was no difference between groups that preceded the
study. Throughout the training, motion direction
discrimination thresholds of the four groups of subjects
gradually decreased (Figure 2A). We compared the
discrimination thresholds at the trained direction
before and after learning across groups using a
mixed-design ANOVA with test (Pre, Post1, and Post2)
as a within-subject factor and training amount (1, 3, 9,
and 27 QUEST staircases) as a between-subject factor.
The main effect of test was significant, F (2, 42) =
100.359, p < 0.0001. The main effect of training amount
was not significant, F (3, 43) = 0.212, p = 0.887. The
interaction between test and training amount was not
significant either, F (6, 86) = 0.539, p = 0.777. The
thresholds measured at Pre were significantly higher
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Figure 2. Perceptual learning effects at the trained direction. (A) Learning curves with different training amounts. (Left) Normalized
motion direction discrimination thresholds are plotted as a function of the training day and then fitted with a power function. Motion
direction discrimination thresholds were normalized by dividing them by the thresholds measured on the first training day. (Right)
Motion direction discrimination thresholds measured by the first QUEST staircase on each day are plotted as a function of the training
day and then fitted with a power function. (B) Motion direction discrimination thresholds at the trained direction at Pre, Post1, and
Post2 for the four training groups. Asterisks indicate significant difference between Pre and Post1, Post2 (***p < 0.001). (C) Percent
improvements in motion direction discrimination performance at Post1 and Post2, relative to Pre. Error bars denote 1 SEM calculated
across subjects.

than those at Post1, 1 QUEST staircase, t (11) = 8.835,
p < 0.0001; 3 QUEST staircases, t (10) = 7.052, p <
0.001; 9 QUEST staircases, t (11) = 5.493, p < 0.001;
27 QUEST staircases, t (11) = 8.788, p < 0.0001,
and at Post2, 1 QUEST staircase, t (11) = 6.714, p <
0.0001; 3 QUEST staircases, t (10) = 5.420, p < 0.001; 9
QUEST staircases, t (11) = 4.759, p < 0.01; 27 QUEST
staircases, t (11) = 8.519, p < 0.0001 (Figure 2B). These
finding suggest that our training procedure led to a
significant learning effect and the learning effect might
be independent of the training amount.

We calculated the percent improvements in
discrimination performance after training. The

improvements at the trained direction were more than
40% at Post1 and more than 38% at Post2 in all the four
groups. A mixed-design ANOVA was applied to the
percent improvements with test (Post1 and Post2) as a
within-subject factor, and training amount (1, 3, 9, and
27 QUEST staircases) as a between-subject factor. The
main effects of training amount, F (3, 43) = 1.210, p =
0.318, and test, F (1, 43) = 1.880, p = 0.177 were not
significant. The interaction between test and training
amount was not significant either, F (3, 43) = 0.175,
p = 0.913 (Figure 2C). To examine whether there was
more learning in the 27 QUEST group than that in the
1 QUEST group, we performed a t-test on the percent
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Figure 3. (A) Motion direction discrimination thresholds at the trained (0°) and untrained (30°, 60°, and 90°) directions at Pre (left),
Post1 (middle), and Post2 (right) for the four training groups. (B) Percent improvements in motion direction discrimination
performance at the trained and untrained directions for the four training groups at Post1 (left) and Post2 (right), relative to Pre. Error
bars denote 1 SEM calculated across subjects.

improvements at the trained direction in Figure 2C.
No significant difference was found between the two
groups, at both Post1, t (22) = 1.344, p = 0.193, and
Post2 t (22) = 0.851, p = 0.404. These results confirmed
that the improvement at the training direction did not
depend on the daily training amount.

Learning specificity was dependent on daily
training amount

We further investigated the relationship between
learning specificity and daily training amount. Figure 3
shows the percent improvements in motion direction
discrimination performance at the untrained directions.
A mixed-design ANOVA was applied to the percent
improvements with test (Post1 and Post2) and motion
direction (30°, 60°, and 90°) as within-subject factors
and training amount (1, 3, 9, and 27 QUEST staircases)
as a between-subject factor. The main effect of direction
was not significant, F (2, 42) = 0.092, p = 0.912, and we
did not find any significant interaction, all p > 0.247,
suggesting little difference between the three untrained
directions. The main effect of training amount was not
significant. F (3, 43) = 1.500, p = 0.228. The percent
improvements at the three untrained directions were
significantly greater than zero at Post1 and Post2, all
t (46) > 4.308, p < 0.001, but significantly lower than
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Figure 4. Learning specificity in the four training groups. Error
bars denote 1 SEM calculated across subjects.

those at the trained direction at Post1 and Post2, all t
(46) > 5.367, p < 0.001. Therefore, we quantified the
learning specificity as the difference between the percent
improvement at the trained direction and the average
percent improvement at the three untrained directions.

Figure 4 shows the learning specificities in the four
training groups. A mixed-design ANOVA was applied
to the learning specificity with test (Post1 and Post2) as
a within-subject factor and training amount (1, 3, 9,
and 27 QUEST staircases) as a between-subject factor.
The main effect of training amount was marginally
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significant, F (3, 43) = 2.383, p < 0.1. The main effect
of test was not significant, F (1, 43) = 1.035, p = 0.315,
and the interaction between test and training amount
was not significant either, F (3, 43) = 0.242, p = 0.867.
Then, we made comparisons between training amount
conditions at Post1 and Post2. Planned t-tests showed
that the group receiving 27 QUEST staircases training
per day exhibited stronger specificity than the group
receiving 1 QUEST staircase training per day at Post1, t
(22) = –2.779, p < 0.01, and Post2, t (22) = –1.929, p <
0.05. Our results demonstrated that less training led to
less specificity or more transfer, and the characteristic
lasted for at least two weeks.

Test–retest effect

It remains unclear to what extent the performance
improvements in the trained and untrained directions
are due to a test-retest effect occurring at Pre, Post1, and
Post2. To quantify the test–retest effect, we collected
data from a control group, which only underwent
Pre, Post1, and Post2. Relative to Pre, the percent
improvements averaged across the four directions were
3.095%, one-sample t-test (47) = 0.656, p = 0.515, at
Post1 and 18.116%, t (47) = 4.401, p < 0.001, at Post2.
Notably, the improvements at the untrained direction at
Post2 were largely due to the test-retest effect.

Discussion

In this study, we examined the relationship between
daily training amount and two visual learning
outcomes: the improvement at the trained feature,
and the transfer effect to the untrained features. We
found that (1) a small daily training amount of 40
trials was sufficient to induce a significant behavioral
improvement; no further improvement was observed
in groups with larger daily training amounts and (2)
the group with the smallest daily training amount
exhibited the largest transfer effect. These effects
persisted up to 2 weeks after training. These findings
shed light on determining the training amount in
practical application and help to better understand
the role of training amount in some key ideas such as
consolidation–reactivation, transfer, and stabilization
in learning.

Traditional perceptual learning studies have hundreds
or even thousands of training trials per day. Here
we show that only 40 trials of daily practice were
enough to trigger an improvement comparable to
1080 trials of daily practice. This finding supports
a memory-reactivation framework for perceptual
learning. Throughout multiple training sessions, the
learning effects gained from individual training sessions
transform from short- to long-term memory via a

process named consolidation (McGaugh, 2000; Wright
& Sabin, 2007). After the initial memory consolidation
has been established, brief reactivations may trigger
reconsolidation-like processes to improve the existing
perceptual memory (Amar-Halpert et al., 2017; Bang
et al., 2018). Amar-Halpert et al. (2017) have shown
that decreasing the standard training amount (from 252
trials to 5 trials) on day 2 to day 4 led to no change in
the overall learning effect. However, further decreasing
the training from a standard to a small amount on day 1
led to a significant decrease in the overall learning effect.
In the present study, all the subjects underwent a pretest
of 400 trials for each condition, which established the
new memory. After that, 40 trials of daily training were
sufficient to reactivate the memory for reconsolidation.
Our results indicate that motion perceptual learning, as
a specific kind of procedural memory, might function
via a consolidation-reactivation mechanism.

In contrast, overtraining might be detrimental to
perceptual learning, which was referred to as perceptual
deterioration (Mednick et al., 2002, 2005). Induced
by too much training, perceptual deterioration is
possibly due to sensory adaptation (Censor et al., 2006),
strengthening less efficient neuronal connections and
accumulating noise in the brain network (Censor &
Sagi, 2008), or changes in the ability for attention to
selectively enhance the responses of low-level sensory
neurons (Mednick et al., 2005). In our study, perceptual
deterioration might counteract the learning effect after
a certain amount of practice, leading to saturated
overall learning effects. The saturation of learning has
also been observed in other visual, auditory, and motor
learning studies (Amar-Halpert et al., 2017; Fox et al.,
2016; Molloy et al., 2012; Wright & Sabin, 2007). These
evidence suggests that independence of overall learning
effect on daily training beyond a certain amount may
be a general principle underlying skill learning.

Interestingly, we found that an increase in the
daily training amount increased specificity. In other
words, prolonged training decrease transfer. This
effect may seem counterintuitive. As subjects become
more proficient at a practiced task, we logically expect
more transfer. However, many visual perceptual
learning studies have reported that prolonged training
increased the specificity of learning, with less transfer
to untrained visual orientation or retinal locations
(Hung & Seitz, 2014; Hussain et al., 2012; Jeter et al.,
2010). The daily training amount may determine the
degree of transfer together with another key factor,
namely, stimuli variation. According to an “overfitting”
account, increasing the training amount increases the
chance of overfitting the neural system, which limits
transfer. This phenomenon is likely to occur when the
training data has a small variation, which may not well
represent the feature space. In contrast, for data with a
large variation that represents a broader feature space,
increasing the training trials may not lead to overfitting
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(Lengyel & Fiser, 2019). In the present study, stimuli
variation was introduced at the pretest and post-test
stages, and was kept constant across the groups. This
test gave subjects a sufficient amount of training (400
trials for each direction) over a relatively broad feature
space (four motion direction with 0°, 30°, 60°, and 90°
offset from the trained direction). During 8 training
days, subjects received training on a specified motion
direction with a near-threshold variation. Note that
we used continuous staircases for each training day;
except for the first staircase, each staircase started with
the threshold derived from the preceding staircase.
Our training protocol resembles the single prolonged
staircase used in Hung and Seitz (2014) and other
perceptual learning studies (Jehee et al., 2012; Schoups
et al., 1995). Therefore, by increasing the training
amount, we increased the number of near-threshold
trials. Because such training over-represents a particular
feature in the space, increasing the daily training
amount leads to overfitting and greater specificity.
Consistent with Hung and Seitz (2014), our results
showed that prolonged training at threshold affects
transfer in perceptual learning. It is worth mentioning
that the account of stimuli variation and specificity in
perceptual learning is reminiscent of Eleanor Gibson
and James Gibson’s ecological approach to perception,
which suggested more variability led to a more general
learning result (Gibson & Gibson, 1955). The 1 QUEST
group might undergo a larger variation, therefore
showing more transfer than the 27 QUEST group.

Perceptual learning with fine feature discrimination
tasks usually results in high specificity and less
transfer (e.g., Liu, 1999; Shiu & Pashler, 1992). Liu
(1999) reported that, although learning in a motion
discrimination task with a 3° directional difference
was strongly specific to the training direction, learning
transferred to new motion directions with an 8°
directional difference. The idea that training precision
modulates the degree of transfer in perceptual learning
has been suggested in earlier psychophysical studies
(Ahissar & Hochstein, 1997; Jeter et al., 2009) and
is recently modeled using a deep neural network
(Wenliang & Seitz, 2018).

In addition, our present findings provided the first
piece of evidence for the long-term modulation effect
of training amount on specificity, which persisted for at
least 2 weeks after training. Future studies are needed
to evaluate how the degree of transfer was modulated
under different manipulations of the stimuli variations,
such as changing the range of stimuli in the feature
space, changing the probability distribution of stimuli
(e.g., the ratio between the training amount of the
trained and untrained features), and changing the time
point the variation is presented (e.g., early, middle, or
late training phase).

Training with a small daily amount provides a
promising alternative protocol for perceptual learning

studies in the future. When deciding on the training
amount in practice, the following factors should be
taken into consideration. (1) Generalization. Based on
the current and previous learning studies with a motion
or orientation discrimination paradigm, a larger daily
training amount leads to less transfer to the untrained
feature or spatial location. If one aims to induce a
learning effect highly specific to the trained feature for
a baseline control, a classical training paradigm with
hundreds or thousands of daily training trials would
be required. Otherwise, fewer trials (e.g., 40 trials or 5
trials in the middle phase of learning in Amar-Halpert
et al. [2017]) in a daily session may be a choice for
efficiency. (2) Stability. According to the hyperstabilizes
account of overlearning, the learning effect becomes
less susceptible to interference with an increasing daily
training amount. Therefore, if subjects are trained
with multiple tasks in the same session, hundreds of
trials (e.g., more than 600 trials in Shibata et al., 2017)
may still be needed. Finally, training with a small
daily amount may have values in clinical applications,
including the therapy of myopia (Yan et al., 2015),
presbyopia (Polat, 2009; Sterkin et al., 2018), and low
vision (Liu et al., 2007; Yu et al., 2010).

Recent advances in magnetic resonance spectroscopy
techniques have pointed to a common neurochemical
substrate mediating changes in stability and transfer
in skill learning: γ -aminobutyric acid (GABA), a
primary neurotransmitter of inhibitory processing
(Bang et al., 2018; Robertson, 2018; Shibata et al.,
2017). Prolonged training increased the GABAergic
inhibitory process, which may facilitate learning
through retuning the neurons to better signal the
feature difference (Frangou et al., 2019) and stabilize
the learned skill to protect it from interference (Shibata
et al., 2017). A motor learning study with direct current
stimulation showed that increasing the concentration
of GABA in the motor cortex impairs transfer while
decreasing the concentration of GABA enhances
transfer (Waters-Metenier et al., 2014). These findings
suggest a close link between stabilization and transfer
at behavioral and neurochemical levels, indicating that
prolonged practice may be responsible for stabilizing
the memory and for reducing transfer (Robertson,
2018).

In sum, using a visualmotion direction discrimination
task, we showed that the learning effect is independent
of daily training amount, whereas the transfer effect
depends on the daily training amount. These findings
not only help us to develop efficient protocols for
research and clinical application, but also shed light
on essential questions such as generalization in skill
learning and stabilization in memory. In the future,
neuroimaging and neuromodulation techniques are
needed to further uncover the mechanisms underlying
the relationship between training amount, transfer, and
stabilization in learning and memory.
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