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Abstract

Drug-induced liver injury (DILI) is one of major causes of discontinuing drug development

and withdrawing drugs from the market. In this study, we investigated chemical properties

associated with DILI using in silico methods, to identify a physicochemical property useful

for DILI screening at the early stages of drug development. Total of 652 drugs, including

432 DILI-positive drugs (DILI drugs) and 220 DILI-negative drugs (no-DILI drugs) were

selected from Liver Toxicity Knowledge Base of US Food and Drug Administration. Deci-

sion tree models were constructed using 2,473 descriptors as explanatory variables. In

the final model, the descriptor AMW, representing average molecular weight, was found to

be at the first node and showed the highest importance value. With AMW alone, 276 DILI

drugs (64%) and 156 no-DILI drugs (71%) were correctly classified. Discrimination with

AMW was then performed using therapeutic category information. The performance of dis-

crimination depended on the category and significantly high performance (>0.8 balanced

accuracy) was obtained in some categories. Taken together, the present results suggest

AMW as a novel descriptor useful for detecting drugs with DILI risk. The information pre-

sented may be valuable for the safety assessment of drug candidates at the early stage of

drug development.

Introduction

Hepatotoxicity is one of major causes of drug withdrawal from the market [1–3]. It is very dif-

ficult to detect liver injury potential in the early stage of drug development since the incidence

of drug-induced liver injury (DILI) is very low, that is 1 in 50,000 to 1 in 100,000 patients

(0.001% - 0.002%) [4]. In addition, molecular mechanisms of DILI are barely understood and

thus no valid predictive evaluation system has been established for DILI.

Various factors are associated with the onset of DILI. One of the major causes of DILI is the

formation of reactive metabolites, which bind to and denature macromolecules, such as pro-

teins and lipids, to induce cellular dysfunction, inflammatory stress and allergic reactions, and
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thereby toxicological responses [4–6]. It is also known that there are large inter-individual var-

iations in the clinical symptom of DILI, which mainly result from the patient-related factors

[7, 8]. For example, genetic polymorphisms of genes associated with drug metabolism and

immune/inflammatory response have been identified as risk factors for DILI [9], and the

involvement of the haplotypes of human leukocyte antigen in DILI has been reported [10].

A variety of in vitro assays have been established to assess the toxicological potency of drugs

at the cell level, such as those using a high-content screening (HCS) method [11] or monocytes

to detect immune/inflammatory responses [12]. In addition, high-lipophilicity (e.g. logP� 3)

[13] and high daily dose (e.g. >50–100 mg per day) [14] as well as the above-mentioned reac-

tive metabolite formation by drug-metabolizing enzymes, such as cytochrome P450s and

UDP-glucuronosyltransferases [15], have been suggested as DILI-inducible factors [16, 17].

Therefore, a DILI prediction by the combination of HCS and the rule-of-two (i.e. daily

dose� 100 mg/day and logP� 3) was tested and it showed improved prediction accuracy and

reduced the number of drugs that were subjected to further experimental assessments, com-

pared to a prediction by HCS alone [18]. These combination approaches are practical and

employed in many pharmaceutical companies for drug development. However, they may not

be applied to the early drug discovery stage since it requires daily dose information and synthe-

sis of candidate compounds.

In silico methods have been applied to the toxicity prediction of chemical substances such

as pharmaceuticals [19]. Toxicity predictions based on in silico methods can be performed at

lower costs and in high-throughput systems, and they do not require chemical synthesis and in

vivo and in vitro experiments. In silico approaches are thus ideal for screening at the early

stage of drug development. In these studies, parameters (i.e. chemical descriptors) calculated

from physiochemical properties of drugs are used, which can be easily obtained as quantitative

data from chemical structures [20, 21].

Decision tree-based analysis is a classical classification method of machine learning [22].

While its predictive performance is usually lower than that of other related methods, such as

deep learning and random forest, it has an advantage that a constructed model has readability.

Moreover, the resulting information on partial chemical structures and physicochemical prop-

erties that contribute to toxicity will be valuable for the feedback to medicinal chemistry to

reduce toxicity through synthetic development at the early stage of drug development.

The aim of this study was to identify a physicochemical property that is simple to under-

stand and useful for DILI screening in the early stage of drug development. To this end, we

investigated chemical properties associated with DILI, using decision tree-based methods with

DILI-positive drugs (DILI drugs) and DILI-negative drugs (no-DILI drugs) selected from

Liver Toxicity Knowledge Base (LTKB) [23, 24]. Chemical descriptors associated with partial

chemical structures, lipophilicity, surface charges and others were calculated as indices of

physicochemical properties of the drugs and we then sought to identify an important factor(s)

to discriminate DILI drugs from no-DILI drugs.

Materials and methods

Dataset

The DILIrank dataset, which consists of 1,036 US Food and Drug Administration (FDA)-

approved drugs, was obtained from LTKB, a project at the FDA National Center for Toxico-

logical Research (https://www.fda.gov/science-research/liver-toxicity-knowledge-base-ltkb/

drug-induced-liver-injury-rank-dilirank-dataset). In the dataset, drugs are divided into four

classes, vMost-DILI-concern (192 drugs), vLess-DILI-concern (278 drugs), vNo-DILI-concern

(312 drugs), and Ambiguous-DILI-concern drugs (254 drugs), according to their potential for
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causing DILI. Among them, all the vMost-DILI-concern, vLess-DILI-concern and vNo-DILI-

concern drugs were used as target compounds in this study, and vMost-DILI-concern and
vLess-DILI-concern drugs were defined as DILI drugs (total of 470) and vNo-DILI-concern

drugs were as no-DILI drugs.

The DILIrank dataset contains the lists of drug names and PubChem CIDs. Based on the

CIDs, the CAS number of each drug was obtained, and their chemical structures were con-

firmed and defined using SciFinder (Chemical Abstracts Service, Columbus, OH) and

PubChem (https://pubchem.ncbi.nlm.nih.gov). The salt compounds were desalted (e.g. hydro-

chloride of hydrochloride salt compounds was removed) or neutralized (e.g. sodium carboxyl-

ates were changed to carboxylic acids), and peptides, nucleic acids and metal-containing drugs

were excluded in this study. The list of final target compounds (432 DILI drugs and 220 no-

DILI drugs) is shown in S1 Table.

Chemical descriptors

The SMILES format data of all the compounds used in this study were obtained from Pub-

Chem database. The SMILES were converted to MOL format using OpenBabelGUI [25]. The

two-dimensional (2D) chemical descriptors were calculated with Dragon 7 software (Talete,

Milano, Italy) with MOL format data. The descriptors that were incalculable and those that

were constant among all the target compounds were excluded, and the remaining 2,473

descriptors (S2 Table) were used for analyses.

Statistical analysis and machine learning

Statistical analyses and machine learning were performed using Microsoft Excel, JMP Pro 14

(SAS Institute, Cary, NC) and R (version 3.6.2 and 4.0.1) [26].

Chemical space of target compounds

The chemical space of the target compounds (432 DILI drugs and 220 no-DILI drugs) was

compared with that of 12,262 chemical compounds that were obtained from PubChem data-

base as references, using principal component analysis (PCA). PubChem contains about 100

million small molecules with fewer than 1000 atoms and 1,000 bonds [27]. For comparison,

20,000 numbers (1–111,442,486) were randomly generated and these numbers were used

as potential CIDs to search SMILES with PubChem Identifier Exchange Service (https://

pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi). Finally, the valid SMILES format data

of 12,262 chemical compounds were obtained. The chemical descriptors of these compounds

(12,914 in total) were calculated. Those with zero or near-zero variance were excluded with the

R function “nearZeroVar()” in the caret package, and further selection was performed consid-

ering linearity among descriptors using the R function “findLinearCombos()” in the caret

package. The remaining 1,539 descriptors were subjected to PCA with the R function “prcomp

()” in the stats package.

Discriminant analysis using tree models

To build and validate decision tree models, nested cross-validation was performed as follows:

The target compounds were randomly divided into 3 groups keeping the proportions of DILI

drugs and no-DILI drugs same with the original proportion of the 652 drugs (432:220). Three

trees were constructed using each pair of two groups as a training set and the rest was used as a

test set. The decision trees that discriminate between DILI drugs and no-DILI drugs were con-

structed with the chemical descriptors as explanatory variables using the Classification and
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Regression Tree (CART) algorithm with the R function “rpart()” in the rpart package [22]. To

determine the depth of each tree model, 5-fold cross-validation was carried out.

The final model was independently constructed with 5-fold cross-validation using the

chemical descriptors of the 652 drugs. As the indices of prediction performance, accuracy,

sensitivity, specificity, balanced accuracy (BA) and Matthews correlation coefficient (MCC),

where TP, TN, FP, and FN represent the number of true positives, the number of true nega-

tives, the number of false positives, and the number of false negatives, respectively:

Accuracy ¼
TPþ TN

total number of samples
; ð1Þ

Sensitivity ¼
TP

TPþ FN
; ð2Þ

Specificity ¼
TN

TNþ FP
; ð3Þ

BA ¼
sensitivityþ specificity

2
; ð4Þ

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þ

p :; ð5Þ

The receiver operating characteristic (ROC) curves were created using the ROCR package

on R and the area under curve (AUC) was calculated based on the ROC curve.

For the final tree model, Mean Decrease in Gini [22] were calculated as importance scores

for each variable. The score takes a value of 0 or more, and an explanatory variable with a large

score is considered to make a substantial contribution to the construction of decision trees and

discrimination of drugs.

Categories of the Anatomical Therapeutic Chemical (ATC) classification

system

Information on the ATC categories of the target compounds was obtained from KEGG drug

database (https://www.genome.jp/kegg/drug/drug_ja.html).

AMW of approved drugs

The information on drugs approved during the period from 2010 to 2019 in EU, USA and

Japan was obtained from KEGG drug database. Peptides, nucleic acids and metal-containing

drugs were excluded. Drugs marketed in multiple areas were labeled with the latest year.

Results

Selection of data set and its chemical space

We obtained a total of 652 drugs, including 432 DILI drugs and 220 no-DILI drugs, as target

compounds in this study. Using the Dragon 2D chemical descriptors calculated, the chemical

space of these drugs was compared with that of 12,262 reference compounds, which were ran-

domly selected from PubChem database, to understand whether the target compounds repre-

sent the chemical space of global chemical compounds. To this end, PCA was performed with

the 1,539 descriptors of the 12,914 target and reference compounds, and scattered plots of all
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the combinations of principal component 1 (PC1), PC2 and PC3 are shown in Fig 1. The dis-

tribution of the target compounds well overlapped with that of the reference PubChem com-

pounds. These results suggest that the 652 target drugs belong to the typical chemical space of

known chemical compounds.

Classification tree model for DILI drugs

To investigate chemical properties associated with DILI, we constructed a classification model

using the chemical descriptors as explanatory variables. The target compounds were divided

into three groups, and using these subsets, three decision tree models were constructed with

the CART algorithm with 5-fold cross-validation, and the accuracy, sensitivity, specificity and

BA of the training data and test data were calculated. These steps were repeated 10 times and

the means of the performance values are shown in Fig 2. The models showed high sensitivity

(>0.8) and moderate accuracy (accuracy and BA, >0.6), but low specificity (<0.5).

The classification tree model independently constructed with 5-fold cross-validation using

all the target compounds is shown in Fig 3. The confusion matrix that summarizes the results

of testing the final tree model is shown as Table 1, and the importance values of the decision

tree variables are shown in Table 2. The accuracy, sensitivity, specificity, BA, MCC and

ROC-AUC of the model (Fig 4A) were 0.78, 0.89, 0.59, 0.74, 0.51 and 0.76, respectively.

Although the specificity was relatively low as expected from the imbalanced dataset (i.e. DILI:

no-DILI = 432:220), the model showed moderate discriminating performance.

Fig 1. The PCA plots of the 652 target drugs and the 12,262 PubChem reference compounds. The PCA was performed using the 1,539 Dragon 7 descriptors.

The plots of PC1 vs. PC2 (left), PC1 vs. PC3 (center) and PC2 vs. PC3 (right) are shown. The upper panels are the original views of all the compounds and the

lower panels are the expanded views around the target drugs. Each dot represents a compound (red, target drugs; blue, PubChem compounds).

https://doi.org/10.1371/journal.pone.0253855.g001
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We found that the descriptor AMW, which represents average molecular weight, was the

most important for discriminating DILI drugs from no-DILI drugs since it was used at the first

node and showed the highest importance value (Fig 3, Table 2). The number of drugs whose

AMW values are 7.4 or larger was 340, among which 276 (81%) were DILI drugs (Fig 3, Table 3).

MLOGP, Moriguchi octanol-water partition coefficient [28, 29], was used at the second

node and showed moderate importance (ranked 9th) (Fig 3, Table 2). The number of drugs

whose AMW values are less than 7.4 and MLOGP values are less than -0.454 were 29, among

which 28 (97%) were no-DILI drugs, indicating that MLOGP was important to detect no-DILI

drugs in this model.

Evaluation of AMW as a novel discriminator between DILI drugs and no-

DILI drugs

We found AMW, which is calculated by dividing molecular weight by the number of atoms, as

a useful discriminator for DILI drugs from no-DILI drugs based on the decision tree model.

Fig 2. The performance of the classification models. The accuracy, sensitivity, specificity and BA were calculated from 10 trials of decision tree

analysis with 5-fold cross-validation and are shown as box plots. The red numbers and squares represent the means of 10 trials with each value as black

dots. Train, training set; Test, test set.

https://doi.org/10.1371/journal.pone.0253855.g002
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We thus performed ROC analyses with AMW alone and AUC of 0.68 was obtained (Fig 4B),

suggesting that AMW is a good descriptor for the discrimination. In addition, AMW is easy to

understand and calculate, and should be available in the early stage of drug development. We

therefore evaluated its usefulness hereafter.

Fig 3. The final tree model for the discrimination between DILI drugs and no-DILI drugs. A decision tree model

was constructed, and its accuracy, sensitivity, specificity and BA were calculated. Descriptor abbreviations are: PCR,

ratio of multiple path count over path count; VE2sign_Dz(p), average coefficient of the last eigenvector from Barysz

matrix weighted by polarizability; C-001, CH3R / CH4; MATS5m, Moran autocorrelation of lag 5 weighted by mass.

https://doi.org/10.1371/journal.pone.0253855.g003
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As shown in the contingency table (Table 3), the proportion of DILI drugs in the drugs hav-

ing the AMW value of�7.4 was considerably high (81.2%) while that in the drugs having the

AMW value of<7.4 was 50%. Moreover, among the 652 target drugs, 340 (52%; 276 DILI and

64 no-DILI drugs) have the AMW values of�7.4, and the proportion was increased to 64%

(276 in 432) for DILI drugs only and that of no-DILI drugs only was decreased to 29% (64 in

220) (Table 3). In this study, we grouped drugs with vMost-DILI-concern and vLess-DILI-con-

cern in DILIrank as DILI drugs and we found that the ratio of the numbers of drugs having

the AMW value of�7.4 to those having the AMW value of<7.4 was higher for the drugs with
vMost-DILI-concern than those with vLess-DILI-concern (Table 3). Taken together, AMW

with a threshold of 7.4 enabled us to identify about two-thirds of DILI drugs with 71% specific-

ity and 66% accuracy (276 plus 156 per 652 drugs).

Table 1. Confusion matrix of the final tree mode.

Predicted

DILI no-DILI

Actual DILI 384 48

no-DILI 90 130

https://doi.org/10.1371/journal.pone.0253855.t001

Table 2. The importance values of the descriptors that were used for model construction.

Descriptor name Description� Block� Importance

AMW average molecular weight Constitutional indices 31.628

GATS1m Geary autocorrelation of lag 1 weighted by mass 2D autocorrelations 31.390

C-001 CH3R / CH4 Atom-centred fragments 30.108

SpPosA_B(m) normalized spectral positive sum from Burden matrix weighted by mass 2D matrix-based descriptors 28.129

H% percentage of H atoms Constitutional indices 27.963

Mp mean atomic polarizability (scaled on Carbon atom) Constitutional indices 27.392

F09[O-O] Frequency of O—O at topological distance 9 2D Atom Pairs 20.330

P_VSA_v_3 P_VSA-like on van der Waals volume, bin 3 P_VSA-like descriptor 19.919

MLOGP Moriguchi octanol-water partition coeff. (logP) Molecular properties 13.857

P_VSA_ppp_L P_VSA-like on potential pharmacophore points, L–lipophilic P_VSA-like descriptor 13.600

VE2sign_Dz(p) average coefficient of the last eigenvector from Barysz matrix weighted by polarizability 2D matrix-based descriptors 12.521

BAC Balaban centric index Topological indices 12.151

SsssN Sum of sssN E-states Atom-type E-state indices 11.462

P_VSA_p_3 P_VSA-like on polarizability, bin 3 P_VSA-like descriptor 11.460

PCR ratio of multiple path count over path count Walk and path counts 9.423

PCD difference between multiple path count and path count Walk and path counts 8.866

SpDiam_AEA(ed) spectral diameter from augmented edge adjacency mat. weighted by edge degree Edge adjacency indices 8.515

MATS5m Moran autocorrelation of lag 5 weighted by mass 2D autocorrelations 7.221

SsOH Sum of sOH E-states Atom-type E-state indices 6.921

NssCH2 Number of atoms of type ssCH2 Atom-type E-state indices 6.739

X1MulPer multiplicative perturbation connectivity index Connectivity indices 6.513

X1Per perturbation connectivity index Connectivity indices 6.513

VE1sign_B(i) coefficient sum of the last eigenvector from Burden matrix weighted by ionization potential 2D matrix-based descriptors 6.429

CIC2 Complementary Information Content index (neighborhood symmetry of 2-order) Information indices 6.238

MATS7i Moran autocorrelation of lag 7 weighted by ionization potential 2D autocorrelations 6.151

nCp number of terminal primary C(sp3) Functional group counts 6.066

�The descriptions of the descriptors and the names of blocks (group of descriptors) were obtained from the Dragon 7 manual.

https://doi.org/10.1371/journal.pone.0253855.t002
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Therapeutic category is generally available at the early stages of drug development. We thus

investigated the applicability of the DILI/no-DILI discrimination using the combination of

AMW and such information. To this end, the test drugs were sub-grouped by the first level

category of the ATC classification system, which represents main anatomical/pharmacological

groups (Table 4), and discrimination using “AMW� 7.4” as a criterion was carried out. The

number of drugs belonging to each ATC first level category and the calculated accuracy, sensi-

tivity, specificity and BA are shown in Table 4. In categories B (blood and blood forming

organs), J (antiinfectives for systemic use), M (musculo-skeletal system) and S (sensory

organs), high precision discrimination was observed with all the four indices being over 0.7.

Fig 4. ROC analyses. ROC-AUCs were calculated by discriminating between DILI drugs and no-DILI drugs using the final tree model (A) and AMW

alone as an index (B) as described in Materials and Methods.

https://doi.org/10.1371/journal.pone.0253855.g004

Table 3. Contingency table between DILI/no-DILI and AMW.

AMW Total

�7.4 <7.4

Most� Count 120 55 175

% within AMW 35.3% 17.6% 26.8%

Less� Count 156 101 257

% within AMW 45.9% 32.4% 39.4%

DILI Count 276 156 432

% within AMW 81.2% 50.0% 66.3%

no-DILI Count 64 156 220

% within AMW 18.8% 50.0% 33.7%

Total Count 340 312 652

% within AMW 100.0% 100.0% 100.0%

�Most and Less represent vMost-DILI-concern and vLess-DILI-concern drugs in DILIrank, respectively.

https://doi.org/10.1371/journal.pone.0253855.t003
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On the other hand, in categories C (cardiovascular system), G (genito urinary system and sex

hormones) and R (respiratory system), either sensitivity or specificity was below 50% and the

accuracy was 60% or less. The lowest accuracy (accuracy, 35%; BA, 42%) was observed in cate-

gory V (various).

Finally, to evaluate the usefulness of AMW as a safety screening tool in drug development,

we investigated the AMW values of newly approved drugs to understand the trend of the val-

ues (Fig 5). Among the drugs investigated (306 drugs), 179 (58%) have the AMW values of

�7.4 (S3 Table), and the mean AMW values remained at around 7.9 during the last 10 years.

With the exception of the year of 2013, the ranges of the AMW values were within that of the

652 target drugs when the outliers were excluded. It should be noted that the mean AMW

value of the withdrawn drugs (53 drugs among the 432 DILI drugs) was much higher than the

mean value of DILI drugs.

Discussion

To identify chemical properties useful for discrimination between DILI drugs and no-DILI

drugs, we constructed a decision tree model using the chemical descriptors as explanatory

variables. The first node rule of the decision tree constructed was “DILI-positive if AMW is

�7.4”, and we found that 64% of the DILI drugs were correctly classified by this criterion only

and its AUC-ROC was 0.68. Moreover, only 29% of no-DILI drugs were found to have the

AMW values of�7.4. In fact, the mean AMW values of DILI drugs and no-DILI drugs were

7.99 and 7.49, respectively, which were significantly different, and the mean AMW value of

withdrawn drugs (8.50) was much higher than that of DILI drugs.

Among the descriptors used in this study, AMW (i.e. average molecular weight, which is

calculated by dividing molecular weight by the number of atoms) is one of the simple descrip-

tors, since it is easily calculated from the chemical formula of compounds without special soft-

ware and knowledge on physicochemistry and computation. More importantly, AMW is

available at the very early stage of drug development before chemical synthesis once target

structures were determined. These facts suggest that AMW is a very simple and useful

Table 4. Accuracy of discrimination using AMW by ATC first level categories.

ATC first level Accuracy Sensitivity Specificity BA Number of drugs

DILI no-DILI

A. Alimentary tract and metabolism 75% 65% 89% 77% 49 39

B. Blood and blood forming organs 85% 89% 82% 85% 9 12

C. Cardiovascular system 54% 42% 79% 60% 62 31

D. Dermatologicals 72% 60% 100% 80% 26 11

G. Genito-urinary system and sex hormones 48% 32% 71% 52% 21 16

H. Systemic hormonal preparations, excluding sex hormones and insulins 55% 50% 60% 55% 6 5

J. Antiinfectives for systemic use 80% 80% 75% 78% 80 8

L. Antineoplastic and immunomodulating agents 68% 71% 50% 61% 53 10

M. Musculo-skeletal system 86% 90% 77% 83% 37 13

N. Nervous system 65% 52% 87% 69% 79 46

P. Antiparasitic products, insecticides and repellents 69% 69% 67% 68% 13 3

R. Respiratory system 60% 42% 70% 56% 14 29

S. Sensory organs 74% 75% 72% 74% 24 22

V. Various 35% 50% 33% 42% 2 19

Total 67% 63% 75% 69% 303 141

https://doi.org/10.1371/journal.pone.0253855.t004
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descriptor for discrimination between DILI drugs and no-DILI drugs and is applicable to

medicinal chemistry to reduce hepatotoxicity potential during the drug development process.

The value of AMW becomes larger as a molecule contains more heavy atoms, such as halo-

gens, oxygen, phosphorus and sulfur atoms. In contrast, a saturated molecule with a large

number of hydrogen atoms has a smaller value. While many small-molecule drugs, such as

those used in this study, are usually composed of hydrocarbon structures modified with nitro-

gen, oxygen, phosphorus, sulfur and halogen atoms, the presence of halogens, such as chlorine

and iodine, especially contributes to a significant increase in AMW values. Since the inclusion

of these atoms is often associated with toxic alert structures and/or reactive metabolite forma-

tion [30], large values of AMW may reflect the reactivity of drugs with biomolecule.

Therapeutic category information is generally available at the very early stages of drug

development, and thus such information might be used as different types of descriptors from

conventional descriptors, such as Dragon descriptors used in this study. With ATC classifica-

tion as target disease information, the ATC first level categories, in combination with AMW,

were used for discrimination. We found that the accuracy of discrimination by AMW was

dependent on the categories. The accuracy was high for categories B, J, M and S while it was

low for the others. Since drugs with similar chemical structures are often included in a certain

Fig 5. The trend of AMW of newly approved drugs. The AMW values of newly approved drugs for each year in EU, US and Japan were calculated.

The numbers of drugs included are 18, 26, 29, 15, 38, 31, 30, 29, 40 and 50 in the year of 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 and 2019,

respectively. The list of drugs is shown in S3 Table. The values of the 652 drugs are also shown as references. The information of withdrawn drugs (WD)

was obtained from DILIrank.

https://doi.org/10.1371/journal.pone.0253855.g005
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ATC first level category, the results suggest that the discrimination accuracy with AMW is

influenced by total and/or partial chemical structures or other factors of drugs. In addition,

these results also suggest that the applicability of AMW for DILI discrimination is limited to

drugs with specific but not yet identified chemical structures and/or pharmacological activity.

Identification of these properties in future studies will corroborate and further increase the

usefulness of AMW in the discrimination of DILI drugs.

A survey of the AMW values of newly approved drugs in EU, USA and Japan over the last

10 years (2010 to 2019) has shown that the average values have remained around 7.9 from

2013 to 2019, implying that a large number of the approved drugs have DILI risk (i.e.

AMW� 7.4) based on our present findings. Given that severe hepatotoxicity is reported for

several drugs on the market, we believe that the criterion of “AMW� 7.4” is also valuable to

evaluate the hepatotoxicity potential of drugs on the market.

In the final decision tree model, the descriptor MLOGP was used at the second node.

MLOGP is a calculated logP value by Moriguchi’s method and is reported to well explain

experimentally determined logP values of more than a thousand compounds [28, 29]. The

importance of the logP-related value for the discrimination of DILI drugs agrees with the pre-

vious findings that lipophilicity is a key characteristic of DILI drugs [13, 18].

As shown in Table 2, the importance values of AMW and GATS1m were very similar. Not

only AMW but also GATS1m are considered to be descriptors related to DILI risk. In a very

recent report using Dragon descriptors by Ancuceanu et al., GATS1m was frequently used in

17 feature selection algorithms based on the DILIrank dataset and its higher values are associ-

ated with the lack of hepatotoxicity [31]. In their study, SpPosA_B(m), H%, Mp, MLOGP and

PCR were also reported as the descriptors associated with hepatotoxicity, some of which were

used in our final decision tree model as well. However, AMW was not identified in their

report. Although the exact reason is unknown, it may be due to a subtle difference in the set of

drugs used in their and our studies.

There are several reports on in silico DILI prediction models using LTKB [31–34]. The

accuracy of the models using a Decision Forest algorithm reported by Tong’s group at FDA

were 69.7% and 72.9% [32, 33]. The ensemble voting model with various machine learning

methods and several molecular fingerprints showed the accuracy of 77.25% (5-fold cross-vali-

dation) and 81.67% for the test set [33]. A Meta-model built with a variety of machine learning

algorithms using Dragon descriptors showed similar accuracy (BA was 74.6%) [31]. In this

study, the accuracy of the decision tree model with 5-fold cross-validation was 78%, and more

importantly the discrimination with AMW only showed 66% accuracy, indicating AMW as a

very useful single predictor for DILI drugs, although there are some limitations of the utility of

AMW. First, AMW was identified from the limited number of drugs (652 drugs in the DILIr-

ank dataset of LTKB) and we have not performed validation with an external dataset because

no such a dataset is publicly available. Second, the discrimination accuracy (66%), sensitivity

(64%) and specificity (71%) are not high enough to use AMW alone for drug screening and it

may need to be used in combination with other descriptors. Finally, the applicability domain

of AMW has not been identified. Based on the results obtained by the analyses using the ATC

category, AMW is suggested to be applicable to only some types of drugs since the accuracy of

the classification with AMW largely depended on the category.

In conclusion, using decision tree analyses with chemical descriptors, we obtained useful

information of physicochemical properties of drugs for DILI discrimination. In particular,

AMW has been found to be a useful chemical descriptor for DILI discrimination. Since calcu-

lation of AMW does not require chemical synthesis of candidate compounds, the consider-

ation of AMW will be very valuable for DILI risk evaluation at the very early stage of drug

discovery. Moreover, we found that the utilization of the disease area information (i.e. ATC
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classification information) increased the accuracy of DILI prediction using AMW. Taken

together, the present findings provide useful information that is applicable to the safety assess-

ment of drug candidates at the early stage of drug development.
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