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ABSTRACT An epistatic genetic architecture can have a significant impact on prediction accuracies of
genomic prediction (GP) methods. Machine learning methods predict traits comprised of epistatic genetic
architectures more accurately than statistical methods based on additive mixed linear models. The
differences between these types of GP methods suggest a diagnostic for revealing genetic architectures
underlying traits of interest. In addition to genetic architecture, the performance of GP methods may be
influenced by the sample size of the training population, the number of QTL, and the proportion of
phenotypic variability due to genotypic variability (heritability). Possible values for these factors and the
number of combinations of the factor levels that influence the performance of GP methods can be large.
Thus, efficient methods for identifying combinations of factor levels that produce most accurate GPs is
needed. Herein, we employ response surface methods (RSMs) to find the experimental conditions that
produce the most accurate GPs. We illustrate RSM with an example of simulated doubled haploid
populations and identify the combination of factors that maximize the difference between prediction
accuracies of best linear unbiased prediction (BLUP) and support vector machine (SVM) GP methods. The
greatest impact on the response is due to the genetic architecture of the population, heritability of the trait,
and the sample size. When epistasis is responsible for all of the genotypic variance and heritability is equal
to one and the sample size of the training population is large, the advantage of using the SVM method vs.
the BLUP method is greatest. However, except for values close to the maximum, most of the response
surface shows little difference between the methods. We also determined that the conditions resulting in
the greatest prediction accuracy for BLUP occurred when genetic architecture consists solely of additive
effects, and heritability is equal to one.
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Genomic selection (GS) is an approach for improving quantitative traits
through the use of genomic prediction (GP) techniques which use in-
formation provided by phenotypic values and genotypic information for
individuals, lines, varieties, orhybrids in a training set topredict phenotypic

values of individuals, lines, varieties, or hybrids with only genotypic
information (Meuwissen et al. 2001). Using GP, it is possible to improve
the accuracy of prediction relative to the traditional phenotypic and
marker assisted selection (Lande and Thompson 1990; Bernardo and
Yu 2007). GS can increase genetic gain by increasing selection intensity
because many more individuals can be assigned phenotypic values than
budgets will support through field assays (Heslot et al. 2015). There have
been many statistical methods proposed for GP, and there are numerous
articles evaluating these methods for sampled populations under various
conditions (de los Campos et al. 2010; Zhao et al. 2012; Howard et al.
2014). The relative performance of the methods depends on the attributes
of the training population, including sample sizes of the training and
validation populations, marker density, narrow sense heritability, etc. Us-
ing simulation models, these attributes can be varied and their impact on
prediction accuracies has been evaluated.
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In a previous publication (Howard et al. 2014), we simulated phe-
notypic and genotypic information for F2 and backcross populations
for traits with heritabilities of 0.30 and 0.70. Half of the simulated
data sets had only additive genetic effects, and the other half had only
two-way epistatic genetic effects among 30 loci. All simulated data had
phenotypic values for 1000 individuals, and genotypic values for
2000 biallelic markers. Using the simulated data, we compared the
performance of 10 best linear unbiased prediction (BLUP) and four
machine learning methods in terms of prediction accuracy. The mea-
sure of accuracy reported was the Pearson correlation coefficient be-
tween the simulated phenotypic value and the predicted phenotypic
value. Results showed that genetic architecture had the greatest impact
on estimated accuracies: machine learning methods provided higher
correlations between predictions and simulated values if the genetic
architectures consisted of epistatic genetic effects. BLUP methods
provided no ability to predict if the genetic architecture of the trait
consisted solely of epistatic effects. The results suggest an analytical
diagnostic that could reveal the underlying unknown genetic archi-
tecture of a trait in experimental data. Explicitly, a comparison of
estimated prediction accuracies for a given phenotype using both
types of methods could reveal whether additive or epistatic effects
dominate the genetic architecture of a trait. However, we did not
elaborate on the conditions under which the diagnostic could be
employed. It is possible that there are many conditions that could
result in large differences between estimated prediction accuracies
of algorithmic and linear-model methods, or it is also possible that
there are very few conditions under which the differences are large.
Our purpose was to systematically investigate combinations of fac-
tors that could affect the estimated prediction accuracies of both
linear model-based GP and algorithmic-based GP.

GP accuracies could be influenced by sample size, number of
markers, number of QTL, epistasis, and proportion of phenotypic
variance attributed to variability among genotypes (heritability in
the broad sense). Further, it is possible that interactions among the
factors influence GP. Our objective herein is to report a strategy for
identifying conditions under which the diagnostic could be employed.
We determined this by constructing the response surface for accuracies

of linear-model and machine learning GP methods as determined by
sample size, numberofmarkers, numberofQTL,degreeof epistasis, and
heritability. We chose ridge regression BLUP and support vector
machine (SVM) as representatives of linear-model and machine learn-
ing GP methods because Howard et al. (2014) demonstrated that these
provided the most consistent accuracies among mixed linear-model
and machine learning approaches. After constructing the response
surface of estimated prediction accuracies for these five factors we
employed the steepest ascent response surface method (RSM) to dem-
onstrate experimental efficiencies that can be gained when evaluating
conditions in which GP accuracies are maximized. The steepest ascent
RSM is a technique that is useful for guiding the choice of factor levels
to identify the optimal condition of a variable (response) dependent on
several input variables. RSMs are used in many areas of science to
design experiments that will identify combinations of factors that lead
to an optimum response. In this manuscript, we are extending this
concept to the design of simulation studies to identify combinations
of genetic architecture and input factors that maximize the difference
between prediction accuracies for different GP models. The intent here
is to evaluate the sensitivity of the GPmodels to the underlying genetic
architecture and design factors using RSM.

Before communicating themethods and results for the diagnosticwe
provide background information on RSMs. Next, we describe how the
response surface for GP accuracies was simulated, and last, we illustrate
how the steepest ascent RSM can be applied to efficiently determine the
specific combination of factors that maximize estimated prediction
accuracies of GP.

BACKGROUND

Response surfaces and approximation methods
RSMsareusedtoapproximatefunctionalrelationshipsbetweenaresponse
variable y and a set of design variables (Khuri and Mukhopadhyay
2010) which can be used to find the combination of factor levels for
which the response variables are optimized. In this context, the term
optimize refers to either maximize or minimize. RSMs were first intro-
duced by Box and Wilson (1951), and are used in many experimental

Figure 1 (A) The response surface of yield in relation to temperature and drought. (B) The contour plot (level curves) of the response
surface of yield.
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disciplines, including physical, biological, environmental, and chemical
sciences; engineering; and economics although we are unaware of prior
work on RSMs for evaluation of statistical techniques. The primary
advantage of RSMs is that the number of experimental treatment com-
binations required to find the optimum experimental conditions can be
(much) less than the total number of treatment combinations composing
the entire response surface (Myers and Montgomery 1995).

To illustrate the response surface for two variables, we simulated
hypothetical yield data which are influenced by temperature and
drought. Average daily temperature is simulated to be between
64  �F ¼ 18  �C and 80  �F ¼ 27  �C; and drought is between 24 and
4 standard precipitation index (SPI). Negative values for the drought
index indicate conditions that are dryer than normal. The model
we used to simulate yield  ¼ 110þ cosð0:25  droughtÞ2 þ sinð0:15 
temperatureÞ2 þ 0:0024375  drought  ·   temperature: Figure 1A shows
the response surface, and Figure 1B shows the contour plot of the
simulated yield. The simulation was performed in R (R Development
Core Team 2008, http://www.r-project.org) and the code can be found
in Supplemental Material, File S1.

For these simulated data it is clear that the yield is maximized when
temperature is between 73  �F ¼ 22:78  �C and 74  �F ¼ 23:33  �C and
drought is �2 SPI. In most situations, the true response surface is
unknown, and is influenced by more than two design variables where
visualization of the data are difficult.

A model for the relationship between response y and the p design
variables, z1; z2;. . .,zp; can be written in the form

y ¼ f
�
z1; z2; . . . ; zp

�þ e; (1)

where f is the true, unknown response function and e is the error term
(Myers and Montgomery 1995). The error term is often assumed to
have a normal distribution with mean 0 and variance s2; although
other distributions can be modeled. If we assume that e has a distri-
bution that has mean 0, then the expected value of the response in
terms of the natural variables can be written as

EðyÞ ¼ E
�
f
�
z1; z2; . . . ; zp

�þ e
�

(2)

¼ E
�
f
�
z1; z2; . . . ; zp

��þ E½e� (3)

¼ f
�
z1; z2; . . . ; zp

�
: (4)

The design variables z1; z2; . . . ; zp are commonly referred to as natural
variables because they have the natural units of the measurements. In
an RSM the natural variables are transformed into coded variables:
x1; x2; . . . ; xp: All of the coded variables have mean 0 and the same

variances. It is convenient to code the low level of the factor variables
as 21; and the high level as 1.

Since the true response function isunknown,wehave toapproximate
f. Under standard smoothness assumptions, a low-order polynomial
function provides a good local approximation to the true f. For exam-
ple, a first-order main effects model can be written as

EðyÞ ¼ b0 þ b1x1 þ b2x2 þ . . .þ bpxp; (5)

where x1; x2; . . . ; xp are coded variables, .. is the unknown intercept,
and b1;b2; . . . ;bp are the unknown regression coefficients. Equation
5 is called a main effects linear model because it only contains the
linear effects of the p factors on the response with no interaction
terms. When the model in Equation 5 includes interactions, we call
it the first-order model with interaction, and write it as

EðyÞ ¼ b0 þ b1x1 þ b2x2 þ . . .þ bpxp þ b12x1x2 þ . . . ; (6)

In situations such as those illustrated in Figure 1, a second-order
model can be also used to model the unknown response function f.
A second-order polynomial provides a good local approximation to
almost any surface because it can have different functional forms and
it is easy to estimate its parameters. In general, the second-order
model can be written as

EðyÞ ¼ b0 þ
Xp
j¼1

bjxj þ
Xp
j¼1

bjjx
2
j þ

XX
i, j#p

bijxixj þ . . . (7)

Let b denote the vector of unknown regression coefficients with
dimension depending on the model. With an interaction term or a
second-order model we can introduce curvature into the estimated
surface. The model equation can be written in a concise matrix
notation as

y ¼ Xbþ e; (8)

where y is an ðn· 1Þ vector of observations, X is an ðn · pÞ dimen-
sional matrix of the levels of the coded explanatory variables, b is a
ðp · 1Þ vector of the coefficients, and e is an ðn· 1Þ vector of the
random error terms. An ordinary least-squared estimator of the
model coefficients can be written as

b̂ ¼ �X9X�21X9y (9)

with the variance–covariance matrix of b̂ having the form

Varðb̂Þ ¼ s2
�
X9X

�21
; (10)

where s2I is the variance-covariance matrix of e: To estimate re-
gression coefficients, b in the response function requires data from

n Table 1 Combinations and factorial effects for a 23 design

Treatment Combination
Factorial Effect

I A B C AB AC BC ABC

a + + 2 2 2 2 + +
b + 2 + 2 2 + 2 +
c + 2 2 + + 2 2 +
abc + + + + + + + +
ab + + + 2 + 2 2 2
ac + + 2 + 2 + 2 2
bc + 2 + + 2 2 + 2
(1) + 2 2 2 + + + 2

Factor levels are denoted þ and 2. Taking only the treatment combinations
where the ABC factorial effect is þ or 2 will provide a half, i.e., 2321 fractional-
factorial design.

n Table 2 Possible values for n, m, QTL, epi, and h

Factor Minimum Maximum Other Constraints

n 0 N n is an integer
m 0 N m is an integer
QTL 0 N qtl is an integer, qtl # m
epi 0 1
h 0 1

n, number of segregating progeny;m, number of markers;QTL, number of QTL;
epi, proportion of genetic variance due to epistasis; h, heritability in the broad
sense.
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experiments designed to meet the objective (Myers and Montgomery
1995). If the objective is to approximate the response surface, a
frequently used treatment design is the factorial. For example, tem-
perature and the degree of drought could be two factors affecting
yield, but the number of factors could be more than two and the
possible values per factor can be qualitative, quantitative, and nu-
merous. For the example illustrated in Figure 1, a reasonable full
factorial model would consist of 4 · 5 ¼ 20 factor combinations. To
observe a response at each factor combination when there are two
levels for the p factors, 2p unreplicated treatment combinations are
required and the design is called the 2p factorial design. When p is
large and the range of possible values of each factor is also large,
finding the combination of the p factors needed to approximate the
response surface increases exponentially. For example, three factors
with two levels each requires 23 ¼ 8 treatment combinations;
whereas if the number of factors is five, the number of factor com-
binations is 25 ¼ 32: At least some of the treatment combinations
would need to be replicated if we want an estimate of the variance of
residuals, s2

e:

Efficient designs to find the optimal response
Often the research objective is to identify conditions where the response
is optimal, not to characterize the entire response surface. For such an
objective, an experimental strategy needs only to determine the com-
binationsof factors thatoptimize the response.For example, it ispossible
tofind themaximumyieldduetotemperatureanddroughtwithas fewas
six, instead of 20, treatment combinations. Conceptually, these strategies
arebasedon the sequential evaluationof subsetsof the full factorial design.
The key is to design the subsets of four-factor combinations in a manner
thatwillmaximize the informationabout thedirection anddistance to the
optimum from data collected on the responses.

Choice of initial subsets of factor combinations are based on
recognition that in a 2p factorial design, p degrees of freedom from a
total 2p 2 1 are used to estimate the main effects while the remaining
degrees of freedom are used to estimate interactions among the factors.
In an initial subset of factor combinations, it is reasonable to assume
that the second-order and nonlinear aspects of the response surface are
not of initial interest and use a fractional factorial design. For example,
consider the half of the full factorial design also known as the 2p21

design for a response that is influenced by three factors, e.g., tempera-
ture, drought, and fertilizer, denoted A;B; and C. The half-factorial
design in this case requires 2321 ¼ 22 ¼ 4 treatment combinations.
Even though this first exploratory experiment is less expensive than
the complete factorial experiment, the fractional-factorial design will
involve aliasing of factors. In other words, some effects are confounded
and cannot be estimated independently. In this case of the 2321 design, the
main effects are confounded with the two-factor interactions; a subsequent
experiment is needed to disentangle the confounded effects. Explicitly, con-
sider all of the treatment combinations a; b; c; abc; ab; ac; bc; and ð1Þ in a

23 design (Table 1). The factorial effects are I;A;B;C;AB;AC; BC;ABC;
where I is the identity column used to estimate the average response.
The 2 symbol stands for a low level (level 1) of a factor, and þ
stands for a high level (level 2) of a factor.

The identity column, I, is always þ; and we can write

I ¼ ABC: (11)

Equation11 is called thedefining relation for thedesign, and represents
the relationship between the identity and a factorial effect, which
determines the aliasing pattern. Multiplying both sides of (11) by C
results in

C · I ¼ C ·ABC ¼ ABC2: (12)

However, the square of any column (factorial effect) is the identity I, so
we get

C ¼ AB: (13)

Using the defining relation, the factorial effect of factor C for every
treatment combination can be determined. To create a 2321 fractional-
factorial design we can consider the treatment combinations where
the ABC factorial effect has a þ sign. Note that these are a; b; c; and
abc treatment combinations listed in the top half of Table 1. Also, we
can consider the four treatment combinations where the corresponding
ABC factorial effect has a 2 sign. We call this the complementary
fraction. These treatment combinations are the ab; ac; bc; and (1),
thus illustrating the confounding interaction effects with the main
effects. It does not matter which fraction we take because both belong
to the same family of treatment designs.

After designing and conducting the fractional-factorial experiment
for the four treatment combinations, at least four responses will provide
informationabout thenext set of treatments that should be conducted to
increase the value of the response. One algorithm to do so is steepest
ascent (or steepest descent). Steepest ascent is a sequential approach for
finding the maximum response, where we search for a region of the
factor space where the response is improved. The method of steepest
ascent has three main steps (Myers and Montgomery 1995):

1. Design of factor combinations with replicates.
2. Model building.
3. Sequential experimentation.

Since the method of steepest ascent is a sequential procedure, the
three steps are typically repeateduntil theoptimumresponse is obtained.
That is, steepest ascent can involve several experiments consisting of
subsets of factor combinations that lead to themaximum response. The
subsets of factor combinations in each experiment depend on the
estimates of the regression coefficients of the model from prior exper-
iments. For illustration, consider a first-order regression model

ŷ ¼ b0 þ b1x1 þ b2x2 þ . . .þ bpxp: (14)

Changing values of xiði ¼ 1; 2; . . . ; pÞ relative to the other factors
depends on the estimated regression coefficient bi: The magnitude
of bi provides the rate or number of steps relative to the xi coordinate,
and the sign of bi tells us the direction for the next set of factor levels.
If, for example, the magnitude of b1 is twice as much as the magnitude
of b2; then x1 will change twice as fast as x2 for the same change in
factor levels.

Simple first-order models are typically used in the initial experi-
ments.Unless the surface is complexor the initial fractional factorial uses
levels that are far from the optimal region, only a fewstepswill be needed

n Table 3 Specification of the factors including n, m, QTL, epi,
and h

Factor Level 1 Level 2 Level 3 Level 4 Level 5

n 200 1000 2000
m 100 400 1000
QTL 10 50 100
epi 0 0.2 0.5 0.8 1
h 0.2 0.5 0.8

n, number of segregating progeny;m, number of markers; QTL, number of QTL;
epi, proportion of genetic variance due to epistasis; h, heritability.
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to move quickly into “the neighborhood” of the optimum response. As
factor combinations approach the optimum, second-order models that
include interaction terms and curvature are employed to determine
more accurate approximations of the underlying surface.

METHODS

Simulated response surface
Doubled haploid (DH) populations were simulated using R (R Devel-
opment Core Team 2008, http://www.r-project.org). The R code for
performing the simulations, and the predictions, can be found in File
S2. Since our objective is to demonstrate application of steepest ascent
to determine the maximum response, we first simulated the entire re-
sponse surface using a list of five factors (Table 2) with operability
regions specified by factor levels (Table 3). For the number of segre-
gating progeny, number of markers, number of QTL, and level of
heritability three levels were evaluated, and for epistasis five levels were
evaluated. Epistasis at level 0 means that all of the genetic variance is
additive, 0.5 epistasis means that half of the genetic variance is additive
and the other half is epistatic. Thus, the response surface is character-
ized by the 3 · 3 · 3 · 5 · 3 ¼ 405 factor combinations (Table 3).

The simulated genomes of the DHs had 10 chromosomes, each
having the same length. The markers were distributed throughout the
genome in such a way that each chromosome had the same number of
markers equally spaced along the length of each chromosome. There
werenomissinggenotypicvaluesandnomissingphenotypic values.The
recombination rate was simulated as a function of the number of the
marker lociwithin a linkage group. The phenotypic values are simulated
based on the model described as

Pheno ¼ mþ Xaaþ Xeepiþ e; (15)

where Pheno is a vector of length n (n is the number of segregating
progeny), Xa is an (n · q)-dimensional additive incidence matrix
where q is the number of QTL, a is a q-long vector of additive effects,

Xe is the (n · 2q)-dimensional epistatic incidence matrix, epi is a 2q-
long vector of epistatic effects, and e is an n-long vector of random
errors. e has a normal distribution with mean of 0 and variance de-
termined by h (proportion of phenotypic variance due to genetic
variance) and the genetic variance. a and epi are simulated in such
a way that a ¼ aI and epi ¼ epiI where a and epi are constants, and I
is the identity vector of length specified by the model.

The genetic variance is defined as

VG ¼ a2Va þ epi2Vepi þ 2aepiCov
�
Xa;Xepi

�
; (16)

where Va is the additive genetic variance and Vepi is the epistatic
genetic variance. The genotypic values were coded according to
Cockerham’s model (Kao and Zeng 2002), and epistatic interactions
were simulated between pairs of neighboring QTL. Thus, we only
considered two-way gene interactions amongQTL. The proportion of
genetic variance explained by the additive and epistatic parts can be
specified by the user of the simulation software, and is determined by
using Equation 16.

To determine the response, i.e., accuracy of prediction at all 405 fac-
tor and factor level combinations, phenotypes were predicted using
ridge regression BLUP and SVM methods. BLUP is a parametric statis-
tical procedure for prediction consisting of a random effect term for the
marker genotypes (Henderson et al. 1959; Henderson 1963; Bernardo
1994; Howard et al. 2014). SVM is a nonparametric machine learning
technique that can model the relationship between the marker values
and the phenotypes using a linear or a nonlinear mapping function
(Vapnik 1995; Hastie et al. 2009; Howard et al. 2014). Specifically, we
used RRBLUP (Endelman 2011) and SVM (Karatzoglou et al. 2004)
implemented in R (R Development Core Team 2008, http://www.r-
project.org). Predictive accuracies were estimated using cross-validation,
where the data were divided into training and testing sets. Let phi denote
the true phenotypic values at factor combination i, and let cphi denote
the estimated phenotypic values at factor combination i. Accuracy of
prediction rðph;bphÞ is defined as the correlation between the true

Figure 2 Histogram of differences of prediction accuracies between SVM and BLUP shown in the left panel. Histogram of prediction accuracies
for BLUP shown in the right panel.
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phenotypic values and the predicted phenotypic values (Howard
et al. 2014). Prediction accuracies were estimated at each treatment
combination with 500 replications consisting of 20 different geno-
typic–phenotypic data sets, and within each data set we divided the
marker and phenotypic data into 25 different training–testing sub-
sets. The training–testing data sets were created in a such way that a
random 20% of the individuals belong to the testing set, and the
remaining 80% belong to the training set. We looked at the differ-
ence in prediction accuracy for SVM and BLUP techniques, and the
prediction accuracy for BLUP.

Data availability
The simulation code that produces Figure 1 can be found in File S1, and
the code for simulations and predictions can be found in File S2.

RESULTS

Response surfaces
Three response surfaces were generated: one based on prediction
accuracies of BLUP, rBLUP; a second based on prediction accuracies
of SVM, rSVM ; and the third based on the differences of the prediction
accuracies, ½rSVM 2 rBLUP�: The left panel of Figure 2 is a histogram of
the differences in the prediction accuracies, ½rSVM 2 rBLUP�; and the
right panel is a histogram for rBLUP: The histograms are based on
average prediction accuracies from 500 replicates for all 405 factor
combinations (Table S1).

Most factor combinationsproduce similar prediction accuracies (left
panel of Figure 2), although there are treatment combinations where
SVM is more accurate than BLUP. The maximum difference between
SVM and BLUP is 0.3, and this occurs when the number of segregating
progeny is 2000 (which is the maximumwe considered), the number of
markers is 100 (which is theminimumwe considered), h is one, and the
proportion of epistatic variance relative to the total genotypic variance
is one. For only 1:5% of the treatment combinations, the difference
between the prediction accuracies for SVM and BLUP is.0.20, and for
all of these cases epistasis and h are at their maximum limits, and the
numbers of segregating progenies are 2000. Note that rBLUP has a wide
range of values depending on the treatment combinations (Figure 2).
Themaximum rBLUP is 0.80 when the number of segregating progeny is
2000, h is at its maximum limit, and the proportion of epistatic vari-
ability accounting for the genetic variance is zero. For 6% of the treat-
ment combinations, the prediction accuracy is .0.80 and in all those
cases the number of segregating progeny is 2000, h is one, and the
proportion of epistatic variability accounting for the genetic variance
is zero. There was no pattern detected for the number of markers and
the number of QTL (Table S1).

Steepest ascent to determine factor combinations for
optimal responses
In the steepest ascent RSM, our goal is to find the combination of factor
levels associated with the optimal response y without evaluating every
possible factor combination of the response surface. A full factorial
design using five factors with two factor levels would imply 25 ¼ 32
experimental treatment combinations. Several different starting points
for the factors could influence the results. Initial levels for each factor
had no impact on the final estimate of themaximum response (data not
shown). However, initial values did impact the number of subsets of
factor combinations that were needed to reach the maximum. For the
sake of brevity, we provide results of the dynamic decision process for
only one set of initial values that were located furthest from the opti-
mum (Table 4). Let y1 be the difference between the accuracy of pre-
diction using the BLUP and the SVMmethod. Let y2 be the prediction
accuracy for the BLUP method. Since the calculations for SVM are
comparable to the calculations for BLUP, we only included y1 and y2
as responses. The response depends on the set of design variables xind;
xm; xQTL; xepi; and xh; where xind is the number of individuals in the
simulated DH population, xm is the number of markers, xQTL is the
number of QTL, xepi is the proportion of genetic variability due to
epistasis, and xh is the proportion of phenotypic variance due to genetic
variance. A model can be written as

y ¼ f
�
xind; xm; xQTL; xepi; xh

�þ e; (17)

where y is the response; f is the unknown, possibly complex response
function, which depends on the design variables xind; xm; xQTL; xepi;
and xh; and e � iid Nð0;s2

e Þ: The expected value of the response
function can be written as

EðyÞ ¼ E
�
f
�
xind; xm; xQTL; xepi; xh

�þ e
�

(18)

¼ f
�
xind; xm; xQTL; xepi; xh

�
: (19)

Initially, use a first-order polynomial to approximate the response
function, f, so that

EðyÞ 5  b0 þ b1xind þ b2xm þ b3xQTL þ b4xepi þ b5xh; (20)

where b0 is the intercept, b1 is the regression coefficient associated
with the number of individuals, b2 is the regression coefficient asso-
ciated with the number of markers, b3 is the regression coefficient
associated with the number of QTL, b4 is the regression coefficient
associated with the proportion of genetic variation due to epistasis,
and b5 is the regression coefficient associated with the proportion of
phenotypic variability due to genotypic variability.

Average responses rSVM ; rBLUP; and their difference from 500 repli-
cates of the half-fractional factorial of 16 factor combinations (Table 5)
were used to determine subsequent subsets of factor combinations that
should be close to the optimum response.

Themean accuracy difference between the SVM and BLUP, and the
estimates of the regression coefficients in terms of the codedunits for the
response rSVM 2 rBLUP for the half factorial were

ŷ1¼20:130þ 0:019 ind2 0:004m2 0:003QTLþ 0:043epiþ 0:020h:

(21)

Based on the estimated coefficients, increasing the number of progeny,
the proportion of total genetic variance due to epistasis, and the
heritability, and decreasing the number of markers and QTL should
improve the response. The coefficients with the smallest magnitudes

n Table 4 Starting values for the factors ind, m, QTL, epi, and h in
terms of natural units and coded units

Factor
Natural Units Coded Units

Low Level High Level Low Level High Level

ind 200 1000 21 1
m 100 400 21 1
QTL 10 100 21 1
epi 0.2 0.5 21 1
h 0.2 0.5 21 1

ind, number of progeny; m, number of markers; QTL, number of QTL; epi,
proportion of genetic variability explained by the epistatic variability vs. the
additive variability; h, proportion of phenotypic variability explained by the ge-
netic variability.
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include number ofmarkers andQTL. Thus, these are not as influential
as the other factors in terms of the next set of factor combinations
which will improve the response (rSVM 2 rBLUP).

To determine the next set of factor combinations, we define a basis
and calculate the step sizes (increments) for each factor. Table 6 shows
the low and high levels (level 1 and level 2) of the factors, the average of
the two levels of the factors (which is the base in later calculations),
and the distance between the average and either of the initial values
(which is used for calculating the coordinates of the response surface
which need to be evaluated next).

For establishing which treatment combinations need to be eval-
uated next to find the maximum response, the step size of the input
variables needs to be determined. First, an input variable needs to be
chosen (called the basis) which will also influence the step size of the
other variables. It is beneficial to choose a variable for which themost
information is available, but it is also a common practice to choose
the basis with the largest absolute value of the estimated regression
coefficient.

Because in our example the fitted model has the largest absolute
estimated coefficient for epistasis, epistasis is the basis. We choose the
step size for epistasis to be 0.25 because previous research indicated that
the maximum response (rSVM 2 rBLUP) can be found when epistasis is
high. The step size will only determine the number of additional ex-
periments we have to run to reach the optimum. If we were to specify
a smaller step size for epistasis, we would move more slowly on the
surface by evaluating more treatment combinations. However, when
the surface is not smooth and is complex, it might be beneficial to
choose a step size for the first input variable that is small. The choice
of the step size of the first input variable is determined by the re-
searcher, and it influences the step size of the other input variables.

The step size of 0.25 for epistasis in natural units corresponds to
0:25=0:15 ¼ 1:6667 in coded units (the value of 0.15 comes fromTable
6). The step sizes for the other input variables in coded units are 

b̂factori

b̂epi

!
step sizeepi;b (22)

explicitly: �
0:019
0:043

	
1:667 ¼ 0:74 (23)

for individuals, �
20:004
0:043

	
1:667¼2 0:16 (24)

for markers, �
20:003
0:043

	
1:667¼2 0:12 (25)

for QTL, and �
0:020
0:043

	
1:667 ¼ 0:78 (26)

for h.
To determine the coordinates of the response surface (i.e., experimen-

tal conditions) that need to be evaluated next, we need to convert the step
sizes in coded units into natural units. The step size in natural units can

n Table 5 Mean accuracy of BLUP, mean accuracy of SVM, and the difference between the mean accuracy of SVM and mean accuracy of
BLUP for 16 combinations of factors

Treatment Combination BLUP Accuracy SVM Accuracy Response

1000 ind, 400 m, 100 QTL, 0.2 epi, 0.5 h 0.59 0.58 20.01
200 ind, 100 m, 100 QTL, 0.2 epi, 0.5 h 0.53 0.54 0.01
200 ind, 400 m, 10 QTL, 0.2 epi, 0.5 h 0.39 0.36 20.03
1000 ind, 100 m, 10 QTL, 0.2 epi, 0.5 h 0.59 0.58 20.01
200 ind, 400 m, 100 QTL, 0.5 epi, 0.5 h 0.40 0.39 20.01
1000 ind, 100 m, 100 QTL, 0.5 epi, 0.5 h 0.45 0.44 20.01
1000 ind, 400 m, 10 QTL, 0.5 epi, 0.5 h 0.41 0.41 0.00
200 ind, 100 m, 10 QTL, 0.5 epi, 0.5 h 0.33 0.31 20.02
200 ind, 400 m, 100 QTL, 0.2 epi, 0.2 h 0.31 0.29 20.02
1000 ind, 100 m, 100 QTL, 0.2 epi, 0.2 h 0.36 0.34 20.02
1000 ind, 400 m, 10 QTL, 0.2 epi, 0.2 h 0.29 0.27 20.02
200 ind, 100 m, 10 QTL, 0.2 epi, 0.2 h 0.21 0.20 20.01
1000 ind, 400 m, 100 QTL, 0.5 epi, 0.2 h 0.27 0.24 20.03
200 ind, 100 m, 100 QTL, 0.5 epi, 0.2 h 0.18 0.15 20.03
200 ind, 400 m, 10 QTL, 0.5 epi, 0.2 h 0.06 0.05 20.01
1000 ind, 100 m, 10 QTL, 0.5 epi, 0.2 h 0.23 0.22 20.01

n Table 6 Levels of factors, average of the levels of the factors, and half of the difference between the levels of factors

Factor Level 1 Level 2 ðLevel  1þ Level  2Þ=2 ½ðLevel  1þ Level  2Þ=2�2 Level  1

ind 200 1000 600 400
m 100 400 250 150
QTL 10 100 55 45
epi 0.2 0.5 0.35 0.15
h 0.2 0.5 0.35 0.15
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be calculated as the product of ½ðlevel  1þ level  2Þ=2�2 level  1 and the
corresponding step size in coded units (Table 7). For example, for the
number of individuals the step size in natural units is calculated as
400ð0:74Þ: The base in natural units for the input variables corresponds
to a base of zero in coded units. D; 2D; 3D; . . . indicate the direction and
magnitude of change for each factor which can be used for the next set of
experimental conditions; and baseþD; baseþ2D; baseþ3D; . . . specify the
coordinates of the response surface that need to be evaluated next (Table 8).

After adjusting for the operability regions of the five factors, the
second set of experimental conditions for ½rSVM 2 rBLUP� and associated
responses indicated that the increased number of individuals, propor-
tion of genetics due to epistasis, and h, and the decreased number of
markers and QTL produced improved responses. As the number of
segregating progeny, the proportion of epistasis, and h increase, the
advantage of using the SVM method instead of BLUP increases. The
total number of factor combinations evaluated to find the maximum
½rSVM 2 rBLUP� was,25, instead of the 405 which would be required to
describe the entire surface (Response surfaces).

The estimated regression coefficients for the averaged response
y2 ¼ rBLUP are listed in the estimated regression line:

by2 ¼ 0:462þ 0:039 ind2 0:005mþ 0:025QTL2 0:285epiþ 0:144h;

(27)

indicating that increasing the number of progeny, number ofQTL, and
h, anddecreasing the number ofmarkers and the proportion of genetic
variance due to epistasis should increase the response. The estimated
coefficients are the smallest for the number of markers and QTL, so

these factors arenot as influential as theother factors. Because the largest
estimated coefficient in absolute value is associated with epistasis, the
basis is epistasis and the corresponding step size is ¼ 2 0:25 for the
response of accuracy of prediction using BLUP. Note that the step size
of the basis has a negative value here because the estimated regression
coefficient for epistasis is negative. The step size for epistasis¼ 0:25 in
natural units corresponds to 0:25=0:15 ¼ 1:6667 in coded units. For
the other four factors, the step sizes in coded units are�

0:039
20:285

	
ð21:6667Þ ¼ 0:228 (28)

for individuals, �
20:005
20:285

	
ð21:6667Þ¼20:029 (29)

for markers, �
0:025
20:285

	
ð21:6667Þ ¼ 0:146 (30)

for QTL, and �
0:144
20:285

	
ð21:6667Þ ¼ 0:842 (31)

for heritability.
Factor levels for the next set of analyses resulted in decreasing factor

levels for epistasis and number of markers (Table 9 and Table 10) for
maximizing rBLUP: The optimum response for averaged rBLUP occurs
when the genetic variance is explained by purely the additive effects. For
both responses (y1 and y2), the response increases when the number of
segregating progeny and heritability increase. For both responses, it is
beneficial to have markers which explain the phenotypic variation, and
it does not improve prediction accuracies when markers which are not
associated with the phenotypic variability are added. The total number
of factor combinations needed to find the maximum responses for
rBLUP was 21, �5% of what would be required to describe the entire
response surface.

DISCUSSION

Some considerations about the factors
In 2014, we conjectured that differences between estimated prediction
accuracies of linear-model and algorithmic methods could be used as a
computational diagnostic for an epistatic genetic architecture. Huang
et al. (2012) had previously alluded to failure of linear model-based

n Table 7 Base, step size in natural units, and the coordinates of
the steepest ascent for the number of individuals, number of
markers, number of QTL, proportion of epistasis, and the degree
of heritability to determine the second set of factor combinations
for response rSVM 2 rBLUP

Individuals Markers QTL Epistasis Heritability

Base 600 250 55 0.35 0.35
Increment 400(0.74) 150(20.16) 45(20.12) 0.25 0.15(0.78)
D 296 224 25.4 0.25 0.12
BaseþD 896 226 50 0.6 0.47
Baseþ2D 1192 202 44 0.85 0.59
Baseþ3D 1488 178 39 1 0.71
Baseþ4D 1784 154 33 1 0.83
Baseþ5D 2080 130 28 1 0.95
Baseþ6D 2376 106 23 1 1
Baseþ7D 2672 82 17 1 1
Baseþ8D 2968 58 12 1 1
Baseþ9D 3264 34 6 1 1

n Table 8 Coordinates of the steepest ascent for the number of individuals, number of markers, number of QTL, proportion of epistasis,
and the degree of heritability for the additional runs when the response is the mean accuracy difference between the SVM and BLUP, and
the corresponding mean accuracy for BLUP, SVM, and for SVM–BLUP

Factor Level Individuals Markers QTL Epistasis Heritability rBLUP rSVM rSVM 2 rBLUP

1 896 226 50 0.60 0.47 0.37 0.38 0.01
2 1192 202 44 0.85 0.59 0.26 0.29 0.03
3 1488 178 39 1 0.71 0.00 0.23 0.23
4 1784 154 33 1 0.83 0.01 0.31 0.30
5 2080 130 28 1 0.95 0.01 0.46 0.45
6 2376 106 23 1 1 0.01 0.55 0.54
7 2672 82 17 1 1 0.00 0.62 0.62
8 2968 58 12 1 1 0.01 0.73 0.72
9 3264 34 6 1 1 0.00 0.98 0.98
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methods as an indicator of epistatic genetic architectures. Thus, we had
an obligation to investigate the hypothesis using a more thorough and
systematic approach. We learned that the response surface for the
computational diagnostic, (rSVM 2 rBLUP), is flat except in the vicinity
of maximum values for the proportional contribution of epistasis to
genetic variance, and the proportional contribution of genetic variance
to phenotypic variability. To our knowledge there are no known quan-
titative traits that exhibit such genetic architectures.

Before designing the experiments for the steepest ascent/descent
procedure, it is important to evaluate some initial experiments wherewe
determinewhich factorsmight be important andwhich can be excluded
from the model. We also have to define the region in which the factors
can affect the response, also known as the operability region.

The initial choices of the factorswe consider and their rangeof values
can have a large impact on the speed of approaching the optimal
response, and whether the optimum is reached. For example, for the
factor temperature we can choose the range to be between 1  �F and
100  �F; or we can convert to the Celsius scale which will lead to a range
between217  �C and 38  �C: The estimated regression coefficients will
be different depending on the temperature scale. Using different ranges
of factors only influences the magnitude of the regression coefficients,
not the sign of the regression coefficients. This implies that using a
different range for the factors would not modify the direction in which
we are moving along the path, but it would change the speed of the
movement relative to the scale used.

Another design aspect to consider is the choice of the metric for the
response. Especiallywhen the range of the response is large, it is useful to
transform the response. One of the most commonly used transforma-
tions is the Box–Cox power transformation (Box and Cox 1964). The
transformed response, w is defined as

w ¼ yl 2 1
l

; (32)

where y is the untransformed response and l is the power param-
eter. For example, l ¼ 2 1 results in a reciprocal transformation,
l ¼ 0:5 results in a square root transformation, and since
liml/0

�ðyl 2 1Þ=l� ¼ lny; l ¼ 0 results in a logarithmic transfor-
mation. The power parameter l can be estimated via maximum
likelihood. This rank-preserving transformation is also useful when
we need to stabilize the variance of the response, or when the re-
sidual variance does not satisfy the normal assumptions. It is pos-
sible that the response surface has multiple peaks, and then more
than one combination of the design variables satisfies the condition
for having the optimal response. It is also likely that the range of
starting values do not include the global peaks, but in the procedure
of steepest descent (or ascent) we would arrive in the required range.

Application of RSMs for evaluation of GP methods
Originally, RSMs (Box and Wilson 1951) were developed to find com-
binations of controlled conditions to maximize output of industrial
processes (Naylor 1969). Myers et al. (1989) summarized the extensive
applications of RSMs for systems engineering; Bezerra et al. (2008)
summarized applications in analytical chemistry; and RSMs have been
applied to systems of interest to biologists, including pharmaceutical
production (Koyamada et al. 2004) and fermentation (Zhang et al.
2010). Our own experiences in consulting have revealed a mispercep-
tion that RSMs can only be applied to systems where the factors and
factor levels can be explicitly planned and controlled as fixed-effect
treatments. However, RSMs have been shown to be efficient for de-
termining optimal conditions of complex systems where many of the
factors are represented as random samples or unknown factors, e.g.,
ecosystem impacts on growth and development of individuals (Menke
1973). Herein, we demonstrated that the steepest ascent RSM also
provides an efficient approach to identify conditions that affect pre-
diction accuracies of a machine learning and a BLUP method. The
purpose here is not to conduct many different experiments, but to
evaluate the sensitivity of the GP models to the underlying genetic
architecture and design factors with a limited number of experiments.
To our knowledge, this is the first report of RSM for GPmethods and a
demonstration of how to find factor combinations that are responsible
for maximizing prediction accuracies using an efficient number of
experimental analyses. Further, we demonstrated that the steepest as-
cent RSM also provided useful information about the response surface
without the burden of evaluating every possible combination of factors
and factor levels.

Even though we demonstrated RSM using GP methods, the meth-
odologycanbeappliedduringdevelopmentof anynoveldataanalysesor
computational methods, although this proposition requires more re-
search.There are some aspects of our application of anRSMthat need to
be emphasized. First, steepest ascent represents only one ofmanyRSMs,
and use of a fractional factorial represents only one of many efficient
experimentaldesigns.Wechose thesebecauseourgoalwas tofindasetof
factor levels in which the responses were maximized and we had some
prior information about possible factors. The set of factors that we
investigate might not be the only set associated with maximizing
responses. For example, in case we find two sets of factor levels that
are associated with the maximum response, suggesting that there
might be a ridge of maximum responses, then a future ridge analysis
RSM could be justified. Also, if we had some prior knowledge that our
maximum responses were likely to occur at intermediate levels for
our sets of factors, the central composite designwould provide amore
efficient design than the half-fractional factorial for the initial set.

Before designing and conducting an initial experiment, knowl-
edge about factors and factor levels should be incorporated into
defining the operability regions, i.e., ranges of values of the factors

n Table 9 Base, step size in natural units, and the coordinates of
the steepest ascent for the number of individuals, number of
markers, number of QTL, proportion of epistasis, and the degree
of heritability for response rBLUP

Individuals Markers QTL Epistasis Heritability

Base 600 250 55 0.35 0.35
Increment 400(0.228) 150(20.029) 45(0.146) 20.25 0.15(0.842)
D 91 24.4 6.6 20.25 0.13
BaseþD 691 246 62 0.10 0.48
Baseþ2D 782 241 68 0 0.61
Baseþ3D 873 237 75 0 0.74
Baseþ4D 964 232 81 0 0.87
Baseþ5D 1055 228 88 0 1

n Table 10 Coordinates of the steepest ascent for the number of
individuals, number of markers, number of QTL, proportion of
epistasis, and the degree of heritability for the additional runs
when the response is the mean accuracy for BLUP, and the
corresponding mean accuracy for BLUP

Individuals Markers QTL Epistasis Heritability BLUP

Run 1 691 246 62 0.1 0.48 0.62
Run 2 782 241 68 0 0.61 0.74
Run 3 873 237 75 0 0.74 0.83
Run 4 964 232 81 0 0.87 0.92
Run 5 1055 228 88 0 1 1
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that are attainable. From prior publications, we were aware that
genetic architecture of the trait (number of QTL, epistasis among
QTL, and interactions of QTL with environments), population
structure, relationships between training and validation data sets,
number of genetic markers, heritability, and number of individuals
(lines, varieties, and hybrids) could affect the predictive ability of GP
methods. We were primarily interested in the potential of the compu-
tational diagnostic (rSVM 2 rBLUP) for detection of epistatic genetic ar-
chitectures involving a large, but finite, number of QTL (Clowers et al.
2010; Howard et al. 2014). Further investigation is needed on larger
numbers of QTL especially for traits like yield or biomass where the
infinitesimal model is more appropriate. Also, since it is likely that the
diagnostic will detect interactions of QTL with environments, we de-
cided to avoid this confounded interpretation for this investigation.
The operability region for epistasis was restricted to two-way interac-
tions. Higher order interactions were not considered because Cooper
et al. (2002) pointed out that response to selection on an adaptive
surface is unlikely to happen if the average number of interactions
among QTL is much more than two. Crops have been responding to
selection for at least 100 yr. Since it is trivial for simulation to produce
any level of epistasis, the two-way interactions were simulated to rep-
resent the full range of contributions to genetic variance. Likewise, the
operability region for heritability was simulated to represent the full
range of contributions to phenotypic variance. We also kept the pop-
ulation structure and relationships among training and validation sub-
sets consistent and simple to avoid confounded interpretations of the
proposed diagnostic.

With the emergence of genotyping-by-sequencing technologies, the
operability region for the number of markers could have been much
larger; however, given maximal linkage disequilibrium (LD) in the
population structure, the operability region need only include sufficient
numbers to assure some redundancy among genotypic information.
Indeed, we found that if the LD between markers and QTL is complete,
then prediction accuracies are not improved with any additional
markers. This outcome will likely not change with more complex
population structures for finite numbers of segregating QTL.

The operability region for number of individuals was based on a
possible number ofDHprogenywith application ofDH technologies to
F2 progeny from a single cross of inbred lines in a crop such as maize.
While 2000 DH progeny are possible, producing such numbers is un-
likely without significant resource allocations. Thus, from a practical
perspective, it is highly unlikely that the diagnostic can be employed
routinely because themaximum values for the diagnostic occurred with
large numbers of progeny in which the genetic architecture is com-
prised entirely of epistatic variance and broad sense heritability is unity.
Also, the large difference in accuracy between SVMandBLUP occurs at
the extreme of pure epistatic variance, which is a genetic architecture
that has not been described for any trait. Thus, the reader should be
aware that the GP models can have a similar accuracy in cases when
the genetic architecture consists of a high proportion of epistatic
variance, and only comparing prediction accuracies might not be a
useful method to infer genetic architecture.

Lastly, the reader will note that prediction accuracy results are not
exactly the same as results previously reported by Howard et al. (2014).
In the prior report, we simulated F2 and backcross populations where
the linkage groups had different lengths. This report is based on DH
lines with linkage groups that consist of the same numbers of marker
loci per linkage group and the same recombination among adjacent
marker loci within linkage groups. Consequently, the LD among the
simulated QTLwas not the same in the two studies. The inconsistencies
between the two reports are small, but the results suggest that LD

among QTL, population structures, and genomic architecture also
will influence prediction accuracies. In particular, it is likely that
because of LD among QTL in our first set of simulations we un-
intentionally produced a second source of nonlinear interactions,
i.e., pseudooverdominance.
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