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Abstract: The core 1 structure is the major constituent of mucin-type O-glycans, which are added via
glycosylation—a posttranslational modification present on membrane-bound and secretory proteins.
Core 1 β1,3-galactosyltransferase (C1galt1), an enzyme that synthesizes the core 1 structure, requires
Cosmc, a C1galt1-specific molecular chaperone, for its enzymatic activity. Since Cosmc-knockout
mice exhibit embryonic lethality, the biological role of core 1-derived O-glycans in the adult stage
is not fully understood. We generated ubiquitous and inducible CAGCre-ERTM/Cosmc-knockout
(iCAG-Cos) mice to investigate the physiological function of core 1-derived O-glycans. The iCAG-
Cos mice exhibited a global loss of core 1-derived O-glycans, high mortality, and showed a drastic
reduction in weights of the thymus, adipose tissue, and pancreas 10 days after Cosmc deletion. They
also exhibited leukocytopenia, thrombocytopenia, severe acute pancreatitis, and atrophy of white
and brown adipose tissue, as well as spontaneous gastric ulcers and severe renal dysfunction, which
were considered the causes underlying the high mortality of the iCAG-Cos mice. Serological analysis
indicated the iCAG-Cos mice have lower blood glucose and total blood protein levels and higher
triglyceride, high-density lipoprotein, and total cholesterol levels than the controls. These data
demonstrate the importance of core 1-derived O-glycans for homeostatic maintenance in adult mice.

Keywords: O-glycosylation; acute pancreatitis; renal failure; gastric ulcer

1. Introduction

Mucin-type O-glycosylation is posttranslational modification that occurs on membrane-
bound and secretory proteins. The biosynthesis of mucin-type O-glycans starts with the
initial addition of N-acetylgalactosamine (GalNAc) to the hydroxyl group of serine or thre-
onine residues on proteins mediated by polypeptide N-acetylgalactosaminyltransferases
to synthesize the Tn antigen (GalNAc-α-Ser/Thr structure; Figure 1A). Usually, galactose
(Gal) is then transferred to GalNAc via core 1 β1,3-galactosyltransferase (C1galt1) [1]. This
Gal-β1,3-GalNAc-α-Ser/Thr structure is called the core 1 structure, which is the major core
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structure of mucin-type O-glycans. Cosmc, the C1galt1-specific molecular chaperone, is
essential for the activity of C1galt1 [2].
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on day 10 (control, n = 7; iCAG-Cos, n = 8); (G) relative organ weights of control and iCAG-Cos mice. 
iBAT, interscapular brown adipose tissue; eWAT, epididymis white adipose tissue. Tissues were 
collected on day 10, and organ weight was normalized by body weight. (H) The loading control of 
the Helix pomatia agglutinin (HPA) lectin blot shown with Coomassie brilliant blue (CBB) staining. 
(I) Expression of core 1-derived O-glycan in listed tissues using HRP-conjugated HPA lectin. C; 
control, iC; iCAG-Cos, * p < 0.05, ** p < 0.01. 

C1galt1- and Cosmc-knockout (KO) mice exhibit embryonic lethality with abnormal 
angiogenesis and hemorrhage in the brain and spinal cord, indicating that core 1-derived 
O-glycans are essential in the embryonic stage [3,4]. To investigate the physiological role 
of core 1-derived O-glycans in adults, we generated tissue-specific C1galt1- or Cosmc-KO 
mice. Previously, we reported that bone marrow cell-restricted C1galt1-KO mice exhibit 
severe thrombocytopenia due to abnormal terminal differentiation of megakaryocytes 
and proplatelet formation [5]. We also reported that core 1-derived O-glycans are neces-
sary for the stable expression of T cell immunoglobulin and mucin domain-containing 
molecule 4 (Tim-4) glycoprotein in resident peritoneal macrophages and are important for 
the clearance of phagocytic debris [6]. Several studies have focused on the function of core 
1-derived O-glycans in glomerular epithelial cells (podocytes) using podocyte-specific 
C1galt1- or Cosmc-KO mice [7,8]. The loss of core 1-derived O-glycans in these mice results 
in decreased stability of the glycoprotein podocalyxin, which leads to impaired 

Figure 1. iCAG-Cos mice show high mortality and global loss of core 1-derived O-glycans. (A) Schematic
showing biosynthetic pathway of core 1-derived O-glycans; (B) survival rate after tamoxifen (TAM)
injection into control and iCAG-Cos mice; (C) body weights of control and iCAG-Cos mice on day
10; (D–F) number of red blood cells (RBCs), white blood cells (WBCs), and platelets (PLTs) on day
10 (control, n = 7; iCAG-Cos, n = 8); (G) relative organ weights of control and iCAG-Cos mice.
iBAT, interscapular brown adipose tissue; eWAT, epididymis white adipose tissue. Tissues were
collected on day 10, and organ weight was normalized by body weight. (H) The loading control of
the Helix pomatia agglutinin (HPA) lectin blot shown with Coomassie brilliant blue (CBB) staining.
(I) Expression of core 1-derived O-glycan in listed tissues using HRP-conjugated HPA lectin. C; control,
iC; iCAG-Cos, * p < 0.05, ** p < 0.01.

C1galt1- and Cosmc-knockout (KO) mice exhibit embryonic lethality with abnormal
angiogenesis and hemorrhage in the brain and spinal cord, indicating that core 1-derived
O-glycans are essential in the embryonic stage [3,4]. To investigate the physiological role
of core 1-derived O-glycans in adults, we generated tissue-specific C1galt1- or Cosmc-KO
mice. Previously, we reported that bone marrow cell-restricted C1galt1-KO mice exhibit
severe thrombocytopenia due to abnormal terminal differentiation of megakaryocytes
and proplatelet formation [5]. We also reported that core 1-derived O-glycans are neces-
sary for the stable expression of T cell immunoglobulin and mucin domain-containing
molecule 4 (Tim-4) glycoprotein in resident peritoneal macrophages and are important
for the clearance of phagocytic debris [6]. Several studies have focused on the function of
core 1-derived O-glycans in glomerular epithelial cells (podocytes) using podocyte-specific
C1galt1- or Cosmc-KO mice [7,8]. The loss of core 1-derived O-glycans in these mice results
in decreased stability of the glycoprotein podocalyxin, which leads to impaired glomerular
function. Another study demonstrated that core 1-derived O-glycans are required for B
cell development and regulate B cell homing [9]. These studies indicate the physiological
importance of core 1-derived O-glycans for homeostasis in adult mice.
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Unlike the N-glycosylation sites, the core 1-derived O-glycosylation sites do not have
a consensus amino acid sequence, and both C1galt1 and Cosmc are expressed in most
tissues [10]. Therefore, it is expected that there are still numerous glycoproteins for which
physiological functions are regulated by core-1 derived O-glycosylation. Although it
has been demonstrated that glycoproteins with mucin domains, such as MUC and Tim
family proteins, contain many serine or threonine residues it is not fully understood how
the glycans on these proteins affect their functions [11,12]. Moreover, verification of a
protein being modified by core-1 derived O-glycosylation in an individual is difficult and
requires advanced equipment and expertise. Therefore, phenotypic analysis conducted
using genetically modified mice is one of the most efficient ways to predict the glycosylated
protein and its physiological functions.

In the present study, iCAG-Cos mice showed atrophy of adipocytes, acute pancreati-
tis, spontaneous gastric ulcers, and kidney impairment. Severe gastric ulcers and renal
dysfunction were considered the causes of the high mortality observed in the iCAG-Cos
mice. The long-term effect of core 1-derived O-glycan deficiency could not be analyzed
due to the early death of iCAG-Cos mice. In addition, kidney dysfunction and pancreatitis
posed difficulties in analyzing the physiological functions of other tissues. However, we
suggest that the loss of core 1-derived O-glycans is a possible cause of acute pancreatitis
and adipose tissue atrophy, although the detailed mechanism is still unknown. Moreover,
we identified various cells that possess core 1-derived O-glycans in multiple organs by
Helix pomatia agglutinin (HPA) staining. Further studies focusing on these phenotypes or
organs are needed to deepen the understanding of the function of core 1 derived O-glycans
in adults.

2. Results and Discussion
2.1. Ubiquitous Loss of Core 1-Derived O-Glycans Leads to High Mortality of Mice and Decrease
in the Weight of Multiple Organs

To elucidate the function of core 1-derived O-glycans in adult mice, we generated
conditional Cosmc KO (iCAG-Cos) mice using Cre driver mice that function with the ta-
moxifen (TAM)-inducible and widespread tissue-expressed CAG promoter. The day of
the final TAM injection was defined as day 0. All mice died by day 19, whereas control
mice showed no abnormalities due to TAM induction (Figure 1B). To avoid serious dete-
rioration in the health of mice, we collected peripheral blood and organs on day 10. The
iCAG-Cos mice had body weights similar to those of control mice (control, 24.10 ± 0.88 g;
iCAG-Cos, 23.09 ± 0.57 g; Figure 1C). The number of red blood cells was slightly de-
creased in iCAG-Cos mice (Control, 7.86 ± 0.10 × 1012/L; iCAG-Cos, 6.57 ± 0.23 × 1012/L;
Figure 1D). The white blood cell (WBC) counts were also decreased significantly (con-
trol, 5.21 ± 0.59 × 109/L; iCAG-Cos, 1.89 ± 0.27 × 109/L; Figure 1E). Previous reports
have shown that T cell-specific Cosmc-KO mice and B cell-specific Cosmc-KO mice have
fewer T cells and B cells in peripheral blood, respectively [9,13]. These studies imply that
the reduced number of WBCs observed in iCAG-Cos mice is due to Comsc deletion in
these cells. iCAG-Cos mice also showed a decreased number of platelets (PLTs; control,
649.92 ± 3.21 × 109/L; iCAG-Cos, 5.44 ± 1.94 × 109/L; Figure 1F). The decrease in platelet
count was reported to be due to the defective terminal differentiation of megakaryocytes
and increased clearance of PLTs by Kupffer cells in the liver [5,14].

By comparing organ weights normalized by body weight, the thymus, pancreas,
interscapular brown adipose tissue (iBAT), and epididymal white adipose tissue (eWAT)
weights were markedly reduced in iCAG-Cos mice, whereas other organ weights remained
almost unchanged (Figure 1G). To confirm changes in the core 1-derived O-glycan structures
of iCAG-Cos mice, we conducted HPA lectin blot analysis of tissue extracts from control
and iCAG-Cos mouse organs. HPA lectin recognizes terminal α-GalNAc, the structure
expected to be increased after the deletion of Cosmc. The pattern of protein bands obtained
for the control and iCAG-Cos mice by Coomassie brilliant blue (CBB) staining was mostly
similar for major organs, except for that of the pancreas (Figure 1H). Protein extracts from
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iCAG-Cos mice showed a higher HPA intensity for a variety of molecular weights, indicating
that various proteins in these tissues are modified by core 1-derived O-glycans (Figure 1I).

2.2. iCAG-Cos Mice Exhibit Atrophy of the Thymus and Adipocytes and Acute Pancreatitis

First, we analyzed organs that exhibited decreased weights on day 10. The relative
organ weight of the thymus in iCAG-Cos mice was reduced to approximately half of that
of the control (control, 0.18 ± 0.04; iCAG-Cos, 0.09 ± 0.02; Figure 1G). Hematoxylin–eosin
(HE) staining of the thymus showed that it had a normal appearance, but most of the
thymic cells were HPA-positive (Figure 2A–D). T-cell-specific Cosmc-KO mice, induced
with Lck-Cre mice, have been reported to have a 20% decrease in total thymic cell numbers
compared to that in wild-type animals [13]. In iCAG-Cos mice, there was a 50% decrease in
the thymic weight compared to the control weight, and thus, those differences might be due
to the effects of abnormalities in tissues other than the thymus. Although the abnormalities
in other organs are described later, thymic regression is known to be caused by various
stresses; for example, it has been reported that oxidative stress and increased inflammation
due to nephrotoxicity can cause thymic involution [15]. For iCAG-Cos mice, this is thought
to be caused by a decrease in T cell numbers due to defects in core 1-derived O-glycans in
the T cells themselves and stress from multiple organ failure.
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Figure 2. Histological analysis of the thymus, adipose tissues, and pancreas. HE and HPA staining
of the thymus (A–D), eWAT (E–H), and iBAT (I–L) on day 10. HPA (green), and Hoechst (blue)
staining is shown. (M,N) HE staining of the pancreas on day 10. (O,P) Fluorescent staining of insulin
(red), HPA (green), and Hoechst (blue) in the pancreas on day 10. Black and white arrows indicate
pancreatic islets. (Q) Measurement of plasma amylase activity on days 0, 5, and 10 in control and
iCAG-Cos mice. Control, n = 4; iCAG-Cos, n = 6; scale bar = 50 µm, * p < 0.05. iBAT, interscapular
brown adipose tissue; eWAT, epididymis white adipose tissue.
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The relative organ weights of eWAT and iBAT also decreased (eWAT: control, 0.55 ± 0.05;
iCAG-Cos, 0.24 ± 0.03; iBAT: control, 0.29 ± 0.01; iCAG-Cos, 0.17 ± 0.03; Figure 1G). HE
staining of eWAT and iBAT showed atrophy of adipocytes in iCAG-Cos mice (Figure 2E,F,I,J).
In addition, adipocytes in these tissues of iCAG-Cos mice showed a greater intensity of
HPA, which indicates that both eWAT and iBAT have core 1-derived O-glycan modified
proteins (Figure 2G,H,K,L). Then, we generated adipocyte-specific Cosmc-KO mice (Adipoq-
Cos) by mating Cosmc-floxed mice with Adipoq-Cre mice. Although HPA staining showed
altered glycan structures in both eWAT and iBAT of Adipoq-Cos mice, adipocyte atrophy
was not observed wih HE staining, which implied that the atrophy of adipocytes seen in
iCAG-Cos mice was due to the failure of other organs (Supplementary Figure S1A–H).

Since the pancreas in iCAG-Cos mice showed a significant decrease in the relative
organ weight (control, 1.40 ± 0.10; iCAG-Cos, 0.61 ± 0.05), we performed HE staining on
the pancreas. The extensive loss of pancreatic acinar cells and expansion of intracellular
space were observed in the iCAG-Cos mice, whereas cells from the control mice had a
normal appearance (Figure 2M,N). To confirm the structural changes in core 1-derived
O-glycans in iCAG-Cos mice, pancreatic sections were stained using HPA lectin. Pancreatic
acinar cells of iCAG-Cos mice were strongly stained with HPA compared to those of
control mice. However, the intensity of the HPA signal in pancreatic islets was unchanged
between the control and iCAG-Cos mice, and the expression of insulin as a pancreatic β

cell marker was decreased in iCAG-Cos mice (Figure 2O,P). Plasma amylase activity was
measured as a marker of pancreatitis, and iCAG-Cos mice showed a significant increase in
blood amylase activity on day 10 (control, 2284 ± 340 U/L; iCAG-Cos, 4548 ± 318 U/L;
Figure 2Q), suggesting that the loss of core 1-derived O-glycans caused acute pancreatitis.
A previous study reported that a mouse model of pancreatitis caused by ligation of the bile
duct showed decreased numbers of CD4 + and CD8 + cells in the thymus [16]. Pancreatitis
observed in iCAG-Cos mice might thus contribute to thymic atrophy. Moreover, pancreatic
acinar cells assist in digestion and absorption by secreting digestive enzymes such as
amylase, lipase, and trypsin into the duodenum. It is possible that the atrophy of pancreatic
acinar cells caused nutritional disturbances and increased lipid metabolism, resulting in the
atrophy of adipocytes. In fact, the blood glucose level of iCAG-Cos mice was much lower
than that of control mice (control: 11.88 ± 0.51 mmol/L, iCAG-Cos: 7.34 ± 0.55 mmol/L,
Table 1). Since the 12 h fasting blood glucose levels of control mice was 6.51 ± 0.23 mmol/L
(n = 6), iCAG-Cos mice are considered to have lower blood glucose levels, similar to those
in a state of fasting. From a paper on fasting mice, it was inferred that fasting for 2~3 days
causes atrophy of adipocytes to the level seen in iCAG-Cos mice [17]. Therefore, the low
nutritional status of iCAG-Cos mice might contribute to the atrophy of adipocytes.

Table 1. Summary of serological analysis.

Inspection Item Control (n = 9) iCAG-Cos (n = 11) p-Value

Glucose (mmol/L) 11.88 ± 0.51 7.34 ± 0.55 0.00
Triglyceride (mmol/L) 0.71 ± 0.11 2.04 ± 0.45 0.02

Total cholesterol (mmol/L) 1.06 ± 0.04 4.22 ± 0.58 0.00
HDL 1 (mg/dL) 0.81 ± 0.08 2.64 ± 0.31 0.01

Total protein (g/L) 35.01 ± 1.55 28.80 ± 0.16 0.02
AST 2 (U/L) 28.67 ± 1.49 42.55 ± 6.19 0.05
ALT 3 (U/L) 24.33 ± 2.60 33.77 ± 1.41 0.01

Total bilirubin (µmol/L) 5.12 ± 0.32 4.97 ± 0.69 0.85
1 HDL: High-density lipoprotein; 2 AST: aspartate aminotransferase; 3 ALT: alanine aminotransferase (ALT).

Next, to investigate whether acute pancreatitis observed in iCAG-Cos mice was di-
rectly caused by the loss of core 1-derived O-glycans in pancreatic acinar cells, we generated
pancreas-specific Cosmc-KO mice (Pdx1-Cos) by mating Cosmc-floxed mice with mice that
express Cre under control of the Pdx1 promoter. Atrophy of pancreatic acinar cells was
not observed in 8-week-old Pdx1-Cos mice, and pancreatic islets were also found to be
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intact (Supplementary Figure S2A,B). However, HPA staining of the pancreas in Pdx1-Cos
mice showed HPA-reactive cells in both endocrine and exocrine cells (Supplementary
Figure S2C–F). In addition, HPA with insulin or glucagon co-staining indicated that pan-
creatic α cells and β cells harbored core 1-derived O-glycans. These data suggest that the
acute and severe pancreatitis observed in iCAG-Cos mice was caused by the deteriorative
effects from other tissues and that the decreased expression of insulin in iCAG-Cos mice is
not due to the loss of core 1-derived O-glycans.

The systemic and inducible loss of Wilms tumor 1 (Wt1) using CAG-CreERTM has been
reported in mice that exhibit multiple organ failure, including the atrophy of pancreatic
exocrine cells similar to that in iCAG-Cos mice, and Wt1-deficient mice induced by Pdx1-
Cre also do not show the atrophy of pancreatic exocrine cells [18]. In this paper, the authors
suggested that the loss of Wt1 activates pancreatic satellite cells to secrete inflammatory
cytokines and chemokines, resulting in pancreatitis. Whether pancreatic satellite cells have
core 1-derived O-glycan needs to be investigated; however, it is possible that pancreatic
satellite cells, in which the loss of Cosmc is not induced by Pdx1-Cre, are associated with
the development of pancreatitis in iCAG-Cos mice. Moreover, it has been reported that
the number of zymogen granules in pancreatic exocrine cells specifically increases in
pancreatic acinar cell-specific Cosmc-deficient mice, and these mice do not exhibit acute
pancreatitis [19]. It is possible that pancreatitis is caused by a combination of the activation
of digestive enzymes in the granules due to the abnormal accumulation of zymogen
granules and other factors. For example, since hypertriglyceridemia is known to be a
factor that increases the risk of acute pancreatitis [20], increased blood triglycerides in
iCAG-Cos mice might have contributed to the induction of acute pancreatitis in iCAG-Cos
mice (Table 1).

2.3. iCAG-Cos Mice Show the Presence of Spontaneous Gastric Ulcers

The gastric tissue on day 10 in four of the nine iCAG-Cos mice showed thickening
of the gastric epithelium, extensive hemorrhaging, and inflammatory infiltration into the
muscle layer and serosa, which indicates the presence of severe gastric ulcers (Figure 3A–C).
The gastric ulcers observed in iCAG-Cos mice were considered one of the causes of their
high mortality observed in our study. This result was similar to that of a previous study
showing that spontaneous gastritis is induced by the loss of core 1-derived O-glycans in a
gastric epithelial cell-specific manner in mice [21]. However, based on the results of HPA
staining, the control mice were found to have some endogenous HPA-positive cells, but the
entire stomach tissue of iCAG-Cos mice was found to be HPA-positive. These data indicate
that cells other than epithelial cells in the stomach also possess core 1-derived O-glycans
(Figure 3D–F).
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Hoechst (blue); scale bar = 100 µm. (d–f,i,j,m,n) Right panels show high-magnification images of the
field indicated by boxes in the left panel.

The duodenum and colon in iCAG-Cos mice were seen to be normal in appearance on
day 10 (Figure 3G,H,K,L). HPA staining showed the loss of core 1-derived O-glycans in
epithelial cells, as well as other cells comprising the duodenum and colon (Figure 3I,J,M,N).
In the duodenum, we observed an increase in the number of HPA-positive cells in the
intestinal glands, and a stronger HPA signal was observed in the luminal epithelium in
iCAG-Cos mice compared to that in control mice. In the colon, as in the small intestine, a
stronger HPA, compared to that in the control group, was observed in luminal epithelial
cells. However, weaker HPA signals were observed in colon goblet cells of iCAG-Cos
mice compared to those in controls. One study using Villin-CreERT2 by Fu et al. showed
a decrease in the thickness of the mucosal layer 5–10 days after core 1-derived O-glycan
deficiency induction [22]. In addition, the intensity of Alcian blue staining, which stains
the mucosa, and the protein expression of Muc2 and Muc3, which are carrier proteins of
core 1-derived O-glycans that constitute the mucus, were also decreased. Therefore, we
speculated that the decreased mucosa production and the decreased amount of mucus
carrier proteins in iCAG-Cos mice might have resulted in a decrease in the staining of
goblet cells by HPA. The core 3 structure of GlcNAc-β1,3-GalNAc-α-Ser/Thr, is one of
the core structures of mucin-type O-glycans, which is synthesized by a unique enzyme,
core 3 β1,3-N-acetylglucosaminyltransferase (B3gnt6) [23]. B3gnt6 synthesizes the core
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3 structure by transferring GlcNAc to GalNAc of the Tn antigen. Since both the core 1
and core 3, structures are synthesized from Tn antigens, the biosynthesis of the core 1
structure competes with the synthesis of the core 3 structure. In addition, it has been
reported that B3gnt6 is selectively expressed in the salivary glands and small and large
intestines [24]. In a previous study, B3gnT6-KO mice were crossed with intestinal epithelial
cell-specific C1galt1-KO mice to evaluate the role of core 1 and core 3 structures in the
duodenum. C1galt1::Bgnt6 double KO mice exhibited spontaneous duodenal inflammation
that led to tumorigenesis [25]. This result, showing that the duodenum is unaffected by the
deletion of Cosmc in iCAG-Cos mice, implies that the loss of core 1-derived O-glycans is
not by itself capable of causing duodenal inflammation by itself. The deficiency of C1galt1,
B3gnt6, or both in intestinal epithelial cells disrupts the colorectal environment and causes
spontaneous colitis and tumorigenesis [22,24,26]. Owing to the high mortality of iCAG-Cos
mice, we analyzed mice on day 10. Considering previous reports, we infer that the number
of days between induction and analysis might have been insufficient for the infiltration of
inflammatory cells into the colon.

Previous studies on the function of core 1 and core 3 structures in the digestive tract
have focused on gastrointestinal epithelial cells. In this study, we found that cells other than
epithelial cells, such as the muscle layer and serosa in the gastrointestinal tract, also possess
core 1-derived O-glycans. Future studies on the function of core 1-derived O-glycans in
other structures are required.

2.4. iCAG-Cos Mice Show Renal Injury with Albuminuria

Previously, we reported that glomerular epithelial cell (podocyte)-specific Cosmc-KO
mice (iPod-Cos) showed impairments in the glomerular filtration barrier [8]. As expected,
the urine total protein (TP)/creatinine (CRE) and urine albumin (ALB)/CRE ratios were sig-
nificantly elevated in iCAG-Cos mice on day 10 (TP/CRE: control, 4.29 ± 1.26; iCAG-Cos,
116.14 ± 27.07; ALB/CRE: control, 0.06 ± 0.03; iCAG-Cos, 57.04 ± 12.00; Figure 4A,B). A
significant increase in blood urea nitrogen (BUN) and plasma CRE on day 10 compared to
those in the controls were also seen in iCAG-Cos mice (BUN: control, 8.54 ± 0.46 mmol/L;
iCAG-Cos, 23.10 ± 2.15 mmol/L; CRE: control, 15.47 ± 2.21 mmol/L; iCAG-Cos,
32.41 ± 2.95 mmol/L; Figure 4C,D). In addition, protein casts were broadly observed by
HE staining of cells in iCAG-Cos mice on day 10, which showed the presence of some
necrotic renal tubular cells (Figure 4E,I). These data indicate that the glomerular filtra-
tion function was impaired in iCAG-Cos mice. To confirm changes in the core 1-derived
O-glycan structures in the kidney, kidney sections were stained using HPA lectin and
anti-podoplanin antibodies as podocyte markers. A higher intensity of HPA in iCAG-Cos
mice was observed in glomeruli and renal tubules, whereas the kidney in the controls
showed a very low intensity of HPA in these cells (Figure 4F–H,J–L). In the glomeruli
of iCAG-Cos mice, HPA-reactive and anti-podoplanin antibody-reactive cells were co-
localized, indicating the presence of core 1-derived O-glycans in podocytes. Moreover,
the urine TP/CRE ratio in iCAG-Cos mice was significantly elevated compared to that
in iPod-Cos mice (iCAG-Cos, 116.14 ± 27.07; iPod-Cos, 43.11 ± 0.65; p < 0.05) [8], sug-
gesting that core 1-derived O-glycans expressed in kidney cells other than podocytes are
also important for maintaining kidney functions. Moreover, our previous study using
glomerular epithelium cell-specific Mafb KO (Mafb-cKO) mice with segmental glomeru-
losclerosis showed the death of mice even with a relatively mild impairment in renal
function compared to that in the iCAG-Cos mice [27]. The values of each index in Mafb-
cKO and iCAG-Cos mice are as follows: U-TP/CRE: Mafb-cKO, 52.04 ± 9.65; iCAG-Cos,
116.14 ± 27.07; U-ALB/CRE: Mafb-cKO, 23.29 ± 5.65; iCAG-Cos, 57.04 ± 12.00; creati-
nine: Mafb-cKO, 25.64 ± 2.65 mmol/L; iCAG-Cos, 32.41 ± 2.95 mmol/L; BUN: Mafb-cKO,
13.03 ± 0.79 mmol/L; iCAG-Cos, 23.10 ± 2.15 mmol/L. These results suggested that the
severe kidney dysfunction observed in iCAG-Cos mice contributed to their high mortality.
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Figure 4. Histological and biochemical analyses of the kidney. (A,B) Quantification of urine total
proteins (TP)/creatinine (CRE) ratio and urine albumin (ALB)/CRE ratio in control and iCAG-Cos
mice (n = 3) on day 10. (C,D) Measurement of BUN and creatinine on day 0, 5, and 10 in control
and iCAG-Cos mice. (Control, n = 4; iCAG-Cos, n = 5). HE staining and of fluorescent staining of
HPA lectin (green), podoplanin (red), and Hoechst (blue) in kidneys of control (E–H) and iCAG-Cos
(I–L) mice on day 10. Black and white arrowheads indicate glomeruli. Black arrows and yellow
arrowheads indicate protein casts and necrotic renal tubules, respectively. (M) Relative transcript
levels of Kim-1 on day 10. Hprt was used for normalization. (N,O) Immunostaining image of Kim-1
(red) with HPA (green). White arrows indicate Kim-1 positive renal tubules. Scale bar = 50 µm,
* p < 0.05, ** p < 0.01.

Kidney injury molecule 1 (Kim-1, also known as Tim-1, a protein from the T cell im-
munoglobulin and mucin domain (Tim) gene family), is a membrane-bound glycoprotein
expressed in the proximal renal tubules. It has been reported that its expression is elevated
with the occurrence of renal tubular injury [28,29]. Considering the possibility that renal
tubular injury contributes to severe kidney dysfunction in iCAG-Cos mice, we measured
the expression of Kim-1 in kidney samples. The relative expression of the Kim-1 transcript
was significantly increased in iCAG-Cos mice compared to that in the controls (Figure 4M).
Immunohistochemical analysis revealed that Kim-1 was not expressed in the controls but
was found to be localized to the lumens of renal tubules in iCAG-Cos mice (Figure 4N,O).
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These data implied that the renal tubules in the iCAG-Cos mice were damaged. Interest-
ingly, Kim-1 has a mucin domain with 32 putative mucin-type O-glycosylation sites [11],
and loss of the mucin domain in Kim-1 has been reported to exacerbate renal tubular injury
caused by acute kidney injury [30]. In addition, we previously reported that core 1-derived
O-glycans on Tim-4, a member of the Tim gene family, are important for increasing the
stability of Tim-4 [6]. These studies suggest that the loss of core 1-derived O-glycan on
Kim-1 might enhance the severity of renal tubular injury. Further studies are required to
elucidate the function of core 1-derived O-glycans in renal tubules.

Serological analysis indicated that total protein in the plasma was decreased in iCAG-
Cos mice (Table 1). It was thought that this low blood protein level was caused by excessive
protein release into the urine. iCAG-Cos mice also showed elevated plasma triglyceride
levels (Table 1). Some reports have shown that the discharge of blood albumin into urine
due to kidney dysfunction leads to increases in blood triglyceride levels and low-density
lipoprotein [31]. Urinary albumin levels were increased in the iCAG-Cos mice (Figure 4B).
Kidney impairment observed in iCAG-Cos mice is a possible cause of elevated blood
triglyceride levels. We also performed HE and HPA staining of other tissues (Supplemen-
tary Figure S3). The appearance of these tissues in iCAG-Cos mice was normal, although
all organs showed elevated reactivity against HPA. However, it is possible that the loss of
core 1-derived O-glycans might affect the function of these tissues. For example, an in vitro
study using the hepatocellular carcinoma cell line HepG2 showed that the loss of core
1-derived O-glycans on low-density lipoprotein receptors (LDLRs) decreases the interaction
between LDLR and LDL [32]. Although this function of core 1-derived O-glycans has
not been examined in vivo, the deletion of Cosmc in hepatocytes might be considered to
contribute to the dyslipidemia exhibited by iCAG-Cos mice (Supplementary Figure S3).

In other studies, mice with inducible and global deficiency of core 1-derived O-glycans
have also been generated by crossing C1galt1 flox mice with Rosa26-rtTA; tetO-Cre Tg
mice [7]. These mice showed kidney dysfunction as well, but survived for more than
8 weeks after the induction of C1galt1 deletion. Moreover, mice harboring a point mutation
in C1galt1 had low C1galt1 activity, thrombocytopenia, and proteinuria [3]. The mice in this
study also showed decreased mortality compared to that in iCAG-Cos mice. However, these
studies did not report thymic atrophy, the atrophy of adipose tissues, acute pancreatitis,
gastric ulcers, and dyslipidemia, which are phenotypes observed in iCAG-Cos mice. These
studies and our study differ in the efficiency and timing of the deletion of genes related
to the biosynthesis of core 1-derived O-glycans. This difference might lead to different
phenotypes even in adults.

3. Materials and Methods
3.1. Animals

Mice were maintained in specific pathogen-free conditions at the Laboratory Animal
Resource Center at the University of Tsukuba, Ibaraki, Japan. The generation of mice
harboring the floxed Cosmc allele was performed using a method described in our pre-
vious study [6]. Cosmcflox/flox mice were crossed with B6.Cg-Tg(CAG-cre/Esr1*)5Amc/J
(CAGCre-ERTM) transgenic mice [33] to generate ubiquitous tamoxifen (TAM)-inducible
Cosmc-KO mice (CAGCre-ERTM::Cosmcflox/flox; iCAG-Cos). Conditional excision of the
floxed allele of 6-week-old mice was achieved via the intraperitoneal injection of TAM
(75 mg/kg body weight) once daily for 5 consecutive days. The day of the final TAM
injection was defined as day 0. As control mice for iCAG-Cos mice, TAM-induced CAGCre-
ERTM negative, Cosmcflox/Y or flox mice were used. Tg(Pdx1-Cre)89.1Dam/Mmcd (Pdx1-Cre)
mice and B6;FVB-Ta(Adipoq-Cre)1Evdr/J (Adipoq-Cre) mice were purchased from the Jack-
son Laboratory (Bar Harbor, Maine, USA). As control mice for Pdx1-Cre and Adipoq-Cre
mice, Cre negative, Cosmcflox/Y or flox mice were used.
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3.2. Helix Pomatia Agglutinin Analysis

The Helix pomatia agglutinin (HPA) blot analysis was conducted using tissues ground
in liquid nitrogen and resuspended in lysis buffer (50 mM Tris-HCl (pH 7.4), 150 mM
NaCl, 1 mM EDTA, 1% Triton X-100) containing cOmpleteTM protease inhibitor cocktail
(Roche, Basel, Switzerland). Tissue extracts were separated using SDS polyacrylamide gel
electrophoresis (10% gel) and transferred to an Immobilon P membrane (Merck Millipore,
Burlington, MA, USA). After blocking with Carbo-Free Blocking Solution (Vector Laborato-
ries, Burlingame, CA, USA), the membrane was incubated with primary HRP-conjugated
HPA (EY Laboratories, Inc., San Mateo, CA, USA) at 4 ◦C overnight. The blot was de-
veloped using Immobilon Western Chemiluminescent HRP substrate (Merck Millipore)
and visualized using the iBright Imaging System (Thermo Fisher Scientific, Waltham, MA,
USA). CBB staining was performed using Quick-CBB Plus according to the manufacturer’s
protocol (FUJIFILM Wako, Chuo, Osaka, Japan).

3.3. Urine Analysis

Murine urine was collected during spontaneous micturition. The measurement of
urinary total protein (pyrogallol red protein assay), creatinine (enzymatic method), and
albumin (immunonephelometry) levels was carried out by Oriental Yeast Co., Ltd. (Itabashi,
Tokyo, Japan).

3.4. Serological Analysis

Mouse plasma was collected from the inferior vena cava using heparin as an anticoag-
ulant. Blood chemical analysis was conducted using the Fuji Dri-Chem 7000V (FUJIFILM
Wako) clinical chemistry analyzer to measure levels of BUN, creatinine, triglycerides, total
cholesterol, high-density lipoprotein (HDL), total protein, blood glucose and total bilirubin,
as well as the activity of plasma amylase, aspartate aminotransferase (AST), and alanine
aminotransferase (ALT) according to the manufacturer’s instructions.

3.5. Histological Analysis

Tissues were fixed in Mildform 10N (FUJIFILM Wako) overnight at 4 ◦C and paraf-
finized. Sections of 3 µm thickness were assessed after HE staining under a light microscope.
For immunofluorescence analysis, sections were deparaffinized and incubated with Dako
target retrieval solution (Agilent Technologies, Santa Clara, CA, USA) buffer at 110 ◦C for
10 min in an autoclave. After blocking with Carbo-Free Blocking Solution for 1 h, sections
were incubated overnight at 4 ◦C with primary antibodies or lectin. Alexa Fluor conjugated
secondary antibodies (Invitrogen, Waltham, MA, USA) were used for immunodetection.
The details regarding the antibodies and lectins used are described in Table S1. Nuclei were
counterstained with Hoechst 33,342 (Thermo Fisher Scientific, Waltham, MA, USA). Images
were captured using a BIOREVO BZ-X800 microscope system (Keyence, Higashiyodogawa,
Osaka, Japan).

3.6. Quantitative Analysis of Transcripts Using RT-qPCR

Total RNA was extracted from the kidneys using ISOGEN (NIPPON GENE, Chiyoda,
Tokyo, Japan). First-strand cDNA was synthesized using the QuantiTect Reverse Transcrip-
tion Kit (QIAGEN, Hulsterweg, Venlo, The Netherlands). PCR was performed using a THUN-
DERBIRD SYBR qPCR system (Toyobo, Kita, Osaka, Japan) and a TP850 Thermal Cycler Dice
Real Time System (Takara-bio, Kusatsu, Shiga, Japan). The primer sequences for Kim-1 and
Hprt were as follows: Kim-1 forward, 5′-TCCACACATGTACCAACATCAA-3′; Kim-1 reverse,
5′-GTCACAGTGCCATTCCAGTC-3′; Hprt forward, 5′-CAAACTTTGCTTTCCCTGGT-3′; Hprt
reverse; 5′-CAAGGGCATATCCAACAACA-3′. Relative amounts of Kim-1 transcripts were
normalized to the amount of Hprt transcripts.
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3.7. Statistical Analysis

All data are presented as the mean ± SEM. Two-tailed t-tests were performed to
determine statistical significance for Figure 1C–G and Figure 4A,B,M, and Table 1. For the
analysis of Figures 2Q and 4C,D, Tukey’s test was performed. All statistical analyses were
performed using Prism 7 (GraphPad Software, Inc., San Diego, CA, USA) software with
the significance level set to p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23031273/s1.

Author Contributions: Conceptualization: R.S., S.T. and T.K.; formal analysis, R.S., Y.N., S.F. and
K.H.; data curation: R.S. and Y.N.; investigation: R.S., Y.N., R.K., Y.M., S.F. and K.H.; writing—original
draft preparation: R.S.; writing—review and editing: S.T. and T.K.; funding acquisition: S.T. and
T.K.; supervision: T.S., S.T. and T.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded “Medical Glycomics (MG) Project” supported by the New Energy
and Industrial Technology Development Organization (NEDO). This work was supported by Grants-
in-Aid for Scientific Research, JSPS KAKENHI (grant numbers 17590236, 16H06276, and 21K05984)
and AMED (grant number JP19ae0101028).

Institutional Review Board Statement: All experiments were performed in compliance with the
relevant Japanese and institutional laws and guidelines and were approved by the University of
Tsukuba Animal Ethics Committee (Authorization Number: 21-173).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and Supplementary Materials.
Additional details available upon request.

Conflicts of Interest: The authors declare that they have no conflicts of interest associated with the
content of this article.

References
1. Ju, T.; Brewer, K.; D’Souza, A.; Cummings, R.D.; Canfield, W.M. Cloning and expression of human core 1 beta1,3-

galactosyltransferase. J. Biol. Chem. 2002, 277, 178–186. [CrossRef] [PubMed]
2. Ju, T.; Cummings, R.D. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-

galactosyltransferase. Proc. Natl. Acad. Sci. USA 2002, 99, 16613–16618. [CrossRef] [PubMed]
3. Alexander, W.S.; Viney, E.M.; Zhang, J.G.; Metcalf, D.; Kauppi, M.; Hyland, C.D.; Carpinelli, M.R.; Stevenson, W.; Croker, B.A.;

Hilton, A.A.; et al. Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proc. Natl. Acad. Sci. USA
2006, 103, 16442–16447. [CrossRef] [PubMed]

4. Wang, Y.; Jobe, S.M.; Ding, X.; Choo, H.; Archer, D.R.; Mi, R.; Ju, T.; Cummings, R.D. Platelet biogenesis and functions require
correct protein O-glycosylation. Proc. Natl. Acad. Sci. USA 2012, 109, 16143–16148. [CrossRef]

5. Kudo, T.; Sato, T.; Hagiwara, K.; Kozuma, Y.; Yamaguchi, T.; Ikehara, Y.; Hamada, M.; Matsumoto, K.; Ema, M.; Murata, S.; et al.
C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes. Blood 2013, 122,
1649–1657. [CrossRef]

6. Wakui, H.; Fuseya, S.; Suzuki, R.; Shimbo, M.; Okada, R.; Hamada, M.; Kuno, A.; Hagiwara, K.; Sato, T.; Narimatsu, H.; et al.
Incomplete clearance of apoptotic cells by core 1-derived O-glycan-deficient resident peritoneal macrophages. Biochem. Biophys.
Res. Commun. 2018, 495, 2017–2023. [CrossRef]

7. Song, K.; Fu, J.; Song, J.; Herzog, B.H.; Bergstrom, K.; Kondo, Y.; McDaniel, J.M.; McGee, S.; Silasi-Mansat, R.; Lupu, F.; et al. Loss
of mucin-type O-glycans impairs the integrity of the glomerular filtration barrier in the mouse kidney. J. Biol. Chem. 2017, 292,
16491–16497. [CrossRef] [PubMed]

8. Fuseya, S.; Suzuki, R.; Okada, R.; Hagiwara, K.; Sato, T.; Narimatsu, H.; Yokoi, H.; Kasahara, M.; Usui, T.; Morito, N.; et al. Mice
lacking core 1-derived O-glycan in podocytes develop transient proteinuria, resulting in focal segmental glomerulosclerosis.
Biochem. Biophys. Res. Commun. 2020, 523, 1007–1013. [CrossRef]

9. Zeng, J.; Eljalby, M.; Aryal, R.P.; Lehoux, S.; Stavenhagen, K.; Kudelka, M.R.; Wang, Y.; Wang, J.; Ju, T.; von Andrian, U.H.; et al.
Cosmc controls B cell homing. Nat. Commun. 2020, 11, 3990. [CrossRef]

10. Lowenthal, M.S.; Davis, K.S.; Formolo, T.; Kilpatrick, L.E.; Phinney, K.W. Identification of Novel N-Glycosylation Sites at
Noncanonical Protein Consensus Motifs. J. Proteome. Res. 2016, 15, 2087–2101. [CrossRef]

11. Kuchroo, V.K.; Umetsu, D.T.; DeKruyff, R.H.; Freeman, G.J. The TIM gene family: Emerging roles in immunity and disease. Nat.
Rev. Immunol. 2003, 3, 454–462. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms23031273/s1
https://www.mdpi.com/article/10.3390/ijms23031273/s1
http://doi.org/10.1074/jbc.M109060200
http://www.ncbi.nlm.nih.gov/pubmed/11677243
http://doi.org/10.1073/pnas.262438199
http://www.ncbi.nlm.nih.gov/pubmed/12464682
http://doi.org/10.1073/pnas.0607872103
http://www.ncbi.nlm.nih.gov/pubmed/17062753
http://doi.org/10.1073/pnas.1208253109
http://doi.org/10.1182/blood-2012-12-471102
http://doi.org/10.1016/j.bbrc.2017.12.066
http://doi.org/10.1074/jbc.M117.798512
http://www.ncbi.nlm.nih.gov/pubmed/28842487
http://doi.org/10.1016/j.bbrc.2020.01.033
http://doi.org/10.1038/s41467-020-17765-6
http://doi.org/10.1021/acs.jproteome.5b00733
http://doi.org/10.1038/nri1111


Int. J. Mol. Sci. 2022, 23, 1273 13 of 13

12. Linden, S.K.; Sutton, P.; Karlsson, N.G.; Korolik, V.; McGuckin, M.A. Mucins in the mucosal barrier to infection. Mucosal. Immunol.
2008, 1, 183–197. [CrossRef] [PubMed]

13. Cutler, C.E.; Jones, M.B.; Cutler, A.A.; Mener, A.; Arthur, C.M.; Stowell, S.R.; Cummings, R.D. Cosmc is required for T cell
persistence in the periphery. Glycobiology 2019, 29, 776–788. [CrossRef] [PubMed]

14. Li, Y.; Fu, J.; Ling, Y.; Yago, T.; McDaniel, J.M.; Song, J.; Bai, X.; Kondo, Y.; Qin, Y.; Hoover, C.; et al. Sialylation on O-glycans
protects platelets from clearance by liver Kupffer cells. Proc. Natl. Acad. Sci. USA 2017, 114, 8360–8365. [CrossRef]

15. Betjes, M.G. Uremia-Associated Ageing of the Thymus and Adaptive Immune Responses. Toxins 2020, 12, 224. [CrossRef]
16. Ueno, K.; Ajiki, T.; Watanabe, H.; Abo, T.; Takeyama, Y.; Onoyama, H.; Kuroda, Y. Changes in extrathymic T cells in the liver and

intestinal intraepithelium in mice with obstructive jaundice. World J. Surg. 2004, 28, 277–282. [PubMed]
17. Tang, H.N.; Tang, C.Y.; Man, X.F.; Tan, S.W.; Guo, Y.; Tang, J.; Zhou, C.L.; Zhou, H.D. Plasticity of adipose tissue in response to

fasting and refeeding in male mice. Nutr. Metab. 2017, 14, 3. [CrossRef] [PubMed]
18. Chau, Y.Y.; Brownstein, D.; Mjoseng, H.; Lee, W.C.; Buza-Vidas, N.; Nerlov, C.; Jacobsen, S.E.; Perry, P.; Berry, R.;

Thornburn, A.; et al. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1. PLoS Genet. 2011,
7, e1002404. [CrossRef]

19. Wolters-Eisfeld, G.; Mercanoglu, B.; Hofmann, B.T.; Wolpers, T.; Schnabel, C.; Harder, S.; Steffen, P.; Bachmann, K.; Steglich, B.;
Schrader, J.; et al. Loss of complex O-glycosylation impairs exocrine pancreatic function and induces MODY8-like diabetes in
mice. Exp. Mol. Med. 2018, 50, 1–13. [CrossRef]

20. Mentula, P.; Kylanpaa, M.L.; Kemppainen, E.; Puolakkainen, P. Obesity correlates with early hyperglycemia in patients with
acute pancreatitis who developed organ failure. Pancreas 2008, 36, e21–e25. [CrossRef]

21. Liu, F.; Fu, J.; Bergstrom, K.; Shan, X.; McDaniel, J.M.; McGee, S.; Bai, X.; Chen, W.; Xia, L. Core 1-derived mucin-type
O-glycosylation protects against spontaneous gastritis and gastric cancer. J. Exp. Med. 2020, 217, e20182325. [CrossRef] [PubMed]

22. Fu, J.; Wei, B.; Wen, T.; Johansson, M.E.; Liu, X.; Bradford, E.; Thomsson, K.A.; McGee, S.; Mansour, L.; Tong, M.; et al. Loss of
intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J. Clin. Investig. 2011, 121, 1657–1666. [CrossRef] [PubMed]

23. Iwai, T.; Inaba, N.; Naundorf, A.; Zhang, Y.; Gotoh, M.; Iwasaki, H.; Kudo, T.; Togayachi, A.; Ishizuka, Y.; Nakanishi, H.; et al.
Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta
3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J. Biol. Chem. 2002, 277, 12802–12809. [CrossRef] [PubMed]

24. An, G.; Wei, B.; Xia, B.; McDaniel, J.M.; Ju, T.; Cummings, R.D.; Braun, J.; Xia, L. Increased susceptibility to colitis and colorectal
tumors in mice lacking core 3-derived O-glycans. J. Exp. Med. 2007, 204, 1417–1429. [CrossRef]

25. Gao, N.; Bergstrom, K.; Fu, J.; Xie, B.; Chen, W.; Xia, L. Loss of intestinal O-glycans promotes spontaneous duodenal tumors. Am.
J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G74–G83. [CrossRef]

26. Bergstrom, K.; Fu, J.; Johansson, M.E.; Liu, X.; Gao, N.; Wu, Q.; Song, J.; McDaniel, J.M.; McGee, S.; Chen, W.; et al. Core 1- and
3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal.
Immunol. 2017, 10, 91–103. [CrossRef]

27. Usui, T.; Morito, N.; Shawki, H.H.; Sato, Y.; Tsukaguchi, H.; Hamada, M.; Jeon, H.; Yadav, M.K.; Kuno, A.; Tsunakawa, Y.; et al.
Transcription factor MafB in podocytes protects against the development of focal segmental glomerulosclerosis. Kidney Int. 2020,
98, 391–403. [CrossRef]

28. Vaidya, V.S.; Ozer, J.S.; Dieterle, F.; Collings, F.B.; Ramirez, V.; Troth, S.; Muniappa, N.; Thudium, D.; Gerhold, D.; Holder, D.J.; et al.
Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat.
Biotechnol. 2010, 28, 478–485. [CrossRef]

29. Moresco, R.N.; Bochi, G.V.; Stein, C.S.; De Carvalho, J.A.M.; Cembranel, B.M.; Bollick, Y.S. Urinary kidney injury molecule-1 in
renal disease. Clin. Chim. Acta 2018, 487, 15–21. [CrossRef]

30. Yang, L.; Brooks, C.R.; Xiao, S.; Sabbisetti, V.; Yeung, M.Y.; Hsiao, L.L.; Ichimura, T.; Kuchroo, V.; Bonventre, J.V. KIM-1-mediated
phagocytosis reduces acute injury to the kidney. J. Clin. Investig. 2015, 125, 1620–1636. [CrossRef]

31. Chan, D.T.; Dogra, G.K.; Irish, A.B.; Ooi, E.M.; Barrett, P.H.; Chan, D.C.; Watts, G.F. Chronic kidney disease delays VLDL-apoB-100
particle catabolism: Potential role of apolipoprotein C-III. J. Lipid Res. 2009, 50, 2524–2531. [CrossRef] [PubMed]

32. Wang, S.; Mao, Y.; Narimatsu, Y.; Ye, Z.; Tian, W.; Goth, C.K.; Lira-Navarrete, E.; Pedersen, N.B.; Benito-Vicente, A.;
Martin, C.; et al. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand
interactions. J. Biol. Chem. 2018, 293, 7408–7422. [CrossRef] [PubMed]

33. Hayashi, S.; McMahon, A.P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: A tool for temporally
regulated gene activation/inactivation in the mouse. Dev. Biol. 2002, 244, 305–318. [CrossRef] [PubMed]

http://doi.org/10.1038/mi.2008.5
http://www.ncbi.nlm.nih.gov/pubmed/19079178
http://doi.org/10.1093/glycob/cwz054
http://www.ncbi.nlm.nih.gov/pubmed/31317176
http://doi.org/10.1073/pnas.1707662114
http://doi.org/10.3390/toxins12040224
http://www.ncbi.nlm.nih.gov/pubmed/14961202
http://doi.org/10.1186/s12986-016-0159-x
http://www.ncbi.nlm.nih.gov/pubmed/28070205
http://doi.org/10.1371/journal.pgen.1002404
http://doi.org/10.1038/s12276-018-0157-3
http://doi.org/10.1097/mpa.0b013e31814b22b5
http://doi.org/10.1084/jem.20182325
http://www.ncbi.nlm.nih.gov/pubmed/31645367
http://doi.org/10.1172/JCI45538
http://www.ncbi.nlm.nih.gov/pubmed/21383503
http://doi.org/10.1074/jbc.M112457200
http://www.ncbi.nlm.nih.gov/pubmed/11821425
http://doi.org/10.1084/jem.20061929
http://doi.org/10.1152/ajpgi.00060.2016
http://doi.org/10.1038/mi.2016.45
http://doi.org/10.1016/j.kint.2020.02.038
http://doi.org/10.1038/nbt.1623
http://doi.org/10.1016/j.cca.2018.09.011
http://doi.org/10.1172/JCI75417
http://doi.org/10.1194/jlr.P900003-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/19542564
http://doi.org/10.1074/jbc.M117.817981
http://www.ncbi.nlm.nih.gov/pubmed/29559555
http://doi.org/10.1006/dbio.2002.0597
http://www.ncbi.nlm.nih.gov/pubmed/11944939

	Introduction 
	Results and Discussion 
	Ubiquitous Loss of Core 1-Derived O-Glycans Leads to High Mortality of Mice and Decrease in the Weight of Multiple Organs 
	iCAG-Cos Mice Exhibit Atrophy of the Thymus and Adipocytes and Acute Pancreatitis 
	iCAG-Cos Mice Show the Presence of Spontaneous Gastric Ulcers 
	iCAG-Cos Mice Show Renal Injury with Albuminuria 

	Materials and Methods 
	Animals 
	Helix Pomatia Agglutinin Analysis 
	Urine Analysis 
	Serological Analysis 
	Histological Analysis 
	Quantitative Analysis of Transcripts Using RT-qPCR 
	Statistical Analysis 

	References

