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Abstract Atomic force microscopy (AFM) is one of
many new technologies available to study the mechani-
cal properties and mechanobiological responses of living
cells. Despite the widespread usage of this technology,
there has been little attempt to develop new theoretical
frameworks to interpret the associated data. Rather,
most analyses rely on the classical Hertz solution for the
indentation of an elastic half-space within the context of
linearized elasticity. In contrast, we propose a fully
nonlinear, constrained mixture model for adherent cells
that allows one to account separately for the contribu-
tions of the three primary structural constituents of the
cytoskeleton. Moreover, we extend a prior solution for a
small indentation superimposed on a finite equibiaxial
extension by incorporating in this mixture model for the
special case of an initially random distribution of con-
stituents (actin, intermediate filaments, and microtu-
bules). We submit that this theoretical framework will
allow an improved interpretation of indentation force–
depth data from a sub-class of atomic force microscopy
tests and will serve as an important analytical check for
future finite element models. The latter will be necessary
to exploit further the capabilities of both atomic force
microscopy and nonlinear mixture theories for cell
behavior.

1 Introduction

Among the myriad of exciting discoveries of modern
biology is the observation that many types of cells re-
spond dramatically to changes in their mechanical
environment. Such cells may alter their orientation,
shape, internal constitution, contraction, migration,
adhesion, synthesis and degradation of extracellular
constituents, or even their life cycle in response to per-
turbations in mechanical loading (Zhu et al. 2000).
Counted among these cell types are the chondrocytes,
endothelial cells, epithelial cells, fibroblasts, macro-
phages, myocytes, and osteocytes, to name but a few.
Although much has been learned about the mechano-
sensitive responses of living cells, there remains a
pressing need for quantification and, in particular, for
mathematically modeling the mechanobiology (Fung
2002).

Atomic force microscopy (AFM) is one of several
new technologies that promise to increase our under-
standing of the mechanobiology and biomechanics of
living cells (Radmacher et al. 1992). Briefly, the AFM is
a cantilever-based scanning probe that can be operated
in two primary modes: the constant force mode allows
the AFM to serve as a highly sensitive profilometer,
thus, enabling one to map the surface topography of a
cell (Fig. 1); the displacement mode allows one to per-
form mechanical tests on cells, in particular, local
indentation or local pulling following adhesion of the
probe. The tip of the cantilever largely dictates the res-
olution and ‘‘sphere of influence’’ of the mechanical
interrogation. Tips can be microfabricated to have dif-
ferent sizes and shapes, but many are on the order of
10–50 nm and shaped either as a cone or a blunted-cone
with a spherical cap. In the displacement mode, common
indentations are on the order of 50–500 nm, with the
thickness of the cell often on the order of 1–3 lm.

Most AFM-based studies of the mechanical behavior
of living cells (e.g., Wu et al. 1998; Rotsch and Radm-
acher 2000; Mathur et al. 2001) are interpreted using the

S. Na
Department of Biomedical Engineering,
Texas A&M University, College Station,
TX 77843-3120, USA

Z. Sun Æ G. A. Meininger
Department of Medical Physiology and Cardiovascular Research
Institute, Texas A&M University System Health Science Center,
College Station, TX 77843-1114, USA

J. D. Humphrey (&)
Department of Biomedical Engineering and M.E. DeBakey
Institute, Texas A&M University, 233 Zachry Engineering Center,
3120 TAMU, College Station, TX 77843-3120, USA
E-mail: jhumphrey@tamu.edu
Tel.: +1-979-8455558
Fax: +1-979-8454450

Biomechan Model Mechanobiol (2004) 3: 75–84
DOI 10.1007/s10237-004-0051-x



classical Hertz solution for the indentation of an elastic
half-space (e.g., Sneddon 1965). This solution was
derived, of course, within the context of the many sim-
plifying assumptions of classical elasticity: linear elastic
behavior, material uniformity and homogeneity, isot-
ropy, and infinitesimal strains. Few of these assumptions
apply to living cells or the associated test conditions
(Costa and Yin 1999). Rather, cells are materially non-
uniform, consisting of multiple families of structurally
important and highly organized proteins that may ex-
hibit a nonlinear behavior over finite deformations (e.g.,
see Janmey et al. 1991; Liu and Pollack 2002). The
purpose of this paper, therefore, is twofold: to present a
new nonlinear constitutive model for cells that accounts
for their inherent material non-uniformity as well as
potential material and geometric nonlinearities, and to
extend a prior solution from the finite elasticity literature
for use in a sub-class of AFM studies of cell mechanics.
In particular, we submit that a constrained mixture
model of the cytoskeleton offers potential advantages
over many prior models, since one can account for
constituent-specific changes in mechanical properties
that have been reported recently in AFM studies (e.g.,
Wu et al. 1998; Rotsch and Radmacher 2000).

2 Background

2.1 Constrained mixture models

Adherent cells consist of three primary components: the
cell membrane, cytoplasm, and nucleus. Whereas a

complete description of cell mechanics will require sepa-
rate descriptions of the mechanical properties of each
component, here, we consider a homogenized idealiza-
tion that holds away from the nucleus and in cases of
negligible bending stiffness of the membrane. The cyto-
plasm consists of a viscous fluid (called the cytosol),
distributed organelles, and the cytoskeleton. The cyto-
skeleton endows the cell with most of its structural
integrity and consists of three primary constituents: actin
filaments, intermediate filaments, and microtubules.
These filaments are on the order of 5–25 nm in diameter
and are often distributed throughout the cytoplasm.
Although one could employ a full mixture theory (see
Rajagopal and Tao 1995) to describe the mechanics of
such a multi-constituent material, which would require
the solution of separate balance relations for the con-
stituents, there is a lack of information on the interactions
between the three primary constituents as well as between
these constituents and the many accessory proteins
(Alberts et al. 2002). Thus, it is not possible at present to
postulate the constitutive relations for momentum ex-
changes between constituents that are needed in a full
mixture theory. Following Humphrey (2002a), therefore,
we adopt a homogenized rule-of-mixtures model for the
stress response. This allows us to include the separate
contributions of the primary cytoskeletal filaments and
viscous cytosol without having to solve separate balance
relations for each constituent, to quantify the momentum
exchanges, or to prescribe partial traction boundary
conditions. A general rule-of-mixtures relation for the
total Cauchy stress t (subject to an overall linear
momentum balance) can be written as t ¼

P
/ktk, where

/k are individual mass fractions and tk are the individual
stress responses, whether elastic or viscous. Indeed,
including both the ‘‘elastic’’ response of the filaments and
the ‘‘viscous’’ response of the cytosol may allow one to
model some of the complex viscoelastic responses
exhibited by cells (e.g., see Heidemann et al. 1999).

For motivational purposes, let us also consider a
simple case wherein any mechano-sensitive changes in
the polymerization or depolymerization of the structural
filaments occur in but a single altered (i.e., new) con-
figuration. In this case, one must track constituents that
existed prior to the perturbation in loading (original)
plus those produced thereafter (new). Within the context
of a rule-of-mixtures approach, the associated stress
response can be written as (Humphrey 2002a):
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where p is a Lagrange multiplier that enforces incom-
pressibility over transient loading, D is the stretching

tensor (i.e., 2D¼ _FF
�1þF�T _FT where the over-dot de-

notes a time-derivative), ~l is a viscosity, the Fj are
deformation gradient tensors for each constituent rela-
tive to individual natural configurations jo (original) or
jn (new), and the /s are mass fractions (i.e., constituent

Fig. 1 Deflection image of a vascular smooth muscle cell isolated
from the rat skeletal muscle arterioles. The AFM probe was
scanned across the cell surfaces at a speed of 40 lm/s, with a
tracking force of approximately 400 pN. The image was collected
using Nanoscope IIIa Software
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mass per total mass) of individual constituents, which,
by definition, are subject to the constraint:

/c þ /a
o þ /i

o þ /m
o þ /a

n þ /i
n þ /m

n ¼ 1: ð2Þ

Specifically, the subscript o denotes ‘‘original’’ and n
denotes ‘‘new’’ whereas the superscripts c, a, i, and m
denote cytosol, actin, intermediate filaments, and
microtubules, respectively. In other words, we assume
that the stress response depends both on the response of
extant constituents that formed prior to any perturba-
tion in loading as well as on constituents that formed
thereafter. (Note: although some constituents turn over
continuously, there is no net change in mass fraction or
mechanical behavior when they do so equally in an
unchanging configuration, which we refer to as mainte-
nance.) In the absence of turnover in an altered config-
uration, the mass fractions of the new constituents are
zero, thus yielding the standard rule-of-mixtures relation
for stress.

Finally, note that the assumption of a constrained
mixture requires that constituents deform together; be-
cause these constituents may have different natural (i.e.,
stress-free) configurations, the individual deformation
gradients Fj need not be the same. Similarly, the
individual stress responses tk are expected to differ
(k = a, i, m for actin, intermediate filaments, and
microtubules, respectively). Indeed, this is one of the
primary advantages of a mixture theory. Nevertheless,
we emphasize that, in such a formulation, the tk repre-
sent ‘‘constituent-dominated’’ phenomenological re-
sponses that implicitly include constituent-to-constituent
interactions that cannot be quantified in sufficient detail
(see Brodland and Gordon 1990). See Humphrey
(2002a) for more details on the basic theory.

2.2 Lessons from finite elasticity

It has been well known for nearly a century that bio-
logical soft tissues and elastomeric materials share many
characteristic behaviors (see Treloar 1975; Humphrey
2002b). This similarity results largely from both classes of
materials exhibiting primarily an entropic, not energetic,
elasticity due to their underlying long chain polymeric
microstructures. Consequently, many results from finite
(rubber) elasticity can be very useful in biomechanics.
One solution that is particularly relevant to some AFM
studies is that of a small, quasi-static indentation super-
imposed on a finite equibiaxial stretch of an initially
isotropic, nonlinearly elastic, materially uniform,
incompressible material whose behavior is described by a
strain-energy function W=W(I1, I2). Briefly, the associ-
ated constitutive relation for the Cauchy stress is:

t ¼ �pIþ 2
@W
@I1

B� 2
@W
@I2

B�1 ð3Þ

where B=FFT is the left Cauchy–Green tensor and
I1=trC and 2I2= (trC)2�trC2 are the principal invari-

ants of the right Cauchy–Green tensor C=FTF. For an

initial, finite equibiaxial stretch, we let F=diag[l, l, k],
where l is the in-plane stretch and k is the out-of-plane
stretch; by incompressibility, k=1/l2, thus, allowing the
deformation to be parameterized by one stretch. For
completeness, let us summarize past results for the small,
superimposed indentation.

The superimposed indentation force–depth (P–d)
relationship was found by Green et al. (1952) and Beatty
and Usmani (1975). It can be written as:

P ¼ 2p
C Wð Þ
R Wð Þ f̂ dð Þ ð4Þ

where G(W) and S(W) are functionals that depend on
the strain-energy function W and the finite equibiaxial
stretch l, whereas the function f̂ dð Þ depends on the
geometry of the tip of the rigid indenter. For example,
Costa and Yin (1999) list the following results for dif-
ferent tip geometries. For a flat-ended circular indenter
of radius a:

f̂ dð Þ ¼ 2ad
p
; ð5Þ

for a spherical tip of radius a:
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p
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for a conical tip with tip angle 2F:

f̂ dð Þ ¼ 2 tanU
p2

d2; ð7Þ

and for a blunted cone-shaped tip of angle 2F, which
transitions at radius b to a spherical cap of radius a:
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where the radius of contact rc ‡ b and is obtained from
Eq. 9, namely (Briscoe et al. 1994)
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Finally, Humphrey et al. (1991) list the following results
for computing G(W) and S(W):

C ¼ Aþ K1Bð Þ
ffiffiffiffiffiffi
K1

p

1þ K1
� Aþ K2Bð Þ

ffiffiffiffiffiffi
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p

1þ K2
and

R ¼ K1

1þ K1
� K2

1þ K2
ð10Þ

where

A ¼ 2k2 W1 þ l2W2

� �
and

B ¼ 2l2 W1 þ l2W2

� �
ð11Þ
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and K1 and K2 (dimensionless) are determined by solving
the following quadratic equation for K:

BK2 þ Aþ B� C � Dð ÞK þ A ¼ 0 ð12Þ

with

C ¼ 4l2
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and
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Note that, for convenience, we denote:

Wi �
@W
@Ii

; Wij �
@2W
@Ii@Ij

; i; j ¼ 1; 2: ð15Þ

Together, Eqs. 4–15 allow one to compute the indenta-
tion force–depth relation for an incompressible, initially
isotropic material that is first stretched equibiaxially
(note: this stretch induces an anisotropy relative to
the original reference configuration). In the next section,
we extend this result for a special case of a new
relationship for cell mechanics that accounts for the
separate contributions of the three primary cytoskeletal
constituents.

3 New theoretical framework

3.1 A constitutive relation for cells

Many different models have been proposed for the
constitutive behavior of cells (e.g., see Humphrey 2002a;
Stamenovic and Ingber 2002). These include tensegrity
models, percolation models, soft glassy rheological
models, mixture models, and classical models based on
linearized elasticity or viscoelasticity. Notwithstanding
the potential advantages of the different models, we
submit that constrained rule-of-mixture models (see
Eq. 1) allow one to include nonlinear elasticity and
viscoelasticity, different properties and distributions of
individual constituents, and, most importantly, the dif-
ferent rates and extents of turnover of individual con-
stituents. Here, therefore, consider the following relation
for the Cauchy stress:

t ¼ �pIþ 2F
@W
@C

FT þ /c2~l /cð ÞD ð16Þ

where the viscosity may depend on the mass fraction of
the cytosol. That is, as insoluble constituents are depo-
lymerized, their fragments may alter the viscosity (see
Herant et al. 2003). More important here, however, we
borrow from the work of Lanir (1983) to construct a
strain-energy function for a potentially evolving cyto-
skeleton, while emphasizing that the resulting relations
are microstructurally-motivated, but phenomenological,
namely:

W ¼
XN

k¼1

Z2p
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/kRk u; hð Þwk ak
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cosududh ð17Þ

where wk(ak) is a 1-D strain energy function for a fila-
ment and ak is its stretch; the superscript k can denote a
particular constituent as well as its natural configuration
(e.g., original vs. new). The function Rk(/h) represents
the original distribution of orientations of a filament
family k and /k are mass fractions. Consequently:
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where the 1¢ (i.e., primed) coordinate axis coincides with
the direction of a generic filament (Fig. 2), and C011 is
obtained from a tensorial transformation of CMN. This
relation will prove useful below. Hence, we have:

tij ¼ �pdij

þ 2
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Clearly then, in the absence of constituent turnover,
our constitutive relation can be written as a simple
rule-of-mixtures with each primary constituent having a
single reference configuration (i.e.,N=1, 2, 3 for original
actin a, intermediate filaments i, and microtubules m),
namely:

t ¼ �pIþ /ata þ /iti þ /mtm þ /c2~l /cð ÞD: ð20Þ

Turnover of constituents can easily be incorporated in
Eq. 19, in principle, given appropriate kinetics for the

Fig. 2 Local spherical coordinate system used for microstructur-
ally motivated, phenomenological constitutive relations of a living
cell. The arrow represents the orientation of an individual filament
belonging to any of the three primary families of cytoskeletal
filaments. The function Rk(/, h) quantifies the distribution of all
such orientations
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mass fractions, information on the potential evolution of
the individual natural configurations, and information
on the potential evolution of the distribution of the
filaments. This is left for subsequent consideration.

3.2 Small indentation superimposed on a finite
equibiaxial stretch

Conceptually, it may be prudent to think of at least four
configurations for the cell in an AFM test (Fig. 3). First,
we have a non-adherent cell with perhaps a fairly ran-
dom distribution of cytoskeletal filaments. Deposition of
the cell onto a substrate involves two phases: initial
contact, with an upregulation of integrins, followed by
an active spreading. Relative to the non-adherent refer-
ence configuration, we might think of this spreading as
somewhat of an in-plane stretch. Finally, if the substrate
is deformable, the cell could be stretched further prior to
testing with the AFM. This potential sequence of events
motivates the consideration of a small indentation
superimposed on a large ‘‘in-plane’’ deformation of a
mixture that originally had a nearly uniform distribution
of constituents. Whereas the aforementioned solution
for the relation P–d (Eq. 4) was derived for a 3-D stored
energy function W(I1, I2), the proposed strain-energy for
the cell (Eq. 17) is written in terms of individual 1-D
stored energy functions wk that depend solely on the
stretch ak experienced by the individual constituent.
Fortunately, these stretches relate to the macroscopic
deformation C, if we assume affine deformations. Hence,

we merely need transformation relations between deriv-
atives with respect to the invariants Ii and those in terms
of the components of C in order to utilize prior results
for the indentation solution. Note, therefore, that:

@W
@CMN

¼ @W
@I1

@I1
@CMN

þ @W
@I2

@I2
@CMN

ð21Þ

whereby, for an in-plane equibiaxial stretch, we need
only to consider derivatives with respect to C11, C22, and
C33. These provide three equations in terms of the two
‘‘unknown’’ derivatives of W with respect to I1 and I2,
which are denoted by W1 and W2, respectively. For an
equibiaxial stretch, however, the results for the in-plane
components C11 and C22 are the same and it is easy to
show that:

W1 ¼
1
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Next, let W1 ¼ ĝ C11;C22;C33ð Þ and W2 ¼ ~g C11;C22;C33ð Þ
and consider the following derivatives:

@ĝ
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¼ @ĝ
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and

@~g
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¼ @~g
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þ @~g
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@I2
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ð24Þ

which provide six equations in terms of the four ‘‘un-
known’’ second derivatives of W with respect to the
invariants, which we denote byWij=Wji (see Eq. 15). As
before, however, the equations for the components C11

and C22 provide the same information, thus leaving four
equations. Solving these four equations for the four
second derivatives of W with respect to the principal
invariants of C yields:
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W12 ¼
1

C11 � C33ð Þ2
C11 þ C22ð Þ @2W

@C33@C11
� @2W

@C2
11

� �
þ C22 þ C33ð Þ @2W

@C11@C33
� @2W

@C2
33

� �
þ

C11þ2C22þC33ð Þ
C11�C33

@W
@C11
� @W

@C33

� �

2

6
4

3

7
5 ð26Þ

Fig. 3 Four configurations for an adherent cell, including an
assumed materially isotropic cell in a non-adherent, traction-free
reference configuration. Adherence and active spreading likely
change the material symmetry from isotropic to anisotropic via an
affine deformation-dependent mechanism and possibly active
remodeling (not considered explicitly)
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where W12=W21 and:

W22 ¼
1

C11 � C33ð Þ2
�
@2W
@C2

11

� 2
@2W

@C11@C33
þ @

2W
@C2

33
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C33 � C11

@W
@C11

� @W
@C33

� �	

ð27Þ

Recall that C=diag[l2, l2, k2] for our case herein,
with k=1/l2, which allows these equations to be
specialized. Most importantly, however, we can now
compute A, B, C, and D in Eqs. 11–14, and thus,
compute G(W)/S(W) in Eq. 10—this allows us to
compute indentation force–depth relations P–d for the
model cell (Eqs. 16–20). Although the final equation
can be written directly, it proves expedient to calculate
numerically the requisite quantities from these simple
formulae1.

Finally, because little is yet known about the specific
functional forms of wk(ak) for the individual constituents
of the cytoskeleton, or the associated values of the
material parameters, we nondimensionalize the problem
to allow illustrative simulations. Let length, time, and
mass scales be, respectively:

Ls ¼ d; Ts ¼
ffiffiffiffiffiffiffiffi
qd2

E

r

; Ms ¼ qd3 ð28Þ

where d is the diameter of the cell in the non-adherent
state (see Fig. 3), q is the overall mass density of the cell,
and

E ¼ lim
l!1

C
R

� �

ð29Þ

where E is an initial overall elastic modulus of a cell that
can be estimated at l=k=1, with G and S obtained
from Eq. 10. Consequently, Eq. 4 can be written as:

W ¼ 2pHg xð Þ ð30Þ

where

W ¼ P
d2E

; H ¼ C=R
E

; g ¼ f̂ dð Þ
d2

ð31Þ

and x=d/d.

4 Illustrative simulations

There is a pressing need for data that are sufficient for
identifying specific forms of the constitutive functions
(including wk(ak) and Rk(/, h)) and calculating values of
the associated material parameters for each constituent.
Such data often have to await the development of a the-
oretical framework, however, for, without a framework,

one often does not know what to measure (e.g., overall
modulus in a Hertz model versus stiffness and orientation
for individual filaments). Notwithstanding the current
lack of sufficient data, let us illustrate qualitatively some
predictions of the present theoretical framework. Such
simulations help us to develop intuition and indeed may
help us to interpret future experimental results.

4.1 Illustrative mechanical behaviors

Despite scant information on the mechanical behavior
of individual filaments (or, more precisely, filament-
dominated behaviors that include the effects of select
accessory proteins), it appears that these behaviors may
be qualitatively similar to those of soft tissue—nonlinear
with slight hysteresis (Janmey et al.1991; Liu and
Pollack 2002). Hence, one possible form for the 1-D
energy function is (Humphrey and Yin 1987):

wk ak
� �

¼ 1

2
ck exp ck

1 ak � 1
� �2� �

� 1
h i

ð32Þ

where ck and c1
k are separate material parameters for

each family of constituents k. Another possible form is
(Lanir 1983):

wk ak
� �

¼ 1

2
ck
2 ak � 1
� �2 ð33Þ

which yields a linear first Piola–Kirchhoff stress vs.
stretch relation (note: Eq. 32 reduces to Eq. 33 in the
limit as ak fi 1, with c2

k@ckc1k, no sum on k).
Similarly, despite increasing data from confocal and

multi-photon microscopy, there is little information on
specific distributions of the orientations of the cyto-
skeletal filaments. For the purposes of illustration,
however, consider a 3-D von Mises–Fisher distribution
that results directly from generalizing the von Mises
distributions on the 2-D circle (Fisher et al. 1987),
namely:

Rk u; hð Þ ¼ j
4p sinhj

�


expj

�
cosu cosb cos h� cð Þ þ sinu sinbÞ

�
;

�p=26u6p=2;06h62pð Þ ð34Þ

This distribution has three parameters: j, b, and c. j
is a shape or concentration factor. The larger the
value of j the more the distribution is concentrated
towards the direction (b, c)—see Fig. 4. b and c are
location parameters where the distribution has rota-
tional symmetry about the direction (b, c). Since Rk is
a probability density function, its integral over all
possible orientations must satisfy the normalization
condition:

Z2p

0

Zp=2

�p=2

Rk u; hð Þ cosududh¼ 1 8k ð35Þ1Explicit derivations were carried out for a Mooney–Rivlin mate-
rial whereby the classical result was confirmed (see Eq. 8 in
Humphrey et al. 1991).
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4.2 Illustrative numerical results

Recalling Fig. 3, let us assume that each family of fila-
ments is randomly distributed in the non-adherent ref-
erence configuration. That is, let us assume an initial
isotropy despite any stretch-induced anisotropy associ-
ated with cell spreading or subsequent stretching of the
substrate (note: such stretch-induced changes in orien-
tation can be calculated simply given akmk ¼ Fk

jkM
k

where Mk and mk are unit vectors in the direction of a
particular filament in original and deformed configura-
tions, respectively). Consequently, let Rk(/, h)=1/4p.
Let the mass fraction of the actin filaments be /a=0.038
(Cheng et al. 2000). Material parameters for each fila-
ment within the cytoskeleton are chosen such that the
actin filaments are stiffer in extension than the micro-
tubules, with the intermediate filaments exhibiting an
intermediate extensional stiffness (Janmey et al. 1991).
Given such values, we can estimate the mass fractions of
the microtubules and intermediate filaments. Assuming
that their mass fractions are the same, and using
empirical results from Rotsch and Radmacher (2000),
which show that the ‘‘elastic modulus’’ of the cell de-
creases by a factor of three when actin filaments are
disrupted, we compare the initial elastic moduli E of two
cases, control and actin-disrupted (Eq. 29). Of course, if
the filament is disrupted completely, its mass fraction /k

is zero. The parameters for our calculations are given in
Table 1. Finally, for purposes of non-dimensionaliza-
tion, note that the volume of an average culture cell is
approximately 4 pl (Alberts et al. 2002), thus, let
d=20 lm. Furthermore, let q=1 g/ml for water, which

is the most abundant substance in cells (Alberts et al.
2002).

Assuming a quasi-static indentation (i.e., D=0 in
Eq. 16), consider P–d (actually Y–g) results for different
values of the in-plane stretch l 2 [1, 1.12] for both an
exponential and a linear behavior (Eq. 32 and Eq. 33) of
the filaments and with a flat-ended cylindrical indenter
(Fig. 5). Similarly, consider results at a single stretch
(l=1.2) for exponential-type filament behaviors with
four different indenter tips (Fig. 6a). If we interpret the
slope of the force–depth relation as a measure of the
‘‘stiffness’’ of the cell, we see that both the degree of
finite stretch (e.g., degree of spreading) and the geometry
of the tip dramatically affect this result, given the same
material properties. In particular, only the flat-ended tip
yields a linear force–depth relation for the small inden-
tation. The non-flat-tipped indenters contact increas-
ingly more material as they indent deeper. Finally, note
that removal of individual constituents reduces the
stiffness as expected (Fig. 6b): disruption of the actin
filaments can reduce the stiffness substantially, whereas
there can be little contribution to the overall cytoskeletal
stiffness by the microtubules or intermediate filaments.
This observation agrees with the empirical findings of
Wakatsuki et al. (2000) and Wu et al. (1998). Although
not shown, additional simulations with different values
of the material parameters (see Table 1) revealed quali-
tatively similar results: decreasing the stiffness of the
actin dramatically decreased the indentation force at a
given indentation depth and tip-geometry, whereas
uniformly raising or lowering the values of the param-
eters had no effect due to the non-dimensionalization.

Table 1 Material parameters for a model cell

Nondimensional parameter Actin filaments Microtubules Intermediate
filaments

Mass fraction / 0.038 0.017 0.017
Stiffness parameter c/E 1.78 1.78 1.78
Material parameter c1 120 50 80
Stiffness parameter c2/E 214 89 142

Note: the volume fraction for actin was taken from Cheng et al.
(2000). The volume fractions of the microtubules and intermediate
filaments were estimated from Eqs. 10–15 and Eq. 29, and from the
experiments of Rotsch and Radmacher (2000). Stiffness and

material parameters were assumed based on Janmey (1991); c2/E
was selected for direct comparisons between the exponential and
linear models

Fig. 4a, b Illustrative (possible)
distributions of cytoskeletal
filaments given by a von Mises–
Fisher distribution function
(see Eq. 34). a j=3, b= 0,
c=p/4. b j=7, b=0, c=p/4
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5 Discussion

Many different experimental methods exist for interro-
gating the biomechanical properties and mechanobio-
logical responses of cells. They include: atomic force
microscopy, magnetic bead cytometry, microfabricated

cantilevers, micropatterned surfaces, micropipet aspira-
tion, optical traps, stretching of cells on flexible mem-
branes, laminar flow chambers, and rotating
bioreactors. Each method promises new insight into the
wonderfully complex structure, function, and properties
of living cells, and each warrants rigorous biomechanical
analysis. Herein, we focused on atomic force microscopy
not only because of its widespread usage, but primarily
because of its frequent inappropriate interpretation
based on the classical Hertz solution.

Many investigators recognize that the simplifying
assumptions inherent to the Hertz solution do not
apply in most AFM studies on cells. This was shown
convincingly via finite element simulations by Costa
and Yin (1999)—they wrote, ‘‘Widely applied infini-
tesimal strain models agreed with FEM results for
linear elastic materials, but yielded substantial errors in
the estimated properties for nonlinear elastic materi-
als.’’ Consequently, some employ nonlinear empirical
P–d relations and then try to ascribe meaning to the
associated parameters (e.g., Miyazaki and Hayashi
1999; Sato et al. 2000). This approach is limited,
however, by the inability to separate structural from
material stiffnesses; indeed, it has no biomechanical
basis. Alternatively, others appear to rationalize using
the Hertz solution by arguing that measuring absolute
values of the material properties is less important than
delineating relative changes from cell-to-cell or inter-
vention-to-intervention. Finally, some appear to use the
Hertz solution simply because of a lack of a viable

Fig. 5a, b Combined out-of-plane indentation and in-plane equi-
biaxial stretch for a exponential-type filaments and b linear-type
filaments, each indented by a flat-ended circular cylinder with
radius 30 nm. Each line corresponds to different in-plane stretches,
from lower to upper, of l=1.00 to 1.12 in steps of 0.02. All results
are non-dimensional to emphasize the qualitative responses, not the
specific values

Fig. 6a, b Combined indentation and equibiaxial in-plane
stretch, l=1.2, for the exponential-type filament behavior.
a Effects of four different indenter tips: flat-ended circular cylinder
with radius a=30 nm (dash-dotted line, which is linear), sphere with
radius a=30 nm (dashed line), cone with tip angle 2F=75� (dotted
line), and blunted cone with tip angle 2F=75� and radius
a=30 nm (solid line). The nonlinear responses (for all but the
flat-ended indenter) are due, in part, to the nonlinearly increasing
contact area between the indenter and cell. b Effects of cytoskeleton
disrupting drugs with blunted cone, with 2F=75� and a=30 nm:
control (solid line), actin filament disrupting drugs (dotted line for
disruption of all actin filaments, and dash-dotted line disruption of
half the actin filaments), and microtubule and intermediate filament
disrupting drugs (dashed line). We assume that, if the filament is
disrupted completely, the mass fraction / of the corresponding
filament is zero. Note that the predicted behavior is dominated by
the actin. All results are non-dimensional to emphasize the
qualitative responses, not the specific values
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alternative. Mathur et al. (2001) imply, for example,
that there is simply a need for further development of
applicable theoretical frameworks. Regardless, there is
a pressing need to move beyond the assumptions of a
linearly elastic behavior of a single constituent contin-
uum under infinitesimal strains.

The approach and findings of Costa and Yin (1999)
represent a pivotal step in improving analyses of AFM
experiments. Nonetheless, their finite element solutions
are limited, largely because of the use of a commer-
cially available code that is best suited for strain–
energy functions W ¼ Ŵ I1; I2ð Þ that describe the iso-
tropic behavior of single constituent (i.e., materially
uniform) continua. Cells, in contrast, contain multiple
structurally important constituents that are able to
remodel individually to different extents and at dif-
ferent rates. Indeed, recent advances in molecular
biology that allow one to selectively modify individual
constituents (see, e.g., Wu et al. 1998; Rotsch and
Radmacher 2000) necessitate a more general theoreti-
cal framework for analysis. Albeit based on a number
of simplifying assumptions—e.g., small, quasi-static
indentations on equibiaxially stretched cells—the ap-
proach presented herein can account for the separate
orientations, properties, and deformations of multiple
constituents within the cytoskeleton, and, thus, chan-
ges in the mechanical response of cells that are
induced by biological or mechanical stimuli, such as
applying cytoskeleton disrupting drugs or pre-stretch.
Indeed, despite the need to introduce particular con-
stitutive relations to numerically illustrate the theory,
these can be varied easily as demanded by increasingly
better data, thus rendering the overall theory more
general.

We emphasize that the two primary uses of such a
framework should be to guide experimentation (e.g.,
highlight what needs to be measured, such as constituent
properties, orientations, and mass fractions) and to serve
as a check for future finite element analyses of AFM,
which will be needed to study additional classes of tests.
In particular, the present results cannot be used in cases
wherein the indentation is above the nucleus or near the
periphery where the effects of the underlying substrate
are pronounced. In such cases, finite element analyses
will be essential. Likewise, the present results should
only be used in tests wherein the indentation is ‘‘small’’
and ‘‘quasi-static.’’ This reminds us again that theory
should guide experiment. Finally, the most basic issue is
that of the continuum assumption. The dimensions of
the cell are on the order of micrometers whereas those of
the cytoskeletal filaments are on the order of nanome-
ters, which suggest that a continuum assumption may be
reasonable, as used in most papers to date. Nevertheless,
the diameter of the indenter is often on the order of 10–
50 nm, similar to that of the diameters of the primary
constituents, thus, this merits careful attention. This
could be addressed, in part, by comparing predictions
with additional experiments and would likely be
aided by simultaneous imaging of the cytoskeleton.

Conversely, one may need to consider larger diameter
indenters, particularly ones that are flat-ended, for they
alone can yield linear force–depth data. Of course, in the
final analysis, as noted by Truesdell and Noll (1965),
‘‘Whether the continuum approach is justified, in any
particular case, is a matter, not for the philosophy or
methodology of science, but for the experimental test.’’
Each case must be so justified, depending on the par-
ticular test and its overall goal. Going beyond a con-
tinuum approach will, of course, require remarkably fine
detail on the distributions and interactions of all con-
stituents—a significant challenge.

In conclusion, the complex structure and properties
of living cells demand continued research into improved
models. At the minimum, we should account for the
nonlinear material behavior over finite strains of a multi-
constituent material. The present paper describes one
step toward that goal, one that synthesizes prior work
on microstructural models of soft tissues and an ana-
lytical solution from finite elasticity. It is hoped that this
new model allows improved interpretation of sub-classes
of AFM tests and, more importantly, that it provides
some direction for further research.
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