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Objective: The aim of this study was to assess the diagnostic ability of artificial intelligence
(AI) in the detection of early upper gastrointestinal cancer (EUGIC) using endoscopic images.

Methods: Databases were searched for studies on AI-assisted diagnosis of EUGIC using
endoscopic images. The pooled area under the curve (AUC), sensitivity, specificity,
positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio
(DOR) with 95% confidence interval (CI) were calculated.

Results: Overall, 34 studies were included in our final analysis. Among the 17 image-
based studies investigating early esophageal cancer (EEC) detection, the pooled AUC,
sensitivity, specificity, PLR, NLR, and DOR were 0.98, 0.95 (95% CI, 0.95–0.96), 0.95
(95% CI, 0.94–0.95), 10.76 (95% CI, 7.33–15.79), 0.07 (95% CI, 0.04–0.11), and 173.93
(95% CI, 81.79–369.83), respectively. Among the seven patient-based studies
investigating EEC detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and
DORwere 0.98, 0.94 (95%CI, 0.91–0.96), 0.90 (95% CI, 0.88–0.92), 6.14 (95%CI, 2.06–
18.30), 0.07 (95% CI, 0.04–0.11), and 69.13 (95% CI, 14.73–324.45), respectively.
Among the 15 image-based studies investigating early gastric cancer (EGC) detection, the
pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.94, 0.87 (95% CI, 0.87–
0.88), 0.88 (95% CI, 0.87–0.88), 7.20 (95% CI, 4.32–12.00), 0.14 (95% CI, 0.09–0.23),
and 48.77 (95% CI, 24.98–95.19), respectively.

Conclusions: On the basis of our meta-analysis, AI exhibited high accuracy in diagnosis
of EUGIC.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier
PROSPERO (CRD42021270443).
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INTRODUCTION

Upper gastrointestinal cancer (UGIC) is among the most
common malignancies and causes of cancerrelated deaths
worldwide, which presents a major challenge for health-care
system (1). A majority of UGIC patients are detected at a late
stage and have a poor prognosis. In contrast, with early
detection, the 5-year overall survival can be more than 90%
(2, 3). Thus, the early detection of UGIC is essential to improve
patient prognosis.

Endoscopy remains the most optimal approach of UGIC
detection (4, 5). However, endoscopic features of early upper
gastrointestinal cancer (EUGIC) lesions are subtle and easily
missed. Moreover, diagnostic accuracy depends on the expertise
of endoscopists (2). One report revealed that EUGIC
misdiagnosis can be high regardless of the number of patients,
developed or underdeveloped locations, or in countries
performing a remarkably high volume of endoscopies (6).

Artificial intelligence (AI) is gaining much popularity in the
field of medicine, including gastrointestinal endoscopy (7–11).
Owing to its good pattern recognition ability, AI is a promising
candidate for detection of upper gastrointestinal lesions (12, 13).
However, the data on AI-assisted EUGIC diagnosis are still
lacking. Hence, we conducted this study to assess the
diagnostic accuracy of AI in the detection of EUGIC using
endoscopic images.
METHODS

This systematic review and meta-analysis was reported in line
with PRISMA guidelines and was registered with the
international prospective register of systematic reviews
PROSPERO (CRD42021270443).

Search Strategy and Study Selection
Two authors (FK and JD) separately searched electronic
databases (PubMed, Medline, Embase, Web of Science,
Cochrane library, and Google scholar) from the date of
establishment until November 2021 using the following pre-
specified search terms: “endoscopy”, “endoscopic”, “early gastric
cancer”, “early esophageal cancer”, “early esophageal squamous
cell carcinoma”, “early Barrett’s neoplasia”, “early esophageal
adenocarcinoma”, “artificial intelligence”, “AI”, “machine
learning”, “deep learning”, “artificial neural network”, “support
vector machine”, “naive bayes”, and “classification tree”.
Potentially relevant studies (based on title and abstract) were
then read completely to ensure eligibility in the meta-analysis. In
addition, we also reviewed the reference lists of relevant studies
to search for eligible studies.

Study Eligibility Criteria
Studies meeting the following criteria were included in the
meta-analysis: (1) studies that evaluated AI diagnostic
performance for EUGIC using endoscopic images; (2) true
positive (TP), false positive (FP), false negative (FN), and true
Frontiers in Oncology | www.frontiersin.org 2
negative (TN) values could be extracted directly or calculated
from the original studies. The following studies were excluded
from our meta-analysis: (1) reviews, (2) meta-analyses, and (3)
comments or protocols. We followed a strict exclusion policy
that any study meeting one of the abovementioned exclusion
criteria was excluded.

Data Extraction
Two authors (MZJ and XDL) separately extracted data from the
included studies, namely, author, publication year, study design,
imaging type, AI model, sample size, TP, FP, FN, and TN. TP,
FP, FN, and TN were extracted with the histology as the
reference standard. Intramucosal carcinoma, T1 cancer, and
Barrett’s esophagus (BE) with high-grade dysplasia were
considered as positive. Normal tissue, BE without high-grade
dysplasia, and non-cancerous lesions were considered as
negative. The authors of the studies were contacted for missing
information, if necessary. Discrepancies were decided
through discussion.

Methodological Quality Assessment
Two authors (XDL and XCL) evaluated the quality and potential
bias risk of eligible studies based on the Quality Assessment of
Diagnostic Accuracy Studies (QUADAS-2) (14). Disagreements
were resolved through discussion. The QUADAS-2 tool was
composed of four domains: “patient selection”, “index test”,
“reference standard”, and “flow and timing”. In addition, the
“patient selection”, “index test”, and “reference standard” were
further tested for “applicability”. Each domain was then stratified
into high, low, or unclear bias risk.

Statistical Analysis
Statistical analysis was performed using the Meta-Disc software
(version 14). To assess AI performance in EUGIC diagnosis, the
pooled sensitivity, specificity, positive likelihood ratio (PLR),
negative likelihood ratio (NLR), and diagnostic odds ratio
(DOR) with 95% confidence interval (CI) were computed. In
addition, we plotted a summary receiver operating
characteristic (SROC) curve. The area under the curve (AUC)
was computed to predict precision in diagnosis. We evaluated
AI diagnostic performance based on images (image-based
analysis) and patients (patient-based analysis). The forest plot
was constructed. The inconsistency index (I2) test determined
presence or absence of heterogeneity among studies using
sensitivity (15). A fixed-effects model was used if the I2 value
< 50%; otherwise, a random-effects model was selected. The
Spearman correlation coefficient (SCC) between sensitivity and
false positive rate was calculated, and a value > 0.6 indicated a
threshold effect.
RESULTS

Literature Screening and Bias Evaluation
The primary screening uncovered 1,812 eligible studies. Upon
removal of duplicates and other studies that were irrelevant to
June 2022 | Volume 12 | Article 855175
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this study (based on title, abstract, and full article), 34 studies
(16–49) investigating AI-assisted early esophageal cancer
(EEC) and early gastric cancer (EGC) detection were included
in the final meta-analysis. Among 34 studies, 18 and 17 studies
assessed the diagnostic ability of AI in the detection of EEC
(16–33) and EGC (29, 34–49), respectively. An overview of the
eligible studies screening process is illustrated in Figure 1.
Table 1 presents the characteristics of all eligible studies.
Overall, the included studies showed high methodological
quality. The quality assessment and risk of bias for each
eligible study are summarized in Figure 2.

AI-Assisted EEC Diagnosis Using
Endoscopic Images
Meta-Analysis of AI-Assisted EEC Diagnosis Using
Endoscopic Images [White-Light Imaging (WLI)/
Narrow-Band Imaging (NBI) Images]
Eigtheen studies (16–33) reported the AI-assisted EEC
diagnosis performance using endoscopic images. Moreover,
17 and 7 studies reported the AI-assisted EEC diagnosis
performance based on per image (16–26, 28–33) and per
patient (17, 18, 21, 24, 27, 31, 33), respectively. Among the 17
Frontiers in Oncology | www.frontiersin.org 3
image-based studies, a total of 13,091 images (4,310 positive vs.
8,781 negative) were identified. Specifically, the positive group
composed of the early esophageal squamous cell carcinoma
(EESCC), early esophageal adenocarcinoma (EEAC), and EEC
images, whereas the negative group consisted of normal,
Barrett’s esophagus, and non-cancerous images. In most
studies, the AI algorithm type was convolutional neural
network (CNN). However, single-shot multibox detector
(SSD) (25) and support vector machine (SVM) (29, 31) were
also employed. Among the seven patient-based studies, a total
of 1,380 patients (316 positive vs. 1,064 negative) were
identified. Specifically, EESCC and EEAC constituted the
positive group, whereas normal, Barrett’s esophagus, and
non-cancerous comprised of the negative group. Most studies
used the CNN algorithm. However, SVM was used in one
study (31).

In the 17 image-based studies investigating AI-assisted EEC
diagnosis, the pooled AUC, sensitivity, specificity, PLR, NLR,
and DOR were 0.98, 0.95 (95% CI, 0.95–0.96), 0.95 (95% CI,
0.94–0.95), 10.76 (95% CI, 7.33–15.79), 0.07 (95% CI, 0.04–0.11),
and 173.93 (95% CI,81.79–369.83), respectively (Figures 3A–F).
In addition, the SCC and p-values were −0.10 and 0.70 (>0.05),
FIGURE 1 | An overview of the study screening process.
June 2022 | Volume 12 | Article 855175
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respectively, suggesting no significant threshold effect among
these studies.

Among the seven patient-based studies investigating AI-assisted
EEC diagnosis, the pooled AUC, sensitivity, specificity, PLR, NLR,
and DOR were 0.98, 0.94 (95% CI, 0.91–0.96), 0.90 (95% CI, 0.88–
0.92), 6.14(95% CI, 2.06–18.30), 0.07 (95% CI, 0.04–0.11), and
69.13 (95% CI, 14.73–324.45), respectively (Figures 4A–F). The
SCC and p-values were −0.071 and 0.879 (>0.05), respectively,
indicating no significant threshold effect among these studies.
Frontiers in Oncology | www.frontiersin.org 4
AI-Assisted EGC Diagnosis Using
Endoscopy Images
Meta-Analysis of AI-Assisted EGC Diagnosis Using
Endoscopic Images (WLI/NBI Images)
Seventeen studies (29, 34–49) reported the AI diagnosis
performance of EGC using endoscopic images. Fifteen studies
(29, 34–38, 40–42, 44–49), one study (39), and one study (43)
evaluated the AI diagnosis performance based on per image, per
patient, and per lesion, respectively.
TABLE 1 | Clinical characteristics of the included studies.

Author/year Study
design

Imaging type AI
model

No. of images/patients/
lesions in the test dataset

TP FP FN TN Endoscopist
control

Positive Negative

Cai, 2019 (16) Retrospective WLI CNN EESCC:91 Normal:96 89 14 2 82 Yes
de Groof, 2019 (17) Prospective WLI CNN EEAC:40/40* BE:20/20* 38/38* 3/3* 2/2* 17/17* No
de Groof, 2020 (1) (18) Prospective WLI CNN EEAC:33/10* BE:111/10* 25/9* 15/1* 8/1* 96/9* No
de Groof, 2020 (2) (19) Prospective WLI CNN EEAC:209 BE:248 186 31 23 217 No
Ebigbo, 2019 (1) (20) Retrospective WLI CNN EEAC:36 BE:26 30 0 6 26 No
Ebigbo, 2019 (2) (21) Retrospective WLI/NBI CNN EEAC:83①/33②

/33①*/33②*
BE:91①/41②

/41①*/41②*
78①/31②

/32①*/
31②*

5①/8②

/5①*/
8②*

5①/2②

/1①*/
2②*

86①/33②

/36①*/
33②*

No

Mendel, 2017 (22) Prospective WLI CNN EEAC:50/22* BE:50/17* 47 6 3 44 No
Everson, 2019 (23) Retrospective NBI CNN EESCC:775/

10*
Normal:891/7* 770 24 5 867 No

Fukuda, 2020 (24) Retrospective NBI CNN EESCC:45/45* NC:49/99* 39/41* 5/48* 6/4* 44/51* Yes
Ghatwary, 2019 (25) Retrospective WLI SSD EEAC:50/22* BE:50/17* 48 4 2 46 No
Guo, 2020 (26) Retrospective NBI CNN EESCC:1,480 NC:5,191 1,451 258 29 4,933 No
Iwagami, 2021 (27) Retrospective WLI+NBI CNN EEAC:36* NC:43* 34* 25* 2* 18* No
Li, 2021 (28) Retrospective WLI/NBI CNN EESCC:133①/

133②
Normal:183①/

183②
131①/
121②

31①/
6②

2①/
12②

152①/
177②

Yes

Liu, 2016 (29) Retrospective WLI SVM EEC:150 Normal:250 140 27 10 233 No
Hashimoto, 2020 (30) Retrospective WLI/NBI CNN EEAC:146①/

79②
BE:107①/126② 144①/

73②
12①/
1②

2①/6② 95①/
125②

No

van der Sommen,
2016 (31)

Retrospective WLI SVM EEAC:60/21* BE:40/23* 50/18* 7/3* 10/3* 33/20* Yes

Wang, 2021 (32) Retrospective WLI/NBI CNN EEAC:95①/
115②

Normal:17①/
37②

90①/
112②

4①/
12②

5①/3② 13①/25② No

Yang, 2021 (33) Retrospective WLI CNN EESCC:474/
98*

Normal:964/
787*

419/94* 9/13* 55/4* 955/
774*

No

Wang, 2018 (34) Retrospective WLI CNN EGC:232 NC +
normal:478

206 49 26 429 Yes

Horiuchi, 2020 (35) Retrospective NBI CNN EGC:151 NC:107 144 31 7 76 No
Ikenoama, 2021 (36) Retrospective WLI CNN EGC:209 NC:2,731 122 347 87 2,384 Yes
Kanesaka, 2018 (37) Retrospective NBI SVM EGC:61 NC:20 59 1 2 19 No
Li, 2020 (38) Retrospective NBI CNN EGC:170 NC:171 155 16 15 155 No
Liu, 2016 (29) Retrospective WLI SVM EGC:130 Normal:270 118 25 12 245 No
Namikawa, 2020 (39) Retrospective WLI+NBI CNN EGC:100* GU:120* 99* 8* 1* 112* No
Shibata, 2020 (40) Retrospective WLI CNN EGC:533 Normal:1,208 404 127 129 1,081 No
Tang, 2020 (41) Retrospective WLI CNN EGC:4,810 NC:6,120 4,555 1,074 255 5,046 No
Ueyama, 2021 (42) Retrospective NBI CNN EGC:1,430 NC:870 1,401 0 29 870 No
Wu, 2021 (43) Prospective WLI CNN EGC:3# NC:191# 3# 30# 0# 161# No
Sakai, 2018 (44) Retrospective WLI CNN EGC:4,653 Normal:4,997 3,723 262 930 4,735 No
Yoon, 2019 (45) Retrospective WLI CNN EGC:330 NC:330 300 8 30 322 No
Wu, 2019 (46) Retrospective WLI CNN EGC:100 NC:100 94 9 6 91 No
Zhang, 2020 (47) Retrospective WLI CNN EGC:333 NC:311 285 189 48 122 No
Cho, 2019 (48) Retrospective WLI CNN EGC:46 NC:126 13 15 33 111 No
Cho, 2020 (49) Retrospective WLI CNN EGC:179 NC:217 111 75 68 142 No
June 2
022 | Vo
lume 12 |
EESCC, early esophageal squamous cell carcinoma; EEAC, early esophageal adenocarcinoma; BE, Barrett’s esophagus; EEC, early esophageal cancer; GU, gastric ulcers; SVM, support
vector machine; CNN, convolutional neural network; SSD, single-shot multibox detector; WLI, white-light imaging; BNI, narrow-band imaging; NC, non-cancerous; TP, true positive; FP,
false positive; FN, false negative; TN, true negative; WLI/NBI indicates that one study included WLI and BNI images, and the numbers of TP, FP, FN, and TN for EEC/EGC diagnosis with
WLI or NBI images were reported or could be calculated; WLI + NBI indicates that one study included WLI and BNI images, but the numbers of TP, FP, FN, and TN for EEC/EGC diagnosis
with WLI or NBI images were not reported or could not be calculated.
① indicates the number of WLI images; ② indicates the number of NBI images; *indicates the number of patients; #indicates the number of lesions.
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FIGURE 2 | The quality assessment and risk of bias for each eligible study.
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Among the 15 image-based studies, a total of 31,423 images
(13,367 positive vs. 18,056 negative) were identified. Only the
EGC images were categorized in the positive group, whereas the
normal and non-cancerous images were categorized in the
negative group. A majority of the studies used CNN algorithm.
However, the SVM algorithm was also used (29, 37). Among the
two patient/lesion-based studies, a total of 414 patients/lesions
(103 positive vs. 311 negative) were identified. Only the EGC
were placed in the positive group, whereas the gastric ulcers and
non-cancerous were placed in the negative group. Both studies
utilized CNN algorithm.

Among the 15 image-based EGC detection studies, the pooled
AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.94, 0.87
(95% CI, 0.87–0.88), 0.88 (95% CI, 0.87–0.88), 7.20 (95% CI, 4.32–
12.00), 0.14 (95% CI, 0.09–0.23), and 48.77 (95% CI, 24.98–95.19),
respectively (Figures 5A–F). The SCC and p-values were −0.44 and
0.10 (>0.05), respectively, suggesting no significant threshold effect
among these studies.

Only two patient-based studies evaluated AI in the diagnosis
of EGC, so meta-analysis was not performed. In Namikawa’s
Frontiers in Oncology | www.frontiersin.org 6
study, the sensitivity and specificity were 0.99 and 0.93,
respectively. In Wu’s study, the sensitivity and specificity were
1.00 and 0.8429, respectively.

Subgroup Analysis Based on Imaging Type
To compare the AI diagnostic performance of EEC and EGC
detection using WLI and NBI endoscopic images, we performed
a subgroup analysis based on imaging type. On the basis of the
results of subgroup analysis, the NBI mode showed a better
diagnostic performance than the WLI mode. The results are
summarized in Table 2.

Meta-Analysis of AI-Assisted EGC Diagnosis Using
WLI Endoscopic Images
Fourteen studies (16–22, 25, 28–33) reported the performance of
AI-assisted EEC detection using WLI endoscopic images. Among
the 14 image-based studies, the pooled AUC, sensitivity, specificity,
PLR, NLR, and DORwere 0.97, 0.92 (95% CI, 0.90–0.93), 0.93 (95%
CI, 0.91–0.94), 9.11 (95% CI, 6.04-13.75), 0.09 (95% CI, 0.06–0.13),
and 136.06 (95% CI, 67.20–275.49), respectively. The SCC and
A B

D

E F

C

FIGURE 3 | Meta-analysis of AI-assisted EEC diagnosis (image-based analysis). (A) SROC curve. (B) Pooled sensitivity. (C) Pooled specificity. (D) Pooled PLR. (E) Pooled
NLR. (F) Pooled DOR.
June 2022 | Volume 12 | Article 855175
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p-values were 0.24 and 0.40 (>0.05), respectively, indicating no
significant threshold effect among these studies.

Among the five patient-based studies (17, 18, 21, 31, 33), the
pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were
0.95, 0.95 (95% CI, 0.92–0.98), 0.82 (95% CI, 0.74–0.88), 4.7
(95% CI, 3.32–6.65), 0.07 (95% CI, 0.04–0.12), and 86.48 (95%
CI, 39.04–191.57), respectively. The SCC and p-values were 0.5
and 0.39 (>0.05), respectively, indicating no significant threshold
effect among these studies.

Meta-Analysis of AI-Assisted EEC Diagnosis Using
NBI Endoscopic Images
Seven studies (21, 23, 24, 26, 28, 30, 32) reported the AI-assisted
EEC detection performance using NBI endoscopic images.
Among the seven image-based studies, the pooled AUC,
sensitivity, specificity, PLR, NLR, and DOR were 0.99, 0.98
(95% CI, 0.97–0.98), 0.95 (95% CI, 0.95–0.96), 14.00 (95% CI,
6.71–29.20), 0.05 (95% CI, 0.02–0.11), and 363.56 (95% CI,
108.47–1218.26), respectively. The SCC and p-values were
−0.04 and 0.94 (>0.05), respectively, indicating no significant
threshold effect among these studies. Only two patient-based
studies evaluated AI for the diagnosis of EEC, so meta-analysis
was not performed. In the study by Ebigbo et al., (21) the
Frontiers in Oncology | www.frontiersin.org 7
sensitivity and specificity were 0.94 and 0.80, respectively. In
the study by Fukuda et al. (24), the sensitivity and specificity were
0.91 and 0.52, respectively.

Meta-Analysis of AI-Assisted EGC Diagnosis Using
WLI Endoscopic Images
Twelve studies (29, 34, 36, 40, 41, 43–49) reported the AI
diagnosis performance of EGC detection using WLI
endoscopic images. Eleven studies (29, 34, 36, 40, 41, 44–49)
reported the AI diagnosis performance based on per image. In
addition, only Wu’s study (43) reported the AI diagnosis
performance based on per lesion. Among the 11 image-based
EGC detection studies, the pooled AUC, sensitivity, specificity,
PLR, NLR, and DOR were 0.92, 0.86 (95% CI, 0.85–0.87), 0.87
(95% CI, 0.87–0.88), 6.12 (95% CI, 3.53–10.63), 0.21 (95% CI,
0.12–0.35), and 29.92 (95% CI, 14.23–62.90). The SCC and p-
values were −0.35 and 0.30 (>0.05), respectively, indicating no
significant threshold effect among these studies.

Meta-Analysis of AI-Assisted EGC Diagnosis Using
NBI Endoscopic Images
Four studies (35, 37, 38, 42) reported the AI diagnosis performance
for EGC using endoscopic NBI images based on per image. In
A B

D

E F

C

FIGURE 4 | Meta-analysis of AI-assisted EEC diagnosis (patient-based analysis). (A) SROC curve. (B) Pooled sensitivity. (C) Pooled specificity. (D) Pooled PLR. (E) Pooled
NLR. (F) Pooled DOR.
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addition, no studies reported the AI diagnosis performance based
on per lesion or per patient. Among the four image-based EGC
detection studies, the pooled AUC, sensitivity, specificity, PLR,
NLR, and DOR were 0.99, 0.97 (95% CI, 0.96–0.98), 0.96 (95% CI,
Frontiers in Oncology | www.frontiersin.org 8
0.95–0.97), 25.92 (95% CI, 1.63–413.31), 0.05 (95% CI, 0.02–0.12),
and 523.76 (95% CI, 37.39–7336.36), respectively. The SCC and p-
values were −0.8 and 0.2 (>0.05), respectively, suggesting no
significant threshold effect among these studies.
A B

D

E F

C

FIGURE 5 | Meta-analysis of AI-assisted EGC diagnosis (image-based analysis). (A) SROC curve. (B) Pooled sensitivity. (C) Pooled specificity. (D) Pooled PLR. (E) Pooled
NLR. (F) Pooled DOR.
TABLE 2 | Summary of subgroup analysis based on imaging type.

Subgroup Number of included studies Sensitivity
(95% CI)

Specificity
(95% CI)

PLR (95% CI) NLR (95% CI) DOR (95% CI) AUC

EEC

WLI
image-based analysis 14 0.92

(0.90–0.93)
0.93

(0.91–0.94)
9.11

(6.04-13.75)
0.09

(0.06–0.13)
136.06

(67.20–275.49)
0.97

patient-based
analysis

5 0.95
(0.92-0.98)

0.82
(0.74–0.88)

4.70
(3.32–6.65)

0.07
(0.04–0.12)

86.48
(39.04–191.57)

0.95

BNI
image-based analysis 7 0.98

(0.97–0.98)
0.95

(0.95–0.96)
14.00

(6.71–29.20)
0.05

(0.02–0.11)
363.56
(108.47–
1218.26)

0.99

EGC

WLI
image-based analysis 11 0.86

(0.85–0.87)
0.87

(0.87–0.88)
6.12

(3.53–10.63)
0.21

(0.12–0.35)
29.92

(14.23–62.90)
0.92

NBI
image-based analysis 4 0.97

(0.96–0.98)
0.96

(0.95–0.97)
25.92

(1.63–413.31)
0.05

(0.02–0.12)
523.76

(37.39–7336.36)
0.99
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Subgroup Analysis Based on Pathologic
Type in Esophagus
We also performed a subgroup analysis between early esophageal
squamous cell carcinoma (EESCC) and early esophageal
adenocarcinoma (EEAC). On the basis of the results of
subgroup analysis, AI showed a better diagnostic performance
in EESCC than EEAC. The results are summarized in Table 3.

Meta-Analysis of AI-Assisted EESCC Diagnosis
Using Endoscopic Images (WLI/NBI Images)
Six studies (16, 23, 24, 26, 28, 33) reported the AI-assisted EESCC
diagnosis performance using endoscopic images based on per
image. Among the six image-based studies, the pooled AUC,
sensitivity, specificity, PLR, NLR, and DOR were 0.99, 0.96 (95%
CI, 0.96–0.97), 0.95 (95% CI, 0.95–0.96), 18.21 (95% CI, 10.07–
32.93), 0.04 (95% CI, 0.01–0.11), and 491.74 (95% CI, 170.20–
1420.71), respectively. The SCC and p-values were −0.20 and
0.70 (>0.05), respectively, indicating no significant threshold
effect among these studies. Only two patient-based studies
(24, 33) evaluated AI for the diagnosis of EESCC, so meta-
analysis was not performed. In the study by Yang et al. (33), the
sensitivity and specificity were 0.97 and 0.99, respectively. In the
study by Fukuda et al. (24), the sensitivity and specificity were
0.91 and 0.52, respectively.

Meta-Analysis of AI-Assisted EEAC Diagnosis Using
Endoscopic Images (WLI/NBI Images)
Ten studies (17–22, 25, 30–32) reported the AI-assisted EEAC
diagnosis performance using endoscopic images based on per
image. Among the 10 image-based studies, the pooled AUC,
sensitivity, specificity, PLR, NLR, and DOR were 0.96, 0.93 (95%
CI, 0.91–0.94), 0.89 (95% CI, 0.87–0.91), 7.41 (95% CI, 5.09–
10.77), 0.10 (95% CI, 0.06–0.15), and 87.66 (95% CI, 44.40–
173.08), respectively. The SCC and p-values were −0.03 and 0.93
(>0.05), respectively, indicating no significant threshold effect
among these studies.

Among the five patient-based studies (17, 18, 21, 27, 31), the
pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were
0.96, 0.94 (95% CI, 0.89–0.97), 0.75 (95% CI, 0.68–0.81), 4.76
(95% CI, 1.69–13.38), 0.09 (95% CI, 0.05–0.17), and 51.94 (95%
CI, 20.89–129.11), respectively. The SCC and p-values were 0.6
and 0.29 (>0.05), respectively, indicating no significant threshold
effect among these studies.
Frontiers in Oncology | www.frontiersin.org 9
DISCUSSION

In this study, we conducted a comprehensive literature search and
included all studies that assessed diagnostic performance of AI in
EUGIC using endoscopic images. Next, we conducted a meta-
analysis to explore the diagnostic performance of AI in EUGIC
detection. On the basis of our results, AI demonstrated an excellent
diagnostic ability, with high accuracy, sensitivity, specificity, PLR,
and DOR, and with low NLR in detecting EUGIC, suggesting the
feasibility of AI-assisted EUGIC diagnosis in clinical practice. To the
best of our knowledge, this is the first systematic review and meta-
analysis that explored the AI-assisted detection of EUGIC based on
upper gastrointestinal endoscopic images.

Endoscopy is the primary tool used in the diagnosis of UGIC
(50, 51). However, EUGIC lesions manifest as indistinct mucosal
alterations under the classic WLI images. Therefore, EUGIC
detection is often highly dependent on endoscopist’s experience
and expertise (52). Previous studies also revealed that WLI-based
EGC diagnosis is possible, but with poor sensitivity or specificity
(36, 47, 48). More recently, AI-assisted image recognition makes
remarkable breakthroughs in the field of medical imaging diagnosis
and is gaining popularity in clinical practice (7–11, 53, 54).
Traditional AI algorithms like SVM and decision trees require
experts to manually design the image features, before the algorithm
extracts the feature from images (53, 55). This results in the
detection of only specific lesions, and in case the features are
insufficient, satisfactory identification results cannot be obtained.
Simultaneously, manual design is highly dependent on the previous
knowledge of designers. Thus, it is not feasible to work with large
amounts of data. At present, many studies on medical image
recognition adopt deep learning algorithm based on CNN. The
deep learning can automatically learn the most predictive
characteristics from a large image data file with no requirement of
previous knowledge and classify these images. In our study, most
included studies used the CNN algorithm, so we did not compare
the AI diagnostic ability between the different algorithms. Many
studies demonstrated excellent AI performance in detecting early
esophageal and stomach cancers with the CNN algorithm.
Consistent with these studies, in our study, AI exhibited an
excellent diagnosis performance for EUGIC with high accuracy,
sensitivity, and specificity.

Although several advanced technologies like NBI, confocal laser
endomicroscopy, and blue laser imaging have shown great promise
TABLE 3 | Summary of subgroup analysis based on pathologic type.

Subgroup Number of included studies Sensitivity
(95% CI)

Specificity
(95% CI)

PLR (95% CI) NLR (95% CI) DOR (95% CI) AUC

EESCC
image-based analysis 6 0.96

(0.96–0.97)
0.95

(0.95–0.96)
18.21

(10.07–32.93)
0.04

(0.01–0.11)
491.74
(170.20–
1420.71)

0.99

EEAC
image-based analysis 10 0.93

(0.91–0.94)
0.89

(0.87–0.91)
7.41

(5.09–10.77)
0.10

(0.06–0.15)
87.66

(44.40–173.08)
0.96

patient-based
analysis

5 0.94
(0.89-0.97)

0.75
(0.68–0.81)

4.76
(1.69–13.38)

0.09
(0.05–0.17)

51.94
(20.89–129.11)

0.96
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in the endoscopic detection of EUGIC, endoscopists still need
extensive specialized training and substantial experience to
identify early cancer lesions accurately. NBI endoscopy is an
optical image-enhanced technology that better visualizes surface
structures and blood vessels than does WLI (56). Multiple studies
have demonstrated NBI has a high sensitivity in detecting EUGIC
(37, 57, 58). To compare the AI diagnostic performance for EUGIC
detection using WLI and NBI endoscopic images, we performed a
subgroup analysis based on imaging type. On the basis of our
results, the NBI imaging mode has a superior diagnostic
performance for both EEC and EGC detection, with higher AUC,
sensitivity, specificity, PLR and DOR, and lower NLR.

There are limitations to this study. First, most studies were
based on the retrospective review of selected images. At the same
time, the number of positive images and negative images
included in some included studies was significantly different.
All retrospective studies were considered at high risk for
selection bias, so those studies might overestimate the
diagnostic accuracy of AI. Second, few studies compared the
diagnostic efficacy between AI and endoscopists, so we could not
perform meta-analysis to compared the diagnostic efficacy
between AI and endoscopists.

In conclusion, on the basis of our meta-analysis, AI achieved
high accuracy in diagnosis of EUGIC. Further prospective
studies comparing the diagnostic performance between AI and
endoscopists are warranted.
Frontiers in Oncology | www.frontiersin.org 10
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