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In a seminal paper published in 1951, Taylor
studied the interactions between a viscous fluid
and an immersed flat sheet which is subjected to
a travelling wave of transversal displacement. The
net reaction of the fluid over the sheet turned
out to be a force in the direction of the wave
phase-speed. This effect is a key mechanism for
the swimming of micro-organisms in viscous fluids.
Here, we study the interaction between a viscous
fluid and a special class of nonlinear morphing
shells. We consider pre-stressed shells showing a one-
dimensional set of neutrally stable equilibria with
almost cylindrical configurations. Their shape can
be effectively controlled through embedded active
materials, generating a large-amplitude shape-wave
associated with precession of the axis of maximal
curvature. We show that this shape-wave constitutes
the rotational analogue of a Taylor’s sheet, where
the translational swimming velocity is replaced by an
angular velocity. Despite the net force acting on the
shell vanishes, the resultant torque does not. A similar
mechanism can be used to manoeuver in viscous
fluids.
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1. Introduction
The problem of locomotion at low Reynolds numbers has been initiated by the groundbreaking
paper of Taylor [1], which has had an enormous impact and continue to motivate a substantial
amount of research (e.g. [2] and references cited therein, and the more than 1000 references that
have cited this review paper since its publication 10 years ago).

The model proposed by Taylor is one of the simplest (and yet enlightening) examples of
swimming through low Reynolds number flows that can be treated analytically. In [1], he
considered the self-propulsion mechanism of a two-dimensional sheet, immersed in a viscous
fluid, on which waves of transversal displacement propagate. Assuming these waves have small
amplitude, a perturbative expansion of the boundary conditions can be used to compute the
swimming speed of the oscillating sheet. In more detail, if an unbounded fluid is considered,
and the undeformed sheet coincides with the plane y = 0, the travelling wave propagating in the
x-direction will cause a vertical displacement

y0 = b sin(k(x − vt)), (1.1)

where b is the amplitude, k the wavenumber and v is the wave phase speed. In a reference frame
moving with the sheet, the boundary condition on the velocity of the fluid in contact with the
sheet [2] will be

u(x, y0(x, t)) = −bkv cos(k(x − vt))ey, (1.2)

while it is expected that infinitely far from the sheet a uniform and steady flow will be observed

lim
y→∞u(x, y) = −Uex, (1.3)

where U is the swimming speed of the sheet. With this choice of frame, the swimming
speed appears as an unknown boundary condition for the problem. Given the assumption
of small amplitude, Taylor shows that expanding the boundary condition (1.2) in powers of
the dimensionless parameter bk, and knowing the form of the general solution for the two-
dimensional Stokes flow, one can solve the problem approximating U with an increasing order of
accuracy. The problem, as posed, is therefore closed even if the unknown appears as a boundary
condition. Up to second-order terms in b k, this velocity is

U = − 1
2 v(bk)2. (1.4)

Taylor’s analysis can be used to show that, when deformations are small, travelling waves of
bending (respectively, stretching) cause translation in the direction opposite (respectively, the
same direction) to the waves, see [3]. This paradigm has been used innumerable times, for
example in [4], which is one of the most popular attempts at reproducing the mechanisms of
Taylor sheet in micrometre-sized artificial systems. In spite of this, there are still subtleties to be
clarified when the amplitude of the deformations is large, including the inversion of the sign of
the velocity, the possible trajectories and the characterization of optimal beats, e.g. [5,6].

Several variants of the concept of Taylor’s swimming sheet have been proposed in the
literature. Lauga and co-workers extended Taylor’s series expansion of the solution to large
amplitudes waves [7] and considered the case of sheet immersed in a viscolestic fluid [8]. Katz
[9] studied the influence of the confinement on the resulting swimming speed, showing that in
specific configurations the confinement can improve the swimming efficiency. The case of bending
waves in cylinders was studied by Taylor himself [10] and more recently in [11], while [12] deals
with an helicoidal geometry. Dasgupta et al. [13] report interesting experimental results on the
case of a cylinder with a rotating wave of radius modulation in viscous and visco-elastic fluids.

In this paper, we propose a new rotational analogue of Taylor’s sheet. Our analysis is
motivated by the recent, and growing interest in the mechanics of shape-shifting structures
[14–19]. We study a particular class of prestressed thin shells [18], and ask ourselves the question
of what happens when these solid shells are immersed in a viscous fluid. As detailed later,
these structures (which in the present case will be of circular or elliptical shape) attain, when
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actuated, a periodic pattern of shape-change, which is characterized by an almost constant
curvature. Intuitively, the shell shape is almost cylindrical; its axis of maximal curvature performs
a precession over time and the stored elastic energy is almost independent of its orientation.
The shell is neutrally stable and its shape can be controlled by a weak embedded actuation [18].
The resulting deformation is the same as the one due to the propagation of a circular wave of
displacement, transversal to the plane of the flat configuration of the shell. Thus, the shell can be
seen as a rotational version of Taylor’s swimming sheet. The goal of this paper is to address the
question whether this device can be used as an artificial swimmer in a viscous fluid. In previous
works on helical and cylindrical geometries, see [11,12], the use of symmetries and the fact that the
structure is infinitely extended in one direction, allowed the authors for the effective reduction of
the problem dimension. Instead, in the present case, the structure is finite, the shell deformation
breaks the axial-symmetry, and we are forced to study a fully three-dimensional problem. We
consider a simplified model for the shell. Assuming that the shell is inextensible and with uniform
curvature, we retain a single degree of freedom, corresponding to the orientation of the direction
of maximal curvature. In this framework, solving elementary Stokes problems with an adaptive
finite element technique, we calculate the hydrodynamic coefficients modelling the interaction
between the structure and the fluid. Hence, we solve the resulting fluid–structure interaction
problem when either the structural shape or the actuating forces are prescribed.

In the following, §2 presents the mechanics of the neutrally stable shell, along with the relevant
notation and the velocity fields generated under actuation. The swimming problem in a Stokes
flow is formulated in §3, while §4 reports the numerical results. Conclusions are drawn in §5.

2. Neutrally stable cylindrical shells
Several recent works have shown that shell structures can exhibit a particularly rich behaviour
thanks to the interplay between geometrical nonlinearities and pre-stresses. A basic example
is an initially flat thin isotropic bimetallic disc D := {X2 + Y2 < R2} of radius R subjected to a
temperature loading. Because of the different expansion coefficients of the two layers composing
the disc, a uniform temperature loading of the disc induces a uniform isotropic inelastic curvature,
say k̄ = c̄ I, where I is the 2 × 2 identity tensor. As shown by [15,16,19,20], for sufficiently
large c̄, the disc can be modelled as an inextensible but flexible elastic surface, whose shape is
characterized by an almost uniform curvature k. The inextensibility condition implies that the
Gaussian curvature det(k) of the disc at the equilibrium remains equal to the initial Gaussian
curvature, which is zero for an initially flat disc. Hence, the equilibrium shape should verify
the condition det(k) = 0. Under the uniform curvature assumption, this implies a cylindrical
equilibrium shape with a curvature

k(c, ϕ) = c eS(ϕ) ⊗ eS(ϕ), (2.1)

where eS(ϕ) = cos ϕ eX + sin ϕ eY is the axis of curvature, as sketched in figure 1, and the symbol
⊗ means the tensor product (u ⊗ v) · w = (v · w) u. Here and henceforth, (O, eX, eY, eZ) will denote
an ortho-normal fixed reference frame, with eZ orthogonal to the initial disc mid-plane D. For a
perfectly isotropic disc, the elastic energy at the equilibrium is independent of the orientation ϕ,
and reads as [18,19]

E(c, ϕ) = πR2E h3

12(1 − ν2)

(
c2

2
+ (1 + ν)(c̄2 − c c̄)

)
, (2.2)

where h is the disc thickness and (E, ν) are its Young modulus and Poisson ratio. The stable
equilibrium shapes of the disc are the minimizers of (2.2). For a given inelastic curvature c̄,
there is a continuous manifold of neutrally stable equilibria of curvature c = (1 + ν)c̄, characterized
by the same energy, independently of ϕ. Such a structure may be interesting for shape-control
applications. Indeed, within the neutrally stable manifold, the shell can be deformed with
vanishing actuation forces, while preserving a non-negligible stiffness for different deformation
modes. This concept has been exploited in [18], by showing how to control a full precession of
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Figure 1. Shape-wave in the piezoelectric actuated neutrally stable shell. Left: experiments from [18]. Right: Kinematics and
notation for the cylindrical shell used in this paper, whereϕ gives the rotation of the curvature axis.

the axis of curvature of the disc with a weak multi-parameter piezoelectric actuation (figure 1).
However, real structures are not perfectly isotropic. As shown in [18], slightly anisotropic discs are
bistable and the actuation effort required to accomplish the full precession depends on a measure
of their anisotropy.

The shape-change associated with the neutrally stable mode, i.e. the precession of the
curvature axis, gives rise to a travelling wave where the velocity of each point of the disc is
almost transversal to the mid-plane. This motion can be seen as the rotational analogue of the
motion of Taylor’s swimming sheet (1.1). To study the interaction of this structural motion with a
surrounding fluid, we need a complete description of its kinematics, which is given below.

Let us denote by

X = XeX + YeY such that X2 + Y2 ≤ R2, (2.3)

the material points of the shell mid-plane in its flat reference configuration. For a curvature in the
form (2.1), their current placement reads as

x = χ (X; c, ϕ) = X +
(

sin(c S(X, ϕ))
c

− S(X, ϕ)
)

eS(ϕ) +
(

1 − cos(c S(X, ϕ))
c

)
eZ, (2.4)

where eS(ϕ) and eT(ϕ) are a pair of rotating orthonormal axes corresponding to the directions of
maximal and vanishing curvatures, respectively, and

S(X, ϕ) = X · eS(ϕ) = X cos ϕ + Y sin ϕ

and T(X, ϕ) = X · eT(ϕ) = −X sin ϕ + Y cos ϕ,

}
(2.5)

are the coordinates of a material point X along these rotating axes, see figure 1 (right).
For a generic motion x = x̂(X, t) = χ (X; c(t), ϕ(t)), the Lagrangian description of the velocity field

is given by

Us(X, t) = ∂ x̂(X, t)
∂t

= ∂χ

∂c

∣∣∣∣
t

ċ(t) + ∂χ

∂ϕ

∣∣∣∣
t
ϕ̇(t), (2.6)

where

∂χ

∂c
= c S cos(c S) − sin(c S)

c2 eS + c S sin(c S) + cos(c S) − 1
c2 eZ = S2

2
eZ − c S3

3
eS + o(c) (2.7)

and
∂χ

∂ϕ
= T (cos(c S) − 1) eS +

(
sin(c S)

c
− S

)
eT + T sin(c S) eZ = c S T eZ + o(c), (2.8)
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Figure 2. Velocitymodes of the disc associatedwith variations of the curvature amplitude (a) and the curvature axis orientation
(b), see equations (2.6)–(2.8).

are the velocity modes associated with variations of the curvature amplitude and the curvature
axis orientation, respectively. Here o(c) means a quantity vanishing faster than c as c → 0. These
velocity modes are sketched in figure 2.

In the following, we will study the fluid problem forced by these velocity fields on the moving
surface of the disc. For the sake of simplicity, we will focus on the case where the curvature varies
as in (2.1) with a constant c, which corresponds to the motion of a perfectly isotropic disc. The
case of weakly anisotropic structures would introduce only minor perturbations to this motion,
that we will ignore.

In the following, we will model the structure as a thick shell occupying in its reference
configuration the three-dimensional domain Ωs ≡D × [−h/2, h/2]. We will denote by Ω ′

s its
deformed configuration under the action of the mapping (2.4). We will extend the mapping χ

defined on the midplane D to Ωs by using a nonlinear shell kinematics.

3. Stokes flow and forces from the fluid to the structure

(a) Problem formulation
We study the interaction between the shell and a viscous fluid. It is assumed that the Reynolds
number is low enough (Re � 1), and that the actuation is slow enough, such that the equations of
motion for the fluid flow simplify to the (steady) Stokes equations. We neglect also the structural
inertial effects and assume that the shell moves quasi-statically. As usual in fluid–structure
problems, we adopt a Lagrangian description for the structure and a Eulerian description for the
fluid. To correctly model the large displacement of the structure during the motion, we consider
a geometrically nonlinear model.

We start by considering the case (i) where the shell deformation is assigned. In this framework,
we compute the forces exerted by the fluid on the shell for several actuation conditions. This is
a preliminary step to assess the potential behaviour of the neutrally stable shell with embedded
actuation as a pump or a swimmer. Hence, we generalize these results to the case (§§4cii) of a
coupled fluid–structure interaction. For a perfectly neutrally stable shell, we are able to solve a
minimal version of the coupled problem giving a relationship between prescribed actuation forces
and the resulting rotation speed.

(i) Swimming problem at imposed precession speed

The computational domain for the fluid is taken as Ω ′
f = Ω \ Ω ′

s, where Ω is a closed box
containing the fluid (figure 3). The case of an unbounded flow is approached for |Ω| → ∞. Hence,
to determine the fluid flow for a given structural motion, we solve the Stokes equations for the
fluid velocity u and the pressure p imposing the structural velocity field on the boundary between
the fluid and the structure for a given shape Ω ′

s. They read as

∇p + 
u = 0, ∇ · u = 0 in Ω ′
f , (3.1)
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W W
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X = c(X, c(t), j(t))

D D¢

Figure 3. Structural (Ωs,Ω ′
s ) and fluid (Ωf ,Ω ′

f ) domains in the reference and current configurations.

with the boundary conditions
u = us(x, t) on ∂Ω ′

f ∩ ∂Ω ′
s (3.2)

and
u = 0 on ∂Ω ′

f ∩ ∂Ω . (3.3)

The velocity field imposed on the boundary is the Eulerian version of the velocity field of the
shell given in (2.6), superposed with a rigid motion:

us(x, t) = ṗ + α̇ × x + ∂χ

∂ϕ

∣∣∣∣
X=x̂−1(x,t)

ϕ̇, (3.4)

where we assumed ċ = 0. Here, ṗ is the velocity of the shell corresponding to a rigid translation
of the centre of the disc and α̇ the axial vector associated with a rigid rotation. For c R < π , the
inverse map x̂−1(x, t) can be calculated explicity. For ϕ = 0, it reads as

S = sign(x)
arccos(1 − c z)

c
, T = y, Z = 0,

and the Eulerian velocity field is

∂χ

∂ϕ

∣∣∣∣
x̂−1(x,t)

= sign(x)

(√
(2 − cz)cz − arccos(1 − cz)

c
eT + y

√
(2 − cz)cz eZ

)
− c zy eS. (3.5)

The generic case ϕ �= 0 can be obtained by a simple rotation around the z-axis.
Given the solution of the Stokes problem for an imposed velocity field on the boundary, one

can evaluate the force and moment resultant of the stresses that the fluid exerts on the structure
as follows:

F =
∫
∂Ω ′

s

σn ds and M =
∫

∂Ω ′
s

x × (σ n) ds, (3.6)

where σ = p I + 2μ (∇u + ∇uT) is the Cauchy stress in the fluid, n is the unit normal pointing
inside the fluid domain, ds denotes the surface measure and x is the position vector of the generic
point in the current configuration. We take the centre of disc o as the origin and as the pole for
the moment M. Because of the linearity of the Stokes equations and the linearity of the velocity
field (3.4) imposed on the boundary with respect to (ṗ, α̇, ϕ̇), also (F, M) will depend linearly on
(ṗ, α̇, ϕ̇). Hence, we can write(

F
M

)
= K

(
ṗ
α̇

)
+
(

kpϕ

kαϕ

)
ϕ̇ and K :=

(
Kpp Kpα

KT
pα Kαα

)
, (3.7)

where K is a symmetric negative-definite 6 × 6 matrix, because of the dissipative nature of the
Stokes equations. The components of the columns of K can be computed by solving six problems
where only one of the components of ṗ or α̇ is set to one, while the other are set to zero, and
evaluating the corresponding force and moment resultants with (3.6). Similarly, the two 3 × 1
vectors kpϕ and kαϕ are computed by solving the Stokes problem with ṗ = α̇ = 0 and ϕ̇ = 1.
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If the body is completely unconstrained, one can deduce the instantaneous free swimming
velocity of the shell by imposing the quasi-static equilibrium conditions F = 0, M = 0, giving

(
ṗ
α̇

)
= −K−1

(
kpϕ

kαϕ

)
ϕ̇. (3.8)

Assuming that the resultants on the body vanish corresponds to the zero-thrust velocity-
generating function of the swimmer according to Lighthill [21]. Here, we study the relevant
particular case where the shell rigid motion is the composition of a translation along the Z-axis,
controlled by ṗ, and a rotation around the same axis, controlled by α̇

ṗ = ṗ eZ and α̇ = α̇ eZ. (3.9)

The constraints are supposed to be perfect so that

F · eZ = 0 and M · eZ = 0. (3.10)

Using (3.7), (3.9) and (3.10), we obtain the equations for the constrained swimming as

(
kpp kpα

kpα kαα

)(
ṗ
α̇

)
+
(

kpϕ

kαϕ

)
ϕ̇ =

(
0
0

)
, (3.11)

where

kpp = KppeZ · eZ, kpα = KpαeZ · eZ, kαα = KααeZ · eZ

and kpϕ = kpϕ · eZ, kαϕ = kαϕ · eZ.

}
(3.12)

The coupling coefficient of the resistance matrix kpα relates the coupling between the rigid body
translation and rotation of the structure, and is associated with the chirality of the structural
shape [2]. From a dimensional analysis of the Stokes problem, we can deduce that the relevant
coefficients can be written as follows:

kpp = μR k̂pp(c, ϕ), kpα = μR2 k̂pα(c, ϕ), kαα = μR3 k̂αα(c, ϕ)

and kpϕ = μR2 k̂pϕ(c, ϕ), kαϕ = μR3 k̂αϕ(c, ϕ),

⎫⎬
⎭ (3.13)

where k̂ij are dimensionless scalar functions of the two shape parameters (c, ϕ) of the disc.

(ii) Swimming problem at imposed actuation forces

In §2, we presented an inextensible uniform-curvature structural model where the shell is
described by two degrees of freedom: the curvature amplitude c and direction ϕ. For an almost
neutrally stable shell, the stiffness with respect to c is much higher than the one with respect to ϕ.
As far as the inextensible shell model is pertinent, this stiffness ratio is vanishing independently
of the shell thickness and Young modulus, see [17,18]. Hence, we will study the coupled fluid–
structure interaction under the further approximation that c is constant, and ϕ is the only
structural degree of freedom left to describe the shell deformation.

In this framework, the shell equilibrium equation is written as

kpϕ ṗ + kαϕα̇ + kϕϕϕ̇ + ∂E(c, ϕ)
∂ϕ

= M̄, (3.14)

where M̄ is a ‘twisting’ moment modelling the effect of the embedded actuation, see [18], and
kϕϕ is the drag on the precession motion. This last coefficient can be computed by evaluating the
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tractions σn for the Stokes problem with ṗ = α̇ = 0 and ϕ̇ = 1 and projecting them on the velocity
field (2.8), i.e.

kϕϕ =
∫
∂Ω ′

s

σn · ∂χ

∂ϕ

∣∣∣∣
x̂−1(x,t)

ds. (3.15)

The system obtained coupling (3.14) with (3.11), is a minimal version of the coupled fluid–
structure problem at imposed actuation forces. Its solution allows us to determine the swimming
speeds ṗ and α̇ as a function of the applied moment M̄. Remark that for a perfect neutrally stable
shell the elastic force ∂E(c, ϕ)/∂ϕ vanishes, as the elastic energy E(c, ϕ) in (2.2) does not depend on
the curvature direction ϕ. This fact will be exploited in §4cii.

Equation (3.14) can be extended to account for further structural deformation modes (e.g. c),
and inertial effects. However, this is out of the scope of the present work. The rest of the paper
is devoted to determine the coefficients in (3.13) and understand the key properties of the flow
generated by the shell deformation. This will allows us to deduce the properties of the neutrally
stable shells as swimmers, when driving the precession of the curvature axis with an embedded
actuation.

(b) Numerical methods
To obtain the forces and torques acting on the immersed shell, we follow the procedure reported
below:

(i) Generate the mesh for the holed fluid domain, Ω ′
f = Ω \ Ω ′

s, where Ω ′
s is the deformed

configuration of the shell, see figure 3-left.
(ii) Solve the outer Stokes problem on the deformed domain Ω ′

f forced by the Eulerian
velocity field (3.5) on the solid boundary. We use an adaptive finite-element solver, based
on a a posteriori error indicator.

(iii) Integrate, using (3.6), the stresses on the boundary ∂Ω ′
s ∩ ∂Ω ′

f to obtain the resultant force
and moment exerted by the fluid on the shell.

The holed domain Ω ′
f is discretized with tetrahedral elements using the mesh generator gmsh

[22]. The Stokes problem is discretized and solved with standard finite-elements techniques,
implemented through the FEniCS [23] framework in python language. Using a solid domain
with finite thickness allows us to represent different values of the stresses on the top and bottom
shell surfaces without resorting to more involved numerical methods, such as Discontinuous
Galërkin for the finite-element approximation. We adopt a Taylor–Hood discretization of the
displacement and pressure field on piecewise quadratic and piecewise linear Lagrange finite
elements, respectively. Hence, we use iterative solvers and pre-conditioners provided by PETSc

[24] to solve the underlying saddle problem on multiple processors. Iterative mesh adaptation is
performed using a standard a posteriori error estimator for the Stokes problem [25].

The simulation is performed on a cylindrical box Ω = {|Z| < H, (X2 + Y2) < L2}. The size of the
mesh and the size of the bounding box Ω are set to correctly reproduce the results of analytical
solutions, in special cases in which such solutions are available. The influence of the size of the
box is shown in figure 4a, which reports the drag coefficients kpp(c) and kαα(c) for the case of a
flat disc c = 0. The numerical results converge to the analytic estimates for unbounded domains,
respectively k̂pp(c) = −16 and k̂αα(c) = −32/3, see [26,27]. The results of figure 4 are obtained on a
cylindrical box of eight H = 100 R.

Figure 4b shows the percentage incremental error with respect to the total number of finite-
element cells. In the numerical simulations, we use an adaptive mesh refinement based on the
a posteriori error estimate suggested in [25]. Once the total error is summed over all the cells, only
the ones having percentage error higher than a fixed fraction are refined using the method of
[28]. This process is iterated until the evaluation of the forces and moments on the shell converge
within a 0.5% variation with respect to the previous step.
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Figure 4. Numerical convergence of the hydrodynamic coefficients in (3.13) for a circular shell. (a) Convergence with respect to
the size L of the bounding boxΩ ; k̂pp(c = 0) and kαα (c = 0) have been scaled with respect to their analytical values, while
k̂αϕ is scaled with respect to its numerical value when L= 200R. (b) Convergence with respect to the number of FE cells for
L= 100 R.

Overall, considering the errors due the discretization and the finite size of the box, we can
safely assume that the results produced in the rest of this paper are accurate within an error
margin of 1%.

4. Results
This section presents the results of the numerical simulations, performed to calculate the
hydrodynamic coefficients in equation (3.11). Both the cases of swimming at imposed speed and
at imposed actuation are considered. Hence, we rationalize the key features of the flow generated
by the shell deformation. We will consider first the case of a circular shell. In the last subsection,
we will present the results for the elliptic case.

(a) Hydrodynamics coefficients for a circular shell
We solve numerically three Stokes problems defined by the following velocity fields on the fluid–
structure interface:

(i) Rigid body translation in the Z-axis direction: ṗ = 1, α̇ = ϕ̇ = 0 to compute kpp and kpα ;
(ii) Rigid body rotation around the Z-axis: α̇ = 1, ṗ = ϕ̇ = 0 to compute kαα ;

(iii) Precession of the curvature axis: ϕ̇ = 1, ṗ = α̇ = 0 to compute kpϕ , kαϕ and kϕϕ .

The hydrodynamics coefficients (3.13) are computed by evaluating the associated force and
moment resultants as in (3.6). These coefficients generally depend on the amplitude, c, and
orientation, ϕ, of the shell curvature. In the case of a shell with a circular flat reference
configuration, the symmetries of both the geometry and the loading imply the following
simplifications:

— All the hydrodynamics coefficients are independent of ϕ. Without loss of generality, one
can set ϕ = 0. This is tantamount to choose the reference frame {O, eS, eT, eZ} in (3.11).

— The coupling coefficient kpα(c) vanishes for any value of c. This coefficient, being the
torque resultant for an imposed rigid translation ṗ eZ, vanishes because the shell shape
and the load are invariant under reflections with respect to eT–eZ and eS–eZ planes.

— The pumping force resultant kpϕ(c) vanishes for any curvature c. This is due to
the symmetries of the shell shape and the following properties of the velocity field
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Figure 5. Coefficients of hydrodynamic resistance (3.13) as functions of the curvature c of a circular shell; k̂ϕϕ = μR3kϕϕ is the
dimensionless form of the drag (3.15).

(2.6): US(S, T) = US(−S, T) = −US(S, −T), UT(S, T) = −UT(−S, T) = UT(S, −T), UZ(S, T) =
−UZ(−S, T) = −UZ(S, −T), where Ui = ∂ϕχ · ei.

Figure 5 reports the dimensionless version of the hydrodynamics coefficients k̂pp(c), k̂αα(c),
k̂αϕ(c) and k̂ϕϕ(c) as a function of the dimensionless curvature c R. These plots are universal and
independent of any physical parameter. The values reported here are computed on domains
sufficiently large to neglect the effect of the bounding box Ω , L = 200R in figure 4.

The value of kpϕ(c), not reported in figure 5, turns out to be zero at the numerical accuracy,
as anticipated above. A simple intuitive justification is the following: the precession of the axis
of curvature causes (mainly) different sectors of the disc to move upwards or downwards in the
direction that is perpendicular to the plane of the flat disc. Due to the geometry of the shell, the
area of the sectors of the disc that move up or down is identical and therefore no net momentum
flux is generated, and thus the integral of stresses over the shell should be zero. This is visually
confirmed by inspecting the fluid-to-structure contact forces distribution reported in the top inset
of figure 6. They respect the same symmetries of the components Ui of the velocity field imposed
on the boundary.

(b) Swimming problem at imposed precession speed ϕ̇

Applying in (3.11) the simplifications due to the symmetry reported above, one can readily solve
the swimming problem at imposed precession speed ϕ̇ to get

ṗ(c) = − kpϕ(c)
kpp(c)

ϕ̇ = 0 and α̇(c) = −kαϕ(c)
kαα(c)

ϕ̇. (4.1)

The swimming motion of the shell is a pure rotation around the Z-axis with a speed α̇ driven by a
non-vanishing torque resultant kαϕ in (4.1).

Using the numerical values reported in figure 5, figure 6 summarizes our findings by plotting
the ratio between the swimming rotation speed α̇(c) and the driving speed ϕ̇ of the deformation
wave as function of the dimensionless shell curvature cR. The rotational swimming motion driven
by the precession of the shell curvature axis is the rotational analogue of the translation swimming
motion of Taylor’s sheet [1]. The deformation of the shell can be regarded as a circular travelling
wave of transversal displacement.



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190178

...........................................................

cR
–3p/4 3p/4–p –p/2 –p/4 p/4 pp/20

0.6

quadratic approximation L/R = 2 L/R = 200

0.4

0.2

0

–a
/j·

·

Figure 6. Rotational swimming velocity α̇ for a circular shell generated by the precession velocity of the curvature axis ϕ̇; blue
dots, numerical results for a cylindrical box of radius L/R= 200; orange triangles, numerical results for a box of radius L/R= 2;
dashed line, quadratic approximation for moderate curvature (4.3). Inset: fluid-to-structure net contact forces distribution for
cR= 0.8 as found by extracting from the numerical simulation the jump of the contact force between the upper (+) and lower
(−) shell surfaces, �σn� = σ+n+ − σ−n−.

For a Taylor’s sheet, the ratio between the translational swimming velocity U and the phase
speed v of the deformation wave is (1.4)

U
v

= −1
2

(b k)2, for |b k| � 1. (4.2)

In our case, the wavenumber is fixed to k = 2/R, while, in the shallow shell approximation, the
wave amplitude scales as b ∝ c R2. Substituting these relations in (4.2), as b k ∼ c R, the rotational
velocity is expected in the form α̇/ϕ̇ ∝ −(c R)2.

This is confirmed numerically in figure 6, which shows the swimming angular speed produced
for a symmetric range of curvatures. The numerical data may be fitted by the following quadratic
approximation in c R:

α̇(c)
ϕ̇

� − 1
12.0

(c R)2 for |c R| � 3π

4
. (4.3)

This approximation is the analogue of the Taylor formula (4.2) for a flat sheet. Our
numerical results show that the quadratic approximation is accurate even for c R � 1. Here, the
dimensionless parameter c R measures the central angle of the cylindrical configuration of the
shell. As shown in the lower insets of figure 6 for c R = π , its cross section with the plane T = 0 is
a circle. Interestingly, the efficiency of the shell as a rotational swimmer is very robust both with
respect to the curvature amplitude and the radius of the confining box. The numerical results
for a cylindrical bounding box of radius L/R = 2 and L/R = 200 are almost indistinguishable and
close to the quadratic approximation even for |c R| → π . The height of the cylinder is fixed here to
H/R = 100.

(c) Swimming problem at imposed actuation
The swimming problem at imposed actuation consists in solving the system (3.11) and (3.14) for
ṗ, α̇ and ϕ̇ as functions of M̄.

In general, this is a system of ordinary differential equations in time, but, for a perfectly
neutrally stable shell, the elastic force ∂E(c, ϕ)/∂ϕ in (3.14) vanishes. Hence, the system reduces
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Figure 7. Swimming rotation speed α̇ for appliedmoment M̄ as a function of the dimensionless curvature c R of a circular shell.
The dots are computed from (4.5)2 for the data in figure 5. The value 0.035 has been estimated by a quadratic approximation of
the hydrodynamic coefficients near c = 0.

to a linear algebraic system in the velocities (ṗ, α̇, ϕ̇). Moreover, for the case of circular shells, the
symmetries imply kpα = kpϕ = 0 for any value of the curvature c, see §4a; the system simplifies to⎛

⎜⎝kpp(c) 0 0
0 kαα(c) kαϕ(c)
0 kαϕ(c) kϕϕ(c)

⎞
⎟⎠
⎛
⎜⎝ṗ

α̇

ϕ̇

⎞
⎟⎠=

⎛
⎜⎝ 0

0
M̄

⎞
⎟⎠ , (4.4)

which can be readily solved to get

ṗ = 0, α̇ = kαϕ(c) M̄
k2
αϕ(c) − kϕϕkαα(c)

and ϕ̇ = −kαα(c)M̄
k2
αϕ(c) − kϕϕ(c)kαα(c)

. (4.5)

The most interesting result is the ‘swimming’ rotation speed α̇ generated by the actuation
moment M̄, which is plotted in figure 7 using the numerical values of the hydrodynamic
coefficients reported in figure 5. We observe two regimes: for c R ≤ π/2 the ratio α̇/M̄ is almost
independent of the curvature while for c R > π/2 the swimming efficiency grows almost linearly
with the curvature. We do not have a clear explanation for this result; however, we can observe
that after the curvature value c R = π/2 the shell starts curling up and tends to a closed cylindrical
shape, see the insets in figure 7. It is therefore reasonable to expect a qualitative difference in
the dependence of the hydrodynamic coefficients on the curvature in the two regimes. Indeed,
c R = π/2 corresponds to an inflection point for the hydrodynamic coefficients in figure 5.

(d) Structure of the fluid flow (circular case)
We now analyse the structure of the fluid flow driven by the precession, ϕ̇ = 1, of the curvature
axis when the shell is clamped (α̇ = 0, ṗ = 0) and, hence, acts as a pump. Figure 8 reports the stream
lines (a) and the pressure distribution (b) in a small region around the shell for the loading case
(iii) and c = 0.8/R. The near-field flow (close to the structure) shows four vortices emanating from
the shell in the directions of maximal (S) and vanishing (T) curvatures. The two vortices in the
direction of maximal curvature bend upwards following the curvature of the shell. At distance
Z ∼ 10R, they coalesce into a single vortex on the top of the shell, giving the far-field structure of
the flow for Z → +∞.

The key properties of the flow can be rationalized in terms of fundamental solutions of the
Stokes equations to point forces. To this end, we project the fluid-to-structure net contact forces,
represented in the inset of figure 6, on the Gauss frame associated with the shell mid-surface ar,
aθ , n. Here, ar and aθ are the radial and circumferential tangent unit vectors, respectively, and n =
ar × aθ is the normal. The components of the net contact force field Fr = �σn� · ar, Fθ = �σn� · aθ ,
and Fn = �σn� · n are plotted in figure 9. The far-field effect of this force field on the fluid flow
can be reproduced by four equivalent point forces, one for each quadrant of the shell. To this aim,
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Figure 8. Structure of the flow generated by the precession of the shell curvature axis with c = 0.8 and R= 1 for the loading
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Figure 9. Decomposition of the net contact force field (see the inset of figure 6) in the circumferential component Fθ (a), the
radial component Fr (b) and the pressure p (c). The black arrows are a system of four forces reproducing the same symmetry,
and used in the far-field approximation (4.8).

within the shallow shell approximation, we fix a cylindrical coordinate system (O, er(θ ), eθ (θ ), eZ)
in the X–Y plane. The equivalent four forces, respecting the same symmetries of the net contact
force distribution, are (i = 1, . . . , 4)

Fi = Fθ eθ (θi) + sign(tan θi)(Frer(θi) + FZeZ), i = 1, . . . 4 (4.6)

applied at points xi = d er(θi) with θi = (2i − 1)π/4 (points on the bisector lines at distance d ∼ R
from the centre, see the black arrows in figure 9). The velocity field generated by a point unit
force applied at the point y in a direction e is

G(x, y, e) = e
‖x − y‖ + e · (x − y)

‖x − y‖3 (x − y) (4.7)

usually called Stokeslet. Hence, the far-field approximation velocity field generated by the pattern
of the four point forces is calculated by superposing the corresponding Stokeslet and taking the
series expansion for d � 1. We get

v(x) =
4∑

i=1

G(x, xi, Fi) = d (Fθ R(x) + Fr S(x)) + FZ Q(x)
d2

2
+ o(d3), (4.8)
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Figure 10. Qualitative representation of the velocity field by singular solutions, see (4.8) and (4.9). (a) Streamlines of the
quadrupole term Q. (b) Effects of the superposition of a quadrupole Q and a stresslet S in the plane 0< T � 1 (i) and of a
rotlet R and a stresslet in the plane Z � 1 (ii).

with

R(x) = eZ × x̂
‖x‖2 , S(x) = sin(2θ )

2
x̂

‖x‖2 and Q(x) = q(x̂)
‖x‖3 , (4.9)

where x̂ = x/‖x‖. As the four Stokeslets are distributed on a surface, due to the symmetry of the
problem, the lowest-order contribution in the resulting singular velocity field (4.8) is a dipole
decaying as 1/‖x‖2. The Stokeslet term, decaying as 1/‖x‖ is instead vanishing. The dipole can
be decomposed in a skew-symmetric part, the rotlet R, and a symmetric part, the stresslet S.
The higher order term in the expansion (4.9) is a quadrupole Q, see [26], decaying as 1/‖x‖3. The
explicit analytical expression of q(x̂) is available in classical textbooks [29]; we report in figure 10
the corresponding streamlines instead. The field close to the shell surface is dominated by the
quadrupole term with its four vortices. Vice-versa the far-field is dominated by the rotlet and
stresslet terms. The streamlines resulting by the superposition of R, S and Q are sketched in
figure 10, which qualitatively reproduces the main structures observed in the direct numerical
simulation of figure 8.

(e) The case of elliptic shells
In the circular case, the force resultant kpϕ and the coupling coefficient kpα vanish because of the
symmetries. For a shell with an elliptical shape in its flat reference configuration, these coefficients
are non-null. Moreover, all the coefficients in (3.11)–(3.13) depend on the direction of maximal
curvature ϕ. We report here the results obtained from the numerical simulation for a shell with
semi-axes RX = 1 (X direction) and RY = 1/2 (Y direction) and a curvature amplitude c = 0.8/RX.
Figure 11 plots the translational and rotational swimming velocities, ṗ and α̇ as a function of the
orientation of the curvature axis ϕ ∈ (0, 2π ), during its full precession. In this case, the translation
swimming velocity is non-null and the rotational velocity varies during a period. However, the
translation velocity (and displacement) is periodic, the shell moves back and forth on the Z-axis
while rotating, but there is not a net translation after an integer number of periods. This can
be seen as a direct consequence of the scallop theorem [30]. The video attached in the electronic
supplementary material helps to visualize this case.
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Figure 11. Rotational (α̇) and translational (ṗ) velocities of an elliptic shell during the precession of its curvature axis (ϕ):
results of a numerical simulation on a shell with semi-axes RX = 1 and RY = 1/2, and curvature c = 0.8/RX computed
using (3.11).

Figure 12. Schematics of thebasicmechanismof the rotational Taylor sheet, extending to the rotational shapewaveof neutrally
stable disc (left) the physical interpretation of [2] of the classical Taylor sheet with a translation shape wave. We report in red
and orange the configuration of the structure at time T and T + 
T , with small
T , in a reference frame moving with the
structure, where the black arrows indicate the velocity field of the structure and the blue arrows schematically represent the
vorticity in the fluid. The grey arrows indicate the flow velocity at infinity, which is opposite to the swimming velocity in a fixed
reference frame.

5. Conclusion
It has been shown how the problem of a complex active structure exhibiting spontaneous
curvature, moving within a (viscous) fluid, can be connected to classic examples of locomotion
at low Reynolds numbers, in particular, the work of Taylor [1]. The main issue in this setting is
that linearity of Stokes equations results in the celebrated observation due to Purcell [30], usually
referred to as the scallop theorem: a reciprocal motion (precisely, a shape-change sequence that is
identical after time-reversal [2]) does not generate net motion on average. The scallop theorem
implies that the swimming strategy has to satisfy some geometrical requirements in order to
be effective. The precession of the curvature axis can be seen as a travelling (circular) wave of
transversal displacement, similar to the case of the Taylor sheet. This analogy is summarized
in figure 12, which transposes to our case the kinematical interpretation of Taylor’s sheet effect
given in [2]. The shape wave generates a system of counter-rotating vortices resulting in a net
rotational motion of the swimmer. In the circular case, the symmetry of the problem prevents net
translations. Interestingly, if instead the shape of the shell in the flat configuration is elliptic, a
net force, and thus instantaneous displacement is generated. The force however is periodic and
therefore the displacement is zero over a period.

Directions of further research might involve relaxing the hypothesis of very low Reynolds
numbers, in order to consider cases when inertia is no longer negligible. This might include
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exploiting instabilities of thin structures, as bistable clamped tails [14], or pulsatile motions
[31]. In this framework, the elastic response of the structure would play a crucial role and can
be accounted for by using reduced models or finite-element shell models [32], coupled with a
Navier–Stokes solver.

Other interesting applications include the possibility of using the neutrally stable shells
studied in this paper to harvest energy from the fluid flow [33,34] or as deformable mixing
devices.
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