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The Ca2+/calmodulin-dependent protein kinase II (CaMKII)
mediates long-term potentiation or depression (LTP or LTD)
after distinct stimuli of hippocampal NMDA-type glutamate
receptors (NMDARs). NMDAR-dependent LTD prevails in
juvenile mice, but a mechanistically different form of LTD can
be readily induced in adults by instead stimulating metabo-
tropic glutamate receptors (mGluRs). However, the role that
CaMKII plays in the mGluR-dependent form of LTD is not
clear. Here we show that mGluR-dependent LTD also requires
CaMKII and its T286 autophosphorylation (pT286), which
induces Ca2+-independent autonomous kinase activity. In
addition, we compared the role of pT286 among three forms of
long-term plasticity (NMDAR-dependent LTP and LTD, and
mGluR-dependent LTD) using simultaneous live imaging of
endogenous CaMKII together with synaptic marker proteins.
We determined that after LTP stimuli, pT286 autophosphor-
ylation accelerated CaMKII movement to excitatory synapses.
After NMDAR-LTD stimuli, pT286 was strictly required for
any movement to inhibitory synapses. Similar to NMDAR-
LTD, we found the mGluR-LTD stimuli did not induce CaM-
KII movement to excitatory synapses. However, in contrast to
NMDAR-LTD, we demonstrate that the mGluR-LTD did not
involve CaMKII movement to inhibitory synapses and did not
require additional T305/306 autophosphorylation. Thus,
despite its prominent role in LTP, we conclude that CaMKII
T286 autophosphorylation is also required for both major
forms of hippocampal LTD, albeit with differential
requirements for the heterosynaptic communication of excit-
atory signals to inhibitory synapses.

CaMKII is a central mediator of NMDAR-dependent long-
term potentiation (LTP) and long-term depression (LTD) (1),
two opposing forms of synaptic plasticity thought to mediate
higher brain functions such as learning, memory, and cogni-
tion (2–4). Both LTP and LTD require the CaMKII auto-
phosphorylation at T286 that generates Ca2+-independent
autonomous CaMKII activity (5, 6). LTP additionally requires
CaMKII binding to the NMDAR subunit GluN2B, which
mediates the further accumulation of CaMKII at excitatory
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synapses (7–10). By contrast, LTD instead requires additional
inhibitory CaMKII autophosphorylation at T305/306 (11),
which suppresses GluN2B binding and instead promotes
CaMKII movement to inhibitory synapses, where it mediates
inhibitory LTP (11, 12). NMDAR-dependent LTD is still
detectable in adult hippocampus but is much more prevalent
at juvenile stages (13, 14). However, robust LTD can still be
induced in mature hippocampus by stimulation of group 1
mGluRs, i.e., mGluR1 and 5 (4, 15, 16). A role of CaMKII also
in this mGluR-dependent LTD has been suggested by at least
three independent pharmacological studies (17–19). However,
these pharmacological studies differed in the direction of the
reported effect. Thus, it remained unclear if CaMKII promotes
or inhibits mGluR-dependent LTD.

Here, we tested CaMKII functions in mGluR-LTD using
genetic approaches. Our results show that, like NMDAR-
dependent LTP and LTD, the mGluR-LTD requires the
CaMKIIα isoform and its autophosphorylation at T286. Thus,
we additionally compared the role of T286 phosphorylation in
the CaMKII targeting to excitatory versus inhibitory synapses
in response to these three plasticity stimuli. In NMDAR-LTD,
the function of T286 phosphorylation is to enable induction of
additional T305/306 phosphorylation, which is known to be
required for the CaMKII movement to inhibitory synapses and
for normal NMDAR-LTD (11). By contrast, mGluR-LTD did
not require this additional inhibitory autophosphorylation.
Thus, even though CaMKII T286 autophosphorylation has a
longstanding prominent role in LTP, it is also required for
both major forms of LTD in hippocampal neurons, albeit with
differential requirements for the heterosynaptic communica-
tion of excitatory signals to inhibitory synapses.
Results

mGluR-LTD requires the CaMKIIα isoform

As pharmacological studies yielded conflicting results about
the role of CaMKII in mGluR-LTD, we decided to test CaMKII
functions in this form of plasticity by genetic means. Here,
group I mGluRs (i.e., mGluR1 and mGluR5) were directly
stimulated with (S)-3,5-dihydroxyphenylglycine (DHPG)
(100 μM for 10 min). This treatment resulted in significant
LTD at the CA3 to CA1 synapse in hippocampal slices from
wildtype mice (Fig. 1A). Genetic knockout of the CaMKIIα
isoform completely abolished this mGluR-LTD (Fig. 1B). Thus,
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Figure 1. mGluR-LTD requires the CaMKIIα isoform and its autophosphorylation at T286 but not T305/306. A, example traces and time course of
synaptic response, measured by excitatory postsynaptic potential (EPSP) slope of the CA3-CA1 Schaffer collateral pathway, in wildtype hippocampal slices
before and after chemical mGluR stimulation with DHPG (10 μM for 10 min). B, example traces and time course of synaptic response in CaMKIIα KO slices
before and after the same DHPG treatment as in A show abolished mGluR-LTD. C, example traces and time course of synaptic response in T286A
slices before and after DHPG treatment. D, example traces and time course of synaptic response in T305/306AV slices before and after stimulation with
DHPG (10 μM for 10 min). E, quantification of the change in synaptic response (measured by EPSP slope) after DHPG stimulation in wildtype, CaMKIIα KO,
T286A, and T305/306AV slices. Both CaMKII KO and T286A animals demonstrated severe impairments in DHPG-induced mGluR LTD when compared with
wildtype animals while T305/306AV slices did not show any LTD deficit, indicating CaMKII and its T286 autophosphorylation are required for mGluR LTD
(one-way ANOVA, Tukey’s post hoc test versus WT, ***p < 0.001, n = 6, 6, 7, 5 slices).

CaMKII in mGluR-dependent LTD
like LTP and NMDAR-LTD (6, 20), normal mGluR-LTD spe-
cifically required the CaMKIIα isoform. Therefore, all addi-
tional CaMKII point mutations tested here were specifically in
the α-isoform. Notably, the CaMKIIα isoform is exclusively
expressed in neurons and is the major CaMKII isoform in
mammalian brain, with�4-fold higher hippocampal expression
than the next most prevalent isoform, CaMKIIβ (21).

mGluR-LTD requires CaMKII autophosphorylation at T286 but
not T305/306

In order to determine the specific mechanisms of CaMKII
regulation required for mGluR-LTD, we next tested the effect
of several point mutations of the endogenous CaMKIIα gene.
The T286A mutation prevents the T286 autophosphorylation
that generates Ca2+-independent autonomous kinase activity
(22–25). Like complete CaMKIIα knockout, this mutation
completely abolished mGluR-LTD (Fig. 1C). Thus, like LTP
and NMDAR-LTD (5, 6), mGluR-LTD specifically requires
T286 autophosphorylation.

An additional mutant tested was T305/306AV, which pre-
vents an inhibitory autophosphorylation at these residues that
blocks Ca2+/CaM-binding and also curbs autonomous kinase
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activity (11, 24, 26, 27). In contrast to the T286A mutation, the
T305/306AV mutation did not reduce mGluR-LTD at all
(Fig. 1D). If any, the mGluR-LTD in the T305/306AV mice
appeared to be slightly enhanced compared with the wildtype;
however, this apparent enhancement was not statistically sig-
nificant (Fig. 1E). Thus, in contrast to NMDAR-LTD (11) but
like LTP (28), mGluR-LTD does not require the inhibitory
autophosphorylation at T305/306.

The effects on mGluR-LTD of all CaMKII mutant mice
tested here are summarized in Figure 1E. Overall, CaMKIIα
and its T286 autophosphorylation is required for normal LTP,
for NMDAR-LTD, and for mGluR-LTD. By contrast, addi-
tional T305/306 autophosphorylation is required only for
normal NMDAR-LTD but not for LTP or mGluR-LTD.

T286 autophosphorylation accelerates movement of
endogenous CaMKII to excitatory synapses after LTP stimuli

As T286 autophosphorylation is required for three distinct
forms of long-term synaptic plasticity, we decided to deter-
mine how it affects CaMKII movement in hippocampal neu-
rons in response to the different plasticity stimuli. It is known
that T286 autophosphorylation is not strictly required for
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CaMKII movement to excitatory synapses in response to
chemical LTP (cLTP) stimuli (29) or for Ca2+/CaM-induced
binding to GluN2B in vitro (7). Indeed, the CaMKII movement
induced by cLTP stimuli (1 min 100 μM glutamate in the
presence of 10 μM glycine) was indistinguishable between
overexpressed GFP-CaMKII wildtype and its T286A mutant
(Fig. 2). However, when we instead monitored the movement
of endogenous CaMKII with our intrabody method (11, 30),
CaMKII movement was significantly faster in wildtype neurons
compared with neurons from the mice with the T286A mu-
tation in their endogenous CaMKIIα gene (Fig. 3). Thus, even
though T286 autophosphorylation is not essential for the
CaMKII movement to excitatory synapses that is required for
normal LTP (8, 9), it significantly accelerates the process.

CaMKII movement to inhibitory synapses was not detected
after cLTP stimuli, neither for overexpressed nor for endoge-
nous CaMKII (Figs. 2 and 3), as expected based on our pre-
vious results (11, 30).
T286 autophosphorylation is required for CaMKII movement
to inhibitory synapses after NMDAR-LTD stimuli

In contrast to cLTP stimuli, NMDAR-dependent chemical
LTD (cLTD) stimuli (30 μM NMDA, 10 μM glycine, and
Figure 2. T286A mutation does not affect the LTP-induced movement of
neurons (DIV 14–17) expressing intrabodies for detection of PSD-95 (red) and
overexpressing either CaMKII wildtype or T286A (green) before and 1 min fo
glycine, 1 min). The scale bar represents 10 μm. B, quantification of wildtype o
1 min post cLTP stimulation. Both overexpressed wildtype and T286A CaM
treatment (paired t test, wildtype: ****p < 0.0001, T286A: ***p = 0.0003, n = 21,
movement to excitatory and inhibitory synapses following cLTP stimulation in
10 μM CNQX for 1 min) cause CaMKII movement to inhib-
itory synapses, and this movement strictly requires T305/306
autophosphorylation (11). An additional corequirement of
T286 phosphorylation should be expected, because it is
required for efficient T305/306 phosphorylation (11). Indeed,
such requirement for T286 phosphorylation has been sug-
gested by experiments with overexpressed GFP-CaMKII (31).
Nonetheless, due to the discrepancies between movement of
overexpressed and endogenous CaMKII in response to cLTP
stimuli (see Figs. 2 and 3), we decided to examine the effect of
T286A mutation also on endogenous CaMKII. As predicted,
the T286A mutation completely abolished CaMKII movement
to inhibitory synapses in response to NMDAR-dependent
cLTD stimuli (Fig. 4). Thus, T286 autophosphorylation af-
fects CaMKII movement to excitatory synapses in its temporal
aspects, whereas it is absolutely required for any CaMKII
movement to inhibitory synapses.

For excitatory synapses, no significant movement of the
T286A mutant CaMKII was detected within 5 min after the
cLTD stimulus (Fig. 4A, B), similar as described for the
CaMKII wildtype. However, and in contrast to the CaMKII
wildtype, a mild but significant movement was observed at
10 min after the cLTD stimulus (Fig. 4C; p < 0.01 in t test),
consistent with T286A alleviating not only the subsequent
overexpressed GFP-CaMKII. A, representative images of rat hippocampal
gephyrin (blue) to label excitatory and inhibitory synapses, respectively, and
llowing chemical NMDAR-LTP stimulation (cLTP; 100 μM glutamate/10 μM
r T286A CaMKII at excitatory (red) and inhibitory (blue) synapses before and
KII translocated to excitatory, but not inhibitory, synapses following cLTP
12 neurons). C, full time course of wildtype (gray) and T286A CaMKII (orange)
dicating similar translocation dynamics for both constructs.
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Figure 3. LTP-induced movement of endogenous CaMKII to excitatory synapses is accelerated by T286 autophosphorylation. A, representative
images of hippocampal neurons from CaMKII T286A mutant mice (DIV 14–17) expressing intrabodies against endogenous PSD-95 (red) and gephyrin (blue),
to label excitatory and inhibitory synapses, respectively, and CaMKII (green) before, 1 min, and 2 min after cLTP treatment. The scale bar represents 10 μm.
B, quantification of CaMKII T286A at excitatory (red) and inhibitory (blue) synapses before, 1 min, and 2 min post cLTP stimulation. Similar as described in
wildtype neurons, endogenous CaMKII in hippocampal neurons from T286A mutant mice moved to excitatory but not inhibitory synapses in response to
cLTP stimulation. However, the endogenous T286A mutant moved more slowly to excitatory synapses, as significant synaptic enrichment was seen only at
2 min but not at 1 min after cLTP stimuli. These results indicate T286 autophosphorylation accelerates LTP-induced CaMKII synaptic targeting (one-way
ANOVA, Tukey’s post hoc test versus pre, **p = 0.0054, n = 13 neurons). C, full time course of T286A CaMKII movement to excitatory and inhibitory synapses
following cLTP stimulation. For comparison, the previously described movement of wildtype CaMKII is illustrated in gray (11).

CaMKII in mGluR-dependent LTD
T305/306 phosphorylation step that suppressed the movement
but also the directly accelerating effect of the T286 phos-
phorylation (see Fig. 3).

mGluR-LTD stimuli do not induce synaptic CaMKII movement

As NMDAR-dependent cLTP or cLTD stimuli induce
CaMKII movement to either excitatory or inhibitory synapses,
respectively, we decided to examine if mGluR-LTD stimuli
with 100 μM DHPG for 10 min also cause CaMKII movement.
Endogenous CaMKII was monitored for 20 min after the
DHPG stimulus in cultured hippocampal neurons, but no
movement to either excitatory or inhibitory synapses was
detected (Fig. 5A, B). After NMDAR-dependent cLTP stimuli,
lack of CaMKII movement to excitatory synapses is mediated
by active suppression mechanisms (11, 32), and the CaMKII
T305/306AV mutation is sufficient to restore movement to
excitatory synapses even after such cLTD stimuli (11). Thus,
we also tested neurons from T305/306AV mutant mice for
DHPG-induced CaMKII movement, but again, no movement
was detected (Fig. 5C). This indicates either that the
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mechanisms for suppression of CaMKII movement differ in
NMDAR- versus mGluR-LTD or that mGluR-LTD may not
require such a suppression mechanism at all. Either scenario is
consistent with the normal mGluR-LTD observed in hippo-
campal slices from the CaMKII T305/T306AV mutant mice
(see Fig. 1, D and E).

Thus, overall, even though DHPG-induced mGluR-LTD
does not induce any synaptic CaMKII movement, it does
require the CaMKIIα isoform and its T286 phosphorylation
(which accelerates the CaMKII movement to excitatory syn-
apses after LTP and is absolutely required for the CaMKII
movement to inhibitory synapses after NMDAR-LTD) but not
its T305/306 phosphorylation (which is required for the spe-
cific suppression of CaMKII movement to excitatory synapses
during NMDAR-LTD).

Discussion

CaMKII is a central regulator of synaptic plasticity and well
established to mediate both NMDAR-dependent LTP and
LTD (for review see (1). Here, we demonstrate an additional



Figure 4. CaMKII movement to inhibitory synapses in response to NMDAR-LTD stimuli requires T286 autophosphorylation. A, representative images
of hippocampal neurons from CaMKII T286A mutant mice (DIV 14–17) expressing intrabodies against endogenous PSD-95 (red) and gephyrin (blue), to label
excitatory and inhibitory synapses, respectively, and CaMKII (green) before and 5 min after chemical NMDAR-LTD stimuli (cLTD; 30 μM NMDA/10 μM CNQX/
10 μM glycine, 1 min). The scale bar represents 10 μm. B, quantification of T286A CaMKII at excitatory (red) and inhibitory (blue) synapses prior to and 5 min
post cLTD stimulation. In response to cLTD, endogenous T286A mutant CaMKII did not move to either excitatory or inhibitory synapses (in contrast to
CaMKII wildtype, which has been described to move to inhibitory but not excitatory synapses in response to LTD). C, minimal movement of the T286A
mutant to excitatory synapses (red) and lack of movement to inhibitory synapses (blue) following cLTD is further illustrated in a full time course up to 10 min
after stimulation. For comparison, the previously described movement of wildtype CaMKII is illustrated in gray (11).

CaMKII in mGluR-dependent LTD
requirement for CaMKII also in mGluR-LTD. Like NMDAR-
LTP, but in contrast to NMDAR-LTD, this mGluR-LTD is
robustly induced not only in young but also in mature animals.
Like both forms of NMDAR-dependent plasticity (5, 6, 20),
the mGluR-LTD required the CaMKIIα isoform and its
autophosphorylation at T286. However, in contrast to
NMDAR-LTD (11), the mGluR-LTD did not require addi-
tional autophosphorylation at T305/306. Consistent with this
electrophysiological observation in hippocampal slices, imag-
ing in hippocampal neurons showed that mGluR-LTD did not
require T305/306 phosphorylation for suppression of CaMKII
movement to excitatory synapses. This CaMKII movement is
required for normal NMDAR-LTP (8, 9) and has to be actively
suppressed during NMDAR-LTD (11, 32). If any active sup-
pression of CaMKII movement is also required for mGluR-
LTD, the mechanism must differ from NMDAR-LTD, as the
latter requires T305/306 phosphorylation (11) whereas our
results show that the former does not.

T286 phosphorylation is required for all three forms of
long-term synaptic plasticity, but the time course of
phosphorylation appears to differ. Phosphorylation at T286
generates Ca2+-independent “autonomous” activity and LTP
stimuli had been proposed to cause a self-perpetuated increase
in T286 phosphorylation. However, T286 autophosphorylation
occurs between two different subunits of the 12meric CaMKII
holoenzyme and requires Ca2+/CaM binding to both subunits
(33, 34), and this mechanism does not support the originally
proposed perpetuation mechanism. In addition, imaging ex-
periments indicated that, while T286 autophosphorylation
indeed extends the CaMKII activation state after LTP-stimuli,
this was only on a time scale of less than 2 min (35). None-
theless, the fast reversal of T286 phosphorylation after LTP
remained somewhat controversial, in part because the imaging
experiments did not directly assess T286 phosphorylation
(for review see (36)). However, one of our recent studies
directly compared T286 phosphorylation after NMDAR-
dependent LTP versus LTD and indicated that LTP stimuli
caused a larger increase in T286 phosphorylation but that this
increase was fully reversed within 5 min (11). After NMDAR-
LTD, the increase in T286 phosphorylation also appeared to be
J. Biol. Chem. (2022) 298(9) 102299 5



Figure 5. mGluR stimulation does not promote CaMKII movement to synapses. A, representative images of rat hippocampal neurons (DIV 14–17)
expressing intrabodies targeting endogenous CaMKII (green), as well as PSD-95 (red) and gephyrin (blue) to label excitatory and inhibitory synapses,
respectively, before and 0, 5, 10, and 20 min after stimulation with DHPG (100 μM for 10 min). The scale bar represents 10 μM. The left panel shows a full
time course quantification of endogenous wildtype CaMKII at excitatory (red) and inhibitory (blue) synapses prior to and 0, 5, 10, and 20 min post DHPG
stimulation. No CaMKII movement to either excitatory or inhibitory synapses was found in response to DHPG stimulation (in contrast to NMDAR-LTD stimuli,
where wildtype CaMKII has been described to move to inhibitory but not excitatory synapses). B, for comparison with mutant mice, hippocampal neurons of
wildtype mice were subjected to the same experiments as the rat neurons shown in A, with essentially the same results. C, representative images of
hippocampal neurons from CaMKII T305/306AV mutant mice (DIV 14–17) expressing intrabodies targeting endogenous CaMKII (green), as well as PSD-95
(red) and gephyrin (blue) to label excitatory and inhibitory synapses, respectively, before and 0, 5, 10, and 20 min after stimulation with DHPG (100 μM for
10 min). The scale bar represents 10 μM. The left panel shows a full time course quantification of endogenous T305/6AV CaMKII at excitatory (red) and
inhibitory (blue) synapses prior to and 0, 5, 10, and 20 min post DHPG stimulation. Again, no movement of CaMKII to either excitatory or inhibitory synapses
was found in response to DHPG stimulation.

CaMKII in mGluR-dependent LTD
immediate but was then maintained longer (11). By contrast,
the mGluR-LTD stimulus caused a delayed increase in T286
phosphorylation that was not apparent immediately but was
significant after 5 min (18).

The different temporal pattern of T286 phosphorylation
may help to enable the opposing downstream effects of
CaMKII in the different forms of long-term plasticity. LTP
additionally requires CaMKII binding to GluN2B (8, 9),
whereas NMDAR-LTD instead additionally requires T305/306
autophosphorylation (11). Notably, GluN2B binding and
T305/306 phosphorylation are both promoted by T286 phos-
phorylation (7, 37) but then mutually inhibit each other (7, 12).
Thus, the different extent and time course of T286 phos-
phorylation may decide which one of the two downstream
events after T286 phosphorylation prevails, i.e., the GluN2B
6 J. Biol. Chem. (2022) 298(9) 102299
binding that is required for normal LTP or the T305/306
phosphorylation that is required for normal NMDAR-LTD.
The mGluR-LTD appears to require neither of these two
mechanisms: mGluR-LTD did not cause a GluN2B-mediated
CaMKII accumulation in hippocampal neuron, and CaMKII
phosphorylation at T305/306 was also not required, neither for
the suppression of movement nor for the mGluR-LTD
detected in hippocampal slices. While mGluR-LTD was ex-
pected to not require the GluN2B binding, lack of requirement
of pT305/306 was somewhat more surprising. In NMDAR-
LTD, such additional T305/306 phosphorylation is required
to suppress CaMKII movement to excitatory synapses and
instead direct CaMKII movement to inhibitory synapses,
where it then induces inhibitory LTP (11). Consistent with a
lack of T305/306 phosphorylation after mGluR-LTD, no
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CaMKII movement to inhibitory synapses was observed during
this form of plasticity. Thus, whereas mGluR- and NMDAR-
LTD both decrease the strength of excitatory synapses, only
NMDAR-LTD stimuli appear to elicit additional hetero-
synaptic communication to inhibitory synapses.

The Ca2+/CaM-induced CaMKII binding to GluN2B ap-
pears to be both necessary and sufficient for the further
accumulation of CaMKII at excitatory synapses during LTP
(7, 9). However, CaMKII can bind to various other synaptic
proteins (38–41), including mGluR1 and mGluR5. Interest-
ingly, Ca2+/CaM stimulates CaMKII binding to mGluR1 but
disrupts binding to mGluR5, whereas CaMKII T286 auto-
phosphorylation may increase binding to both (42–44).
CaMKII binding and phosphorylation can regulate these
mGluRs, but any potential contribution to the mGluR-LTD
studied here is currently unknown. Notably, even though
normal NMDAR-LTP requires CaMKII binding to GluN2B,
the opposing NMDAR-LTD does not (9, 32). Furthermore,
mGluR-LTD stimuli did not induce any detectable synaptic
CaMKII movement. These parallels and observation do not
rule out a function of CaMKII binding to mGluRs in mGluR-
LTD. However, a direct function of CaMKII/mGluR binding in
mGluR-LTD seems less conceivable than a more indirect
function in mGluR metaplasticity, i.e., in mediating signaling
that modulates induction of subsequent mGluR-LTD. It will
be interesting to elucidate the possible involvement of CaMKII
protein–protein interactions in regulating different functions
of mGluR-mediated plasticity, based on the requirement of
CaMKII and its autophosphorylation at T286 but not T305/
306 that was demonstrated here.

Experimental procedures

Material availability

Requests for resources, reagents, or questions about
methods should be directed to K. Ulrich Bayer (ulli.bayer@
cuanschutz.edu). This study did not generate new unique
reagents.

Experimental animals

All animal procedures were approved by the University of
Colorado Institutional Animal Care and Use Committee
(IACUC) and carried out in accordance with National In-
stitutes of Health best practices for animal use. The University
of Colorado Anschutz Medical Campus is accredited by the
Association for Assessment and Accreditation of Laboratory
Animal Care, International (AAALAC). All animals were
housed in ventilated cages on a 12 h light/12 h dark cycle and
were provided ad libitum access to food and water. Mixed sex
wildtype or mutant mouse littermates (on a C57BL/6 back-
ground) from heterozygous breeder pairs (8–12 weeks old)
were used for slice electrophysiology and biochemistry. Mixed
sex pups from homozygous mice (P1-2) or Sprague-Dawley
rats (P0, Charles River) were used to prepare dissociated hip-
pocampal cultures for imaging. The mutant mice used here
were described previously: the CaMKIIα knockout line used
here was made in house (6); theT286A line was kindly
provided by Ryohei Yasuda with kind permission from Karl
Peter Giese (5); the T305/306AV mice were kindly provided by
Ype Elgersma (28). In the T286A and in the T305/306AV
mice, the mutations were introduced into the endogenous
CaMKIIα gene (5, 28) and both lines have been used in the
laboratory before (6, 11).

Mouse hippocampal slice preparation

Isoflurane anesthetized mice were rapidly decapitated, and
the brain was dissected in ice-cold high-sucrose solution
containing (in mM): 220 sucrose, 12 MgSO4, 10 glucose, 0.2
CaCl2, 0.5 KCl, 0.65 NaH2PO4, 13 NaHCO3, and 1.8 ascor-
bate. Whole and CA1 mini hippocampal slices (400 μm) were
made using a tissue chopper (McIlwain) with CA1 mini-slice
preparation requiring additional cuts as described (11). Slices
were transferred into 32 �C artificial cerebral spinal fluid
(ACSF) containing (in mM): 124 NaCl, 2 KCl, 1.3 NaH2 PO4,
26 NaHCO3, 10 glucose, 2 CaCl2, 1 MgSO4, and 1.8 ascorbate
and recovered in 95% O2/5% CO2 for at least 1.5 h before
experimentation.

Primary rat and mouse hippocampal culture

Primary hippocampal neurons were cultured as described
(45) and imaged after 14 to 17 days in vitro (DIV14–17). Pups
were decapitated and hippocampi were dissected and incu-
bated in dissociation solution (7 ml HBSS buffered saline,
150 μl 100 mM CaCl2, 10 μl 1M NaOH, 10 μl 500 mM EDTA,
200 units Papain [Worthington]) at 25 �C for 1 h (rat) or
30 min (mice). Hippocampi were then washed 5× with plating
medium (Dulbecco’s modified Eagle’s medium, fetal bovine
serum, 50 units/ml Penn/strep, 2 mM L-glutamine, filter
sterilized) and manually dissociated and counted using a he-
mocytometer. Dissociated neurons were plated on poly-D-
lysine (0.1 mg/ml in 1 M borate buffer: 3.1 g boric acid,
4.75 g borax, in 1 L deionized H20, filter sterilized) and
laminin (0.01 mg/ml in PBS)-coated 18-mm glass coverslips in
12-well plates at a density of 75,000 to 100,000 (rat) or
150,000 to 200,000 (mice) neurons per well in plating medium
and maintained at 37 �C with 5% CO2. After 1 day in vitro
(DIV 1), the medium was switched to 100% feeding medium
(Neurobasal-A, B27 supplements, and 2 mM L-glutamine,
filter sterilized). At DIV 5, 50% of medium was replaced with
fresh neuron feeding medium and treated with FDU (70 μM
5-fluoro-20-deoxyuridine/140 μM uridine) to suppress glial
growth by halting mitosis. At 12 to 14 DIV, neurons were
transfected with the intrabodies using a 1:1:1 ratio, at a con-
centration of 1 μg total DNA/well, using Lipofectamine 2000
(2.5 μl/well, Invitrogen) according to the manufacturer’s
recommendations.

Extracellular field recordings

All recordings and analysis were performed blind to geno-
type. For electrical slice recording experiments, a glass
micropipette (typical resistance 0.4–0.8 MΩ when filled with
ACSF) was used to record field excitatory postsynaptic
potentials from the CA1 dendritic layer in response to
J. Biol. Chem. (2022) 298(9) 102299 7
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CaMKII in mGluR-dependent LTD
stimulation in the Schaffer collaterals at the CA2 to CA1
interface using a tungsten bipolar electrode. Slices were
continually perfused with 30.5 ± 0.5 �C ACSF at a rate of 3.5 ±
0.5 ml/min during recordings. Stimuli were delivered every
20 s and three responses (1 min) were averaged for analysis.
Data were analyzed using WIN LTP (46) with slope calculated
as the initial rise from 10 to 60% of response peak. Input/
output (I/O) curves were generated by increasing the stimulus
intensity at a constant interval until a maximum response or
population spike was noted to determine stimulation that
elicits 40 to 70% of maximum slope. Slope of I/O curve was
calculated by dividing the slope of response (mV/ms) by the
fiber volley amplitude (mV) for the initial linear increase.
Paired-pulse recordings (50 ms interpulse interval) were ac-
quired from 40% max slope, and no differences in presynaptic
facilitation were seen in mutant slices. A stable baseline was
acquired for a minimum of 20 min at 70% maximum slope
prior to mGluR-LTD induction using 100 μM DHPG for
10 min. Slices were perfused for the remainder of the
recording with ACSF containing an NMDAR-antagonist
(50 μM APV). Change in slope was calculated as a ratio of
the average slope of the 20 min baseline (prior to stimulation).

Chemical LTP and LTD stimulation

NMDAR-dependent LTP (NMDAR-LTP) was chemically
induced using 100 μM glutamate and 10 μM glycine for 1 min.
NMDAR-dependent LTD (NMDAR-LTD) was chemically
induced with 30 μM NMDA, 10 μM glycine, and 10 μM
CNQX for 1 min. mGluR-dependent LTD (mGluR-LTD) was
induced with 100 μM DHPG for 10 min. All treatments were
followed by 5× washout in fresh ACSF. For imaging and
biochemical experiments, quantifications demonstrate the
change from 1 min prestimulation and 1 min (cLTP) or 5 min
(cLTD) post wash out unless otherwise specified.

Imaging acquisition and analysis

All microscopic imaging was performed using a
100 × 1.4NA objective on a Zeiss Axiovert 200 M (Carl Zeiss)
controlled by SlideBook software (Intelligent Imaging In-
novations). All imaging analysis was completed using Slide-
Book software. All representative images were prepared using
Fiji software (ImageJ, NIH). For all imaging experiments, focal
plane z stacks (0.3-μm steps; over 1.8–2.4 μm) were acquired
and deconvolved to reduce out-of-focus light. 2D maximum
intensity projection images were then generated and analyzed
by an experimenter blinded to experimental conditions. Dur-
ing image acquisition, neurons were maintained at 34 �C in
ACSF solution containing (in mM): 130 NaCl, 5 KCl, 10 Hepes
pH 7.4, 20 glucose, 2 CaCl2, and 1 MgCl2, adjusted to proper
osmolarity with sucrose. After baseline imaging and cLTP or
cLTD treatment, neurons were imaged once per minute for
10 min to limit the effects of photobleaching.

Hippocampal neurons were selected based on pyramidal
shaped soma and presence of spiny apical dendrites, and ter-
tiary dendritic branches were selected for analysis to maintain
consistency. Images were analyzed at 1 min before stimulation
8 J. Biol. Chem. (2022) 298(9) 102299
and 1 min (after cLTP), 5 min (after cLTD), and 10 min (after
DHPG) after wash out. 2D maximum intensity projection
images were then generated and analyzed by an experimenter
blinded to condition using Slidebook 6.0 software. To analyze
endogenous YFP-intrabody-labeled CaMKII and overex-
pressed GFP-labeled CaMKII, the mean YFP or GFP intensity
(CaMKII) at excitatory (PSD-95) and inhibitory (gephyrin)
synapses was quantified. PSD-95 and gephyrin threshold
masks were defined using the mean intensity of mCh or
mTurquois plus two standard deviations. Synaptic CaMKII
was then calculated using the mean YFP or GFP intensity at
PSD-95 or gephyrin puncta masks divided by the mean in-
tensity of a line drawn in the dendritic shaft. Changes in
CaMKII synaptic accumulation were determined by dividing
the net change in CaMKII at PSD-95 or gephyrin puncta-to-
shaft ratio by the prestimulation puncta-to-shaft ratio.

Quantification and statistical analysis

Data are shown as mean ± SEM, and all imaging and
Western blot quantification is normalized to control average
set to 1. Statistical significance and sample size (n) are indi-
cated in the figure legends. Data obtained from imaging ex-
periments were obtained using SlideBook 6.0 software (3i) and
analyzed using Prism (GraphPad) software. All data met
parametric conditions, as evaluated by a Shapiro–Wilk test for
normal distribution and a Brown–Forsythe test (three or more
groups) or an F-test (two groups) to determine equal variance.
Comparisons between two groups were analyzed using un-
paired, two-way Student’s t tests. Comparisons between pre-
and posttreatment images from the same cells were analyzed
using paired, two-way Student’s t tests. Comparisons between
three or more groups were done by one-way ANOVA with
Tukey’s post hoc analysis. Comparisons between three or more
groups with two independent variables were accessed using a
two-way ANOVA to determine whether there is an interaction
and/or main effect between the variables. Statistical signifi-
cance is indicated, including by *p < 0.05; **p < 0.01;
***p < 0.001, **** p < 0.0001.

Data and code availability

The datasets generated during this study are available
through Mendeley. No original code was generated during this
study.
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