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ABSTRACT

Despite recent advances in inferring cellular dynam-
ics using single-cell RNA-seq data, existing trajec-
tory inference (TI) methods face difficulty in ac-
curately reconstructing the cell-state manifold and
cell-fate plasticity for complex topologies. Here, we
present MARGARET (https://github.com/Zafar-Lab/
Margaret) for inferring single-cell trajectory and fate
mapping for diverse dynamic cellular processes.
MARGARET reconstructs complex trajectory topolo-
gies using a deep unsupervised metric learning and
a graph-partitioning approach based on a novel con-
nectivity measure, automatically detects terminal cell
states, and generalizes the quantification of fate plas-
ticity for complex topologies. On a diverse bench-
mark consisting of synthetic and real datasets, MAR-
GARET outperformed state-of-the-art methods in re-
covering global topology and cell pseudotime or-
dering. For human hematopoiesis, MARGARET ac-
curately identified all major lineages and associ-
ated gene expression trends and helped identify
transitional progenitors associated with key branch-
ing events. For embryoid body differentiation, MAR-
GARET identified novel transitional populations that
were validated by bulk sequencing and functionally
characterized different precursor populations in the
mesoderm lineage. For colon differentiation, MAR-
GARET characterized the lineage for BEST4/OTOP2
cells and the heterogeneity in goblet cell lineage in
the colon under normal and inflamed ulcerative col-
itis conditions. Finally, we demonstrated that MAR-
GARET can scale to large scRNA-seq datasets con-
sisting of ∼ millions of cells.

INTRODUCTION

Dynamic cellular processes such as differentiation in-
volve cell-state transitions that are characterized by cas-

cades of epigenetic and transcriptional changes (1,2).
High-throughput single-cell RNA sequencing (scRNA-seq)
datasets allow us to identify cellular identities at a single-
cell resolution (3,4) and thus can be utilized for elucidating
the cellular heterogeneity of a dynamic cellular process and
tracking cell fate decisions in normal as well as pathological
development (5). Despite recent advances (6,7) in inferring
cellular dynamics from the underlying developmental pro-
cess, existing computational trajectory inference (TI) meth-
ods (7–11) face several critical challenges. Most TI meth-
ods have largely overlooked the importance of dimension-
ality reduction by focusing more on trajectory modelling
and relying on generalized dimension reduction techniques
such as UMAP (12), local linear embedding (11), or diffu-
sion maps (9) which may obscure the identification of some
intermediate cell states. Moreover, most TI methods im-
pose strong assumptions on the topology of the trajectory
and cannot generalize to disconnected or hybrid topologies
without imposing further restrictions (13). Lastly, accurate
detection of terminal cell states remain difficult as only a
few methods (e.g. Slingshot (10), Palantir (9), Monocle3 (7),
VIA (14)) can automatically identify cell fates (Supplemen-
tary Table S1). Existing gene-expression similarity-based TI
methods also focus mostly on reconstructing the order of
cell states, how cell fate choices evolve along a dynamic pro-
cess remain less explored. Recently, a Markov chain model
has been introduced by Palantir (9) to quantify the plastic-
ity of cell fates along a trajectory. However this approach
predominantly assumes a connected trajectory and cannot
generalize to disconnected trajectories.

To overcome these challenges, we developed MAR-
GARET (Metric leARned Graph pARtitionEd Trajectory)
which provides an end-to-end framework that utilizes
scRNA-seq data for inferring the cell state trajectory and
dynamics of cell fate plasticity and thereby characterizes the
differentiation landscape. MARGARET employs an unsu-
pervised metric learning-based approach for inferring the
cell-state manifold where the distinct cell states are repre-
sented by compact cell clusters. To capture complex trajec-
tory topologies, MARGARET employs the inferred cellu-
lar embeddings and the cell clusters to construct a cluster

*To whom correspondence should be addressed. Tel: +91 8737992101; Email: hamim@iitk.ac.in

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0002-1617-2806
https://github.com/Zafar-Lab/Margaret


e86 Nucleic Acids Research, 2022, Vol. 50, No. 15 PAGE 2 OF 24

connectivity graph by using a novel measure of connectivity
between cell clusters. The cluster connectivity graph is used
in conjunction with the cell-nearest-neighbor graph to com-
pute a pseudotime ordering of cells. To identify terminal
states in the trajectory, MARGARET introduces a shortest-
path betweenness-based measure. Finally, MARGARET
refines the absorbing Markov chain model of Palantir and
introduces a local random walk-based novel algorithm for
computing cell fate probabilities which in turn generalizes
the quantification of the cell fate plasticity for complex tra-
jectory topologies.

We demonstrate the performance of MARGARET in
trajectory inference and cell-fate prediction across a vari-
ety of synthetic and experimental scRNA-seq datasets. For
simulated datasets with known ground-truth (13) consist-
ing of diverse topologies and a real benchmark consist-
ing of datasets from placenta trophoblast differentiation
(15), mouse cell atlas (15), oligodendrocyte differentiation
(16) and planaria parenchyme differentiation (17), MAR-
GARET outperformed state-of-the-art TI methods both in
terms of capturing the global topology and recovering the
underlying pseudotime ordering. Using simulated datasets
with ground-truth pseudotime ordering, we further showed
that MARGARET’s quantification of cell fate plasticity is
superior to that of Palantir and generalizes for complex
disconnected trajectories. When applied to real biological
datasets (9,18,19) representing human hematopoiesis, em-
bryogenesis and colon differentiation, MARGARET accu-
rately identified all major lineages along a pseudotempo-
ral order that epitomized the expression trends of canonical
cell-type markers in these processes. For hematopoiesis, in
the myeloid and erythroid-megakaryocytic lineages, MAR-
GARET helped identify transitional progenitors associ-
ated with key branching events, which were also charac-
terized by a drastic shift in MARGARET inferred cell-
fate plasticity. For embryoid body differentiation, MAR-
GARET accurately characterized all ectodermal, endoder-
mal and mesodermal lineages; identified novel transitional
populations that were validated by bulk sequencing; and
functionally characterized different precursor populations
in the mesoderm lineage. For colon differentiation, MAR-
GARET delineated the secretive and absorptive cell lin-
eages for human colon differentiation; characterized the lin-
eage for BEST4/OTOP2 cells and the heterogeneity in gob-
let cell lineage in the colon under normal and inflamed ul-
cerative colitis conditions. Finally, using a 1.3 million neu-
ronal cells dataset (20), we demonstrate that MARGARET
can scale to large scRNA-seq datasets making it suitable for
analyzing atlas-level scRNA-seq datasets.

MATERIALS AND METHODS

Preprocessing scRNA-seq data

We downloaded the filtered, normalized and log-
transformed count matrices for early Human
Hematopoiesis datasets (replicates 1 and 2) provided
by (9) (see Data Availability). Pre-processed replicate 1
consisted of 5780 cells and 14 651 genes while replicate 2
consisted of 6501 cells and 14 913 genes. For each repli-
cate, we performed imputation using MAGIC (21), and
then computed 300-dimensional PCA embeddings on the

imputed data as suggested in (9). For the embryoid body
(EB) dataset, we downloaded the filtered, normalized and
square-root transformed count matrix as provided in (18)
(see Data Availability). The EB dataset consisted of 16 821
cells and 17 845 genes. We then performed initial denoising
on the dataset to extract 50-dimensional PCA embeddings
as performed in (18). For studying colon differentiation
under normal and UC conditions, we downloaded the
preprocessed count matrix provided by (19). Top 2000
highly variable genes were identified in this dataset and
then PCA was performed to compute 300-dimensional
embeddings, which were used for further analysis. For real
benchmarking datasets (Placenta Trophoblast differenti-
ation, Mouse cell atlas, Oligodendrocyte differentiation
and Planaria parenchyme differentiation), we downloaded
filtered, normalized and log-transformed count matrices
and then computed 10-dimensional PCA embeddings for
subsequent analysis using other methods. We downloaded
the real datasets utilized in embedding quality evaluations
(PBMC-8k, PBMC-4k, Heart Cell Atlas and CORTEX)
and runtime benchmarking (1.3M neuronal cells) using
scvi-tools (22) and performed filtering, normalization and
log-transformation followed by z-score normalization. We
then performed PCA with 100 components on the 1.3M
dataset and 10 components on the other real datasets. All
preprocessing was performed using Scanpy (8).

Overview of MARGARET

The overall framework of MARGARET consists of two
main steps. We first infer the lower-dimensional cell-state
manifold using preprocessed scRNA-seq data. This is fol-
lowed by trajectory modelling which encompasses con-
structing an undirected graph on the cell clusters inferred
from the cellular embeddings followed by the inference of
pseudotime ordering of the cells (Figure 1). Each of these
computational stages are described in more detail in the fol-
lowing sections.

Inference of lower-dimensional cell-state manifold

For inferring the cell-state manifold, given preprocessed
scRNA-seq data, we propose an unsupervised metric-
learning-based approach to learn a meaningful lower-
dimensional representation of each cell in the scRNA-seq
dataset (see Figure 1A). The central idea is to learn a non-
linear manifold over cell representations such that the cells
which belong to the same cell type (cluster) are packed com-
pactly while the cells belonging to different clusters are far
apart in the manifold. The key steps of our proposed ap-
proach are as follows:

(1) Computing initial clusters: Given the preprocessed
scRNA-seq data with N cells and an initial embed-
ding of dimension D, we perform initial clustering on
the data. The cluster label assigned to each cell is then
treated as a pseudo-label, which is used in subsequent
steps. The pseudo-labelled dataset is denoted as DPL =
{(xi , yi )}N

i=1, where the pair (xi, yi) represents the ini-
tial embedding and the pseudo-label of the ith cell
in the dataset respectively. It is worth noting that the
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Figure 1. Overview of MARGARET. (A) Given a preprocessed scRNA-seq dataset, MARGARET uses an unsupervised metric-learning-based approach
to learn compact cell-state representations from pseudolabels generated from an initial cell embedding. The cell cluster assignments and the MARGARET
embedding are refined through an episodic training which results in the final refined embeddings and refined cell type clusters. (B) MARGARET infers the
connectivity graph between the refined cell partitions by computing connectivities between clusters using a cell-level k-nearest-neighbor (kNN) graph. (C)
MARGARET prunes the kNN graph by removing short-circuit edges and infers cell pseudotime from the pruned kNN graph by computing geodesic dis-
tances from the start cell(s). The pseudotime values are then utilized to infer a directed trajectory. MARGARET utilizes the inferred cell-state embeddings
and the trajectory for several downstream tasks.
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choice of the clustering method in this step can be arbi-
trary and the users can choose any single-cell clustering
method of their choice. However, in this work, we pri-
marily use community detection-based clustering meth-
ods such as Louvain and Leiden clustering (23) due to
their widespread use in the single-cell literature (24) and
availability of efficient implementations in Scanpy (8).

(2) Metric learning: We then learn a low-dimensional repre-
sentation of each pseudo-labelled cell using a non-linear
mapping fθ : RD → R

d parameterized by � where d ≤
D. In this work, we represent f� using a feed-forward
deep neural network with parameters �. Given this pa-
rameterization and a pseudo-labelled dataset DPL, we
learn a low-dimensional representation of each cell as
follows:
Given an initial representation (xi, yi) for the ith cell,
two additional cells (xj, yj) and (xk, yk) are sampled
from DPL − {(xi , yi )} such that yi = yj and yi �= yk. Let
us assume that fa, fp and fn denote the low-dimensional
embeddings of xi, xj and xk such that:

fa = fθ (xi )

fp = fθ (xj )

fn = fθ (xk)

� is updated such that the Triplet-Margin loss func-
tion (25) L( fa, fp, fn) is minimized, where the loss
L( fa, fp, fn) is given by:

L( fa, fp, fn) = max {d( fa, fp) − d( fa, fn) + margin, 0} (1)

d( fi , f j ) = ‖ fi − f j‖p (2)

The value of margin and p are chosen as 1 and 2, respec-
tively. Intuitively, for each cell xi (denoting the anchor),
we sample positive (xj) and negative samples (xk) such
that the distance between the anchor and the positive
sample is minimized while the distance between the an-
chor and the negative sample is maximized. This train-
ing step is repeated for e epochs, where e is a hyperpa-
rameter.

(3) Cluster refinement: We generate the low-dimensional
representations of all cells in the dataset using pre-
trained f� from step 2. Using the updated low-
dimensional embedding f�(xi) for all N cells, cells are
clustered again to generate refined cluster assignments,
which act as new pseudo-labels for the cells {xi }N

i=1.
(4) Episodic training: The sequence of steps 2 and 3 form

a single episode. We repeat steps 2 and 3 alternatively
for a total of E episodes, where E is a hyperparameter.
We can also alternate between the two steps until con-
vergence which can be assessed by monitoring the qual-
ity of the clusters generated from step 3. For example,
when using Leiden or Louvain clustering, convergence
can be assessed by monitoring the modularity score of
the refined clusters.

(5) Inferring final low-dimensional manifold: After train-
ing, the final low-dimensional representation, f ∗

i for
cell i can be obtained by fθ∗ (xi ) where �* denotes the
trained parameters of the deep neural network f. As
a by-product of training, we also obtain the refined

cluster assignments, y∗
i for each cell in the scRNA-

seq dataset. The refined embeddingsM f = { f ∗
i }N

i=1 and
cluster assignments {y∗

i }N
i=1 are used in subsequent steps

of MARGARET.

Network architecture and training hyperparameters

We use a simple feed-forward deep neural network architec-
ture in MARGARET consisting of 2-fully connected lay-
ers of sizes 128 and 64, respectively. The size of the input
layer depends on the size of the embedding of the prepro-
cessed scRNA-seq dataset. The number of neurons in the
final output layer is the same as the size of the desired low-
dimensional embedding which is a hyperparameter. In addi-
tion, each fully connected layer in MARGARET is followed
by a Batch Normalization (BN) (26) layer followed by the
ReLU activation. To regularize and enrich the intermediate
representations, we use Dropout (27) after each Linear-BN-
ReLU module. The dropout rate is set to 0.3 for all the ex-
periments. Moreover, the layer sizes were also kept fixed for
all the experiments.

During training, we used Stochastic Gradient Descent
(SGD) with an initial learning rate of 0.01 to update the
metric learner parameters. To adjust the learning rate dur-
ing training, we used a poly-learning rate scheduler with the
following update schedule:

lr (t) = lr (0) ∗ (1 − t
num epochs

)α (3)

� = 0.9 was used during training.

Trajectory modelling

Given a low dimensional representation of cells, M f and
refined cluster assignments {y∗

i }N
i=1, MARGARET learns a

connectivity graph over the set of refined clusters similar
to PAGA (28) to model the trajectory over the underlying
dynamic process. The key steps involved in learning the tra-
jectory are described below.

(1) Learning an undirected graph: MARGARET first learns
an undirected graph U over the refined partition of
cells y∗

i (Figure 1B). This learned graph U models the
connectivity of the cell clusters and identifies the con-
nected and disconnected neighborhoods in the cell-
state manifold. To learn U , we first compute the k-
nearest-neighbor (kNN) graph, G at the single-cell level
using the learned low-dimensional manifold (M f ). The
resulting graph, G is represented as a N × N sparse adja-
cency matrix. We then assess the connectivity between
two clusters ci and cj by introducing a novel measure
of connectedness. Formally, we define the connectivity
between two clusters ci and cj as:

ψi j = ei j + e ji − erand

ei + e j − erand
(4)

where eij denotes the number of kNN graph edges from
cluster ci to cj, eji denotes the number of kNN graph
edges from cluster cj to ci, ei denotes the number of
outgoing edges from cluster ci, ej denotes the number
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of outgoing edges from cluster cj, and erand denotes the
number of edges from cluster ci to cj and vice-versa un-
der the random assignment of edges. Intuitively, when
computing the connectivity between two clusters, we
adjust the connectivity score to account for the random
assignment of edges from cluster ci to cj to prevent spu-
rious connections in U .
Following PAGA (28), we model the random assign-
ment of edges between two clusters using a binomial
distribution. In this scenario, erand is given by:

erand = ei n j + e j ni

N − 1
, (5)

where ni and nj represent the number of cells (size) in the
clusters ci and cj respectively and N represents the total
number of nodes in the kNN graph (i.e. the number of
cells). Given a threshold (lower-bound for � ij) tc, two
clusters ci and cj are said to be connected when � ij >
tc. In this work, we define a simple statistical test and
compute the z-score between two clusters ci and cj given
by:

zi j = ei j + e ji − erand

σrand
, (6)

where �rand denotes the standard deviation of the bino-
mial model and can be specified as:

σrand = ei n j (N − n j − 1) + e j ni (N − ni − 1)
(N − 1)2

(7)

The statistical test proposed in 6 is a direct consequence
of the fact that under sufficiently large partitions, bi-
nomial random variables can be well approximated by
a normal distribution. Therefore, the connectivity be-
tween two clusters ci and cj is given by � ij when zij > tc
where tc is a user-defined threshold.

(2) Pseudotime computation: As in prior works (7,9,28),
MARGARET learns a temporal ordering over cells to
uncover the dynamics of the underlying dynamic pro-
cess. To determine the temporal order of the cells, for
each cell, we infer pseudotime, which denotes the po-
sition of the cell in the underlying cell-state manifold
representing the dynamic process (Figure 1C).
Given the kNN graph G and a prior starting cell in-
dex s, one possible way to estimate the pseudotime can
be to compute the shortest-path distance of each cell
from the starting cell s because the shortest-path dis-
tances better approximate the geodesic distances in a
non-linear manifold (29). However, the kNN graph G
can be inherently noisy due to spurious connections be-
tween cells. Hence, directly computing the shortest-path
distances using G would give inaccurate estimates of the
distance of each cell in the manifold from s. To mitigate
this problem, we prune the kNN graph G by using our
undirected graph U as a reference model.
Formally, given an undirected graph U and the kNN
graph G, we prune an edge between two cells xci and
xc j belonging to two clusters ci and cj respectively, iff
∃ ei j ∈ G and � ij = 0 where eij represents a (short-
circuit) edge between cells xci and xc j in the kNN graph
G. Given a pruned kNN graph G∗, we compute the

shortest-path distance of each cell from a user-defined
starting cell s to infer the pseudotime for each cell in the
scRNA-seq dataset.

(3) Orientation of edges in trajectory: Given an undirected
graph U and the pseudotime {τ p

n }N
n=1, we compute the

mean-pseudotime for each cluster ci as:

mci =
∑N

n=1 1[xn ∈ ci ]τ
p

n∑N
n=1 1[xn ∈ ci ]

(8)

We then orient an edge from cluster ci to cj iff: mci lt; mc j

and � ij �= 0 to obtain the final trajectory T with node-
set V and directed edge-set E (Figure 1C).

Prediction of terminal states

Given a trajectory T = (V, E), we compute the shortest-
path betweenness (30) of every node in T (Supplementary
Figure S1A). Formally, the shortest-path betweenness can
be defined as:

b(v) =
∑

(u,w)∈V

dsp(u, w|v)
dsp(u, w)

(9)

where b(v) is the betweenness for node v, dsp(u, w|v) repre-
sents the shortest-path distance between nodes u and w that
passes through node v and dsp(u, w) represents the shortest-
path distance between nodes u and w. Intuitively, the be-
tweenness for any node v ∈ V is the sum of the fraction of
all-pairs shortest paths that pass through node v thus in-
dicating its importance in the network. Given the shortest-
path betweenness values b(v)v∈V , we compute the median
(bmed) and the median absolute-deviation (MAD) (bmad) of
the betweenness values respectively. A node v is added to the
set of terminal states if

b(v) < (bmed − tTS × bmad ), (10)

where tTS is a user-defined scalar multiplier. Higher values
of tTS typically lead to nodes with no outgoing edges in V
being selected as the terminal states. At the single-cell level,
we select the cells having the maximum pseudotime value in
each terminal state as the terminal cell for the underlying
developmental process.

Inferring cell branch probabilities and differentiation poten-
tial

Similar to (9), we model differentiation as a stochastic pro-
cess on our learned cell-state manifold where the cells can
follow the paths in the pruned kNN graphG∗ to reach any of
the terminal states. Following (9), we model this stochastic
process using an absorbing Markov Chain with the terminal
cells acting as the absorbing states. Essentially, this formu-
lation enables us to calculate the differentiation potential
(DP) for each cell, a quantity that represents the potency of
a cell to differentiate into specialized cell types. Given a set
of terminal cells Tc, for each cell i, we compute the branch
probabilities pbi j ( j ∈ Tc), which represents the probability
of cell i reaching a terminal cell j (Figure S1B). Since DP of
a cell (dpi ) quantitatively characterizes the potency of a cell
to maturate to different terminal states it can be obtained by
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computing the entropy of the branch probabilities of each
cell as follows (Figure S1C):

dpi = −
∑
j∈Tc

pbi j log pbi j (11)

This is a reasonable way of modelling DP because cells with
heterogeneous branch probabilities can be expected to have
lesser potency of differentiating into diverse cell types. In the
remainder of this section, we discuss the key steps involved
in computing the branch probabilities for each cell i.

(1) Waypoint sampling for scalable modelling of DP: Given
the scRNA-seq dataset with N cells, fitting an absorbing
Markov Chain can be computationally intractable for
large N. To scale our absorbing Markov Chain model
to large datasets, we sample a subset of cells M, from
the scRNA-seq dataset such that M < <N. We call
these subset of cells as landmarks or waypoints. Specif-
ically, given a set of K disjoint partitions of the em-
bedding space y*, we sample k waypoints per cluster
by applying k-means++ initialization for each cluster.
We use the refined clusters obtained from the Metric-
learning step for sampling the waypoints. Using such
a scheme for waypoint sampling has two main advan-
tages. Firstly, using a kmeans++ like scheme in each
cluster ensures high intra-cluster waypoint coverage.
Secondly, sampling waypoints from each cluster guar-
antees coverage of the entire embedding landscape. In
contrast, (31,32) use random sampling to compute way-
points which provides no coverage guarantees. Palantir
(9) uses Max-min sampling (33) to compute waypoints
which is more efficient than random sampling but might
require a large number of waypoints to cover the em-
bedding space.

(2) Computing waypoint to terminal cell(s) probabilities:
Given a set of waypoints W consisting of M waypoints,
we compute a nearest-neighbor graph Gw using the low-
dimensional representations of W . We then prune Gw

using the short-circuit edge pruning (see Pseudotime
computation) with the undirected connectivity graph
U as a reference model. Furthermore, following (9),
we also remove edges in Gw which violate the pseudo-
time ordering between waypoint cells. Formally, an edge
wi j ∈ Gw from waypoint wi to wj is pruned iff:

τ
p

i > τ
p
j + ασi j (12)

where τ
p

i and τ
p
j represent the pseudotime for way-

points wi and wj respectively and �ij represents the scal-
ing factor for cell wi given by the distance of wi to its
lth neighbor in Gw. The statistical test in Equation (12)
differs from the formulation in (9) in terms of the pa-
rameter �. We found that parameterizing Equation (12)
with the user-defined parameter � provides an addi-
tional flexibility in controlling the number of edges that
are pruned, which is an important aspect of fitting an
absorbing Markov Chain.
Given a pruned waypoint nearest-neighbor graph G∗

w

and a set of terminal cells Tc, we row-normalize G∗
w

to obtain the transition matrix T. For two waypoints
wi and wj, the entry tij in T represents the probability

of transitioning from waypoint wi to wj. An absorbing
Markov Chain is specified by a transition matrix of the

form
[

Q R
0 I

]
, where Q represents the transition prob-

abilities of moving between intermediate states and R
represents the transition probabilities of moving from
intermediate states to the terminal states. We represent
our transition matrix T using this formulation and com-
pute the waypoint to terminal cell branch probabilities
as follows:

PWTc = F R (13)

where F is the fundamental matrix given by F = (I −
Q)−1. Since our Transition matrix T can be sparse, we
recommend computing the fundamental matrix using
the Moore–Penrose pseudoinverse to avoid numerical
issues.

(3) Computing cell to waypoint connectivity: Given the
pruned nearest neighbor graph G∗, we compute cell to
cell connectivity using a local random walk (LRW) (34)
formulation. LRW is a quasi-local method to estimate
connectivity between nodes in a graph based on limit-
ing a random-walk to a fixed number of steps. Hence,
the approach is computationally much more efficient
than using a global random walk until convergence.
Formally, the LRW connectivity � (i, j) between two cells
indexed by i and j is given by:

ζ (i, j )(t) = ki pi j (t) + kj p ji (t) (14)

where pij(t) and pji(t) represent the probabilities ob-
tained when moving from cell i to j and vice-versa at
time t respectively. The constants ki and kj are set to

k
|E∗

k | where k is the number of nearest neighbors and |E∗
k |

is the total number of edges in G∗. Given the similar-
ity matrixZ representing LRW-based connectivities be-
tween different cells we can index Z to compute cell to
waypoint similarities, Zw.

Given the cell to waypoint similarities Zw, and waypoint
to terminal state probabilities PWTc , we compute the cell to
terminal states branch probabilities pbi j by a simple projec-
tion:

Pb = Zw PWTc (15)

where Pb is a N × |Tc| matrix representing branch proba-
bilities for each cell. We then compute the DP for each cell
using Equation (11).

Inference of gene expression trends along lineages

To visualize the variation in the expression of a gene g across
different lineages with pseudotime, we fit generalized ad-
ditive models (GAMs) to the gene expressions and pseu-
dotime values (gi, τ

p
i ) of cells along a particular lineage j

weighted by their branch probabilities pbi j for that lineage
(see Supplementary Note 2 in (9) for more details). We im-
puted the preprocessed expression value of gene g using
MAGIC (21), when computing the lineage trends for the
hematopoiesis and EB datasets. No imputation was per-
formed for the colon IBD dataset. We used the LinearGAM
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implementation available in the pyGAM Python package
(https://doi.org/10.5281/zenodo.1208724) to fit the lineage
trends with the regularization penalty set to 10 and the or-
der of the splines set to 4 for all the experiments.

Differential expression and gene ontology analysis

We used the Wilcoxon-rank sum test available in Scanpy
(8) to estimate differentially expressed (DE) genes for each
cluster and the Benjamini-Hochberg correction for adjust-
ing the p-values. All genes were ranked in the DE analy-
sis, which is the default behavior in Scanpy 1.7.2. To assess
the functional significance of MARGARET inferred clus-
ters, we performed Gene Ontology (GO) analysis using the
gprofiler-official (35) package. To determine the GO terms
for a cluster, we selected the top DE genes with a log fold
change value greater than 1.0 and the adjusted p-value less
than 0.05. In case more than 500 genes were included, we
selected the top 500 genes to obtain a list of GO terms as-
sociated with that cluster.

Performance metrics for trajectory inference

Here we describe the quantitative performance metrics used
for evaluating the trajectory inferred by a TI method:

(1) Ipsen–Mikhailov (IM) similarity: We used the IM dis-
tance (36) metric for global topology comparison be-
tween PAGA and MARGARET. Before computing the
IM distance, the trajectories inferred from both the
methods (including the ground-truth trajectory) were
coerced to an undirected graph. Formally, the Lapla-
cian spectra for a graph G can be specified as a mixture
of Lorentz distributions (Eqn. 16) with the same half-
width at half-maximum � and centered at the frequen-
cies �k given by ωk = √|λk|, where 	k is the kth eigen-
value of the graph Laplacian of G. The constant C is
a normalization constant for the resulting probability
distribution.

ρ(ω) = C
N−1∑
k=1

γ

(ω − ωk)2 + γ 2
(16)

The IM distance measures the difference between the
Laplacian spectra of two graphs as follows:

I M(ρ1, ρ2) =
√∫ ∞

0
(ρ1(ω) − ρ2(ω))2dω (17)

The IM similarity between two graphs can then be com-
puted as IS(G1, G2) = 1 − IM(G1, G2).
Since, among competing methods, only PAGA and VIA
output a connected graph, we adapt the cell landscape
in Monocle3 to the milestone framework by implement-
ing the coarse trajectory inference procedure outlined in
(7). Similarly, for Palantir (which outputs a continuous
cell landscape), we apply PAGA using the cell embed-
dings inferred using Palantir to convert a continuous
trajectory to a network of milestones.

(2) Rank correlation metrics: We used two rank correla-
tion metrics to compare the ground truth ordering and

pseudotime orderings inferred by the TI methods. More
specifically, we used the Kendall’s tau (KT) and the
Spearman’s rank (SR) correlation coefficients to esti-
mate the similarity in rank orderings of the data. The
KT correlation coefficient can be specified as follows:

τb = P − Q√
(P + Q + T) ∗ (P + Q + U)

(18)

where P and Q represent the number of concordant and
discordant pairs, respectively. T and U represent the
number of ties in the two orderings, respectively. The
SR correlation coefficient is simply defined as the Pear-
son’s correlation coefficient applied to the ranks of the
variables measured in the two orderings. We used the
scipy.stats package to compute both KT and SR corre-
lation coefficients.

(3) Combined score: We benchmarked all candidate meth-
ods based on their performance in capturing the global
topology and the pseudotime ordering. We first com-
puted the IM similarity between the inferred tra-
jectory and the ground truth trajectory. We set the
IM similarity score for a method as the best score
that can be obtained when using either Louvain
or Leiden clustering at resolution 1.0. Similarly, we
also computed the KT correlation between the pre-
dicted and the ground-truth pseudotime orderings. We
then perform min-max normalization of the IM and
KT scores obtained by all candidate methods sep-
arately for the multifurcating and the disconnected
datasets. The combined score for a method is then
obtained by averaging the normalized IM and KT
scores of that method applied across the simulated
datasets.

(4) Clustering metrics: We used adjusted Rand index (ARI)
and normalized mutual information (NMI) metrics to
assess the clustering performance of MARGARET em-
beddings. The ARI metric corrects the Rand index for
chance and is specified by the following formulation:

ARI =
∑

i j

(ni j
2
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∑

i
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) (19)

where ai, bj and nij are values from the contingency ta-
ble which is used to estimate the overlap between two
partitionings. The NMI metric between two clusterings
C1 and C2 can be formulated as follows:

NMI = I(C1, C2)√
H(C1)H(C2)

(20)

where I is the mutual information between the two clus-
terings C1 and C2 and H is the Shannon-Entropy of the
clustering.

Visualization of embedding

We used UMAP (12) (with default parameters) for visual-
ization of all the datasets except the early Hematopoiesis
scRNA-seq data provided by (9), for which we used tSNE
(37) visualization with a perplexity value of 180 for replicate
1 and 150 for replicate 2.

https://doi.org/10.5281/zenodo.1208724
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Computing Crypt-axis score

As suggested in (19), we used the expression of the follow-
ing genes to define the crypt-axis (CA) score: SEPP1, CEA-
CAM7, PLAC8, CEACAM1, TSPAN1, CEACAM5, CEA-
CAM6, IFI27, DHRS9, KRT20, RHOC, CD177, PKIB,
HPGD and LYPD8. The final crypt-axis score for each cell
was then computed by summing over the normalized ex-
pression (between 0 and 1) values of each gene included in
our set.

Simulation of benchmark datasets

To benchmark MARGARET’s performance on several as-
pects of trajectory inference, we generated a suite of syn-
thetic single-cell gene expression datasets representing dif-
ferent complex trajectory models. We used dyntoy (13)
(https://github.com/dynverse/dyntoy) to generate the syn-
thetic benchmark (see Supplementary Table S3 for the de-
tails of different synthetic datasets) spanning multifurcat-
ing and disconnected topologies. For benchmarking MAR-
GARET, PAGA (28) and Monocle3 (7), all the simulated
datasets were subjected to the same data preprocessing
steps following Seurat (24): removal of genes expressed in
less than 3 cells, normalization, log transformation with a
pseudo count of 1.0, and finally z-score normalization. For
benchmarking Palantir, the steps proposed by the authors
in (9) were used to preprocess the simulated datasets.

RESULTS

MARGARET outperforms other TI methods on a diverse
simulated benchmark

We benchmarked MARGARET’s performance on a vari-
ety of synthetic datasets (Materials and Methods) consist-
ing of multifurcating and disconnected trajectories (with
complex multifurcating components)(Supplementary Table
S3) against state-of-the-art TI methods––Partition-Based
Graph Abstraction (PAGA) (28), Palantir (9), Monocle3 (7)
and VIA (14).

Figure 2A and B qualitatively compares the trajectories
inferred by the algorithms on a multifurcating and a dis-
connected dataset sampled from our simulated benchmark
(Figure 2A). Monocle3 correctly captured the overall topol-
ogy of the disconnected dataset but underestimated the
number of clusters in the two components severely. PAGA
and Palantir failed to capture the disconnected topology al-
together as PAGA represented two components as cyclic
topologies while Palantir represented the entire embedding
landscape as a single component (Figure 2B). VIA failed
to capture the correct number of components in the dis-
connected trajectory. Moreover, the directionality in the
VIA inferred trajectory suggested a converging topology in
the larger of the two components leading to highly inac-
curate pseudotime estimates. MARGARET outperformed
the other algorithms on this dataset by most closely recov-
ering the underlying global topology accompanied by ac-
curate detection of terminal state clusters. For the multi-
furcating dataset, PAGA and Palantir failed to capture the
correct branching topology, whereas Monocle3 failed to re-
cover the global topology as it inferred the overall trajec-
tory as two separate components (Figure 2B). In contrast,

VIA and MARGARET were able to capture the underlying
multifurcating topology accurately. However, VIA failed to
detect multiple branchings and terminal states in the trajec-
tory and the MARGARET captured topology was qualita-
tively the most similar to the ground truth topology.

We quantitatively benchmarked MARGARET’s perfor-
mance against other methods on two main aspects of TI:
accuracy in inferring the global topology and accuracy of
pseudotime ordering. We assessed the effectiveness of a TI
method in recovering the underlying global topology of cells
by evaluating the Ipsen-Mikhailov (IM) similarity (Mate-
rials and Methods) between the ground truth and the in-
ferred trajectory graph. To compare two undirected tra-
jectories (represented as graphs), we adopted the network
of ‘milestones’ representation framework as proposed by
(13). Next, we assessed the accuracy in recovering the pseu-
dotime ordering of cells by computing the Kendall’s tau
(KT) and the Spearman rank (SR) correlation (Materials
and Methods) between the ground truth and the inferred
ordering. We then assign a combined score (see Materials
and Methods) to each TI method which represents the effi-
cacy of the method in capturing both global topology and
ordering information. Figure 2C presents a comparison be-
tween MARGARET and other methods on our simulated
benchmark.

For the disconnected benchmark, MARGARET outper-
formed other methods on all the five datasets with up to
19.2 % improvement over the next best method. Similarly,
for the multifurcating benchmark, MARGARET achieved
up to 18.57% improvement over the next best method. The
superior performance of MARGARET on both bench-
marks suggests its ability to perfectly capture diverse tra-
jectory types. In contrast, other methods performed well
for only one type of trajectory (either disconnected or mul-
tifurcating) but poorly for the other trajectory type. For
example, PAGA and Palantir performed well for the mul-
tifurcating datasets but their combined score was lower
compared to other methods for the disconnected datasets.
On the other hand, Monocle3 and VIA, while perform-
ing better than PAGA and Palantir for the disconnected
datasets, performed poorly for the complex multifurcat-
ing trajectories. Moreover, qualitative analysis of the re-
sults on the mutlifurcating benchmark suggests Monocle3
to be biased towards capturing disconnected components as
it partitioned several multifurcating datasets in our bench-
mark into independent disconnected components (data not
shown). The detailed comparison of the TI methods for
the global topology and pseudotime ordering tasks (Sup-
plementary Figure S2) demonstrated MARGARET’s su-
perior performance over other methods in reconstructing
the underlying global topology and recovering the pseudo-
time order for the majority of the datasets in our bench-
marks. Across a range of clustering resolutions and clus-
tering methods, MARGARET consistently performed well
(Supplementary Figures S3 and S4) illustrating its robust-
ness towards these parameters. It is worth noting that for
evaluating VIA on the global topology and the pseudo-
time ordering tasks, we used PARC clustering (38) which
can also be used with MARGARET. Moreover, for VIA,
we performed coarse analysis as we found the VIA inferred
IM and correlation scores to worsen after the fine analysis.

https://github.com/dynverse/dyntoy
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Figure 2. MARGARET outperforms state-of-the-art TI methods on a simulated benchmark. MARGARET outperformed state-of-the-art TI methods
on qualitative and quantitative metrics when applied to a simulated benchmark consisting of ten datasets with diverse trajectory types. (A) (left) A sample
disconnected dataset (4929 cells), and (right) a sample multifurcating dataset (5000 cells) (B) Visualization of the cell embedding landscape inferred by
different TI methods on the disconnected (Top) and multifurcating (bottom) datasets. Palantir embedding landscapes shown with projected pseudotime
values. Monocle3 inferred trajectory graph projected on the embedding with colors denoting cluster information. PAGA, VIA and MARGARET outputs
shown as connectivity graphs. PAGA, Monocle3 and MARGARET inferred graphs were computed using Leiden clustering while VIA inferred graphs
were computed using PARC clustering. The clustering resolution was set to 0.4 for all methods (except Monocle3 which selects the best resolution).
For the MARGARET connectivity graph, the red nodes denote starting cell clusters and the cyan nodes denote detected terminal states. (C) Combined
score (higher score is better, see Materials and Methods) comparison between MARGARET and other TI methods for the disconnected (left) and the
multifurcating (right) datasets (see Supplementary Figure S3 and Supplementary Table S2 for the detail comparison of IM similarity, Kendall’s tau (KT),
and SpearmanRank (SR) correlation metrics.
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We also applied MARGARET to a simulated dataset with
a cyclic ground-truth trajectory (Cyclic 1) (Supplementary
Figure S5A, Supplementary Table S3A). For this dataset,
MARGARET, VIA and PAGA were able to capture the
global topology accurately while Palantir and Monocle3
failed to capture the cyclic structure (Supplementary Fig-
ure S5B).

Thus, our analysis shows the broad applicability of
MARGARET to a diverse suite of trajectory types com-
pared to other TI methods that usually perform well on
one type of trajectory but fail to model other trajectory
types.

MARGARET outperforms competing TI methods on a real
dataset benchmark

We next compared the performance of different TI meth-
ods on real biological datasets. For this evaluation, we se-
lected two multifurcating (oligodendrocyte differentiation
(16) and planaria parenchyme differentiation (17)) and two
disconnected (placenta trophoblast differentiation (15) and
mouse cell atlas (15)) datasets (see Supplementary Table S3
for dataset statistics) with ground-truth trajectories avail-
able as a network of milestones representation (13).

Figure 3A shows MARGARET inferred trajectories and
Supplementary Figure S6 shows the qualitative perfor-
mance of other state-of-the-art TI methods on the real
dataset benchmark. For the datasets with disconnected ref-
erence trajectories (placenta trophoblast differentiation and
mouse cell atlas), only MARGARET inferred trajectories
correctly captured the number of disconnected components
while accurately preserving different cell types specific to
each component (see cell-type annotations in Figure 3A (i-
ii)). VIA and Palantir were unable to capture the underly-
ing disconnected topology for both the datasets. PAGA was
able to capture the number of components in the mouse cell
atlas dataset but failed to capture the disconnected topol-
ogy for trophoblast differentiation. While Monocle 3 was
able to infer disconnected trajectory for both these datasets,
it also overestimated the number of disconnected compo-
nents for both datasets. Quantitative comparison on these
datasets (Figure 3B) revealed MARGARET to be the best
performer which achieved 30.56–97.13% improvement in
combined score over the next best performing method indi-
cating its superiority for both global topology and cell or-
dering tasks. For topology inference task, PAGA performed
the worst and exhibited the lowest IM similarity (or high-
est IM distance) scores while VIA, Monocle 3 and Palantir
performed similarly (Supplementary Figure S7A). MAR-
GARET achieved up to 21.04% improvement (over the next
best method) in lowering IM distance. For the cell order-
ing task, MARGARET outperformed the other methods
by a large margin (KT correlation of MARGARET for pla-
centa trophoblast differentiation was 0.53 as compared to
0.02 by the next best method Palantir, ∼ 23% improvement
for mouse cell atlas). Monocle 3 exhibited the lowest KT
correlation scores among all methods (Supplementary Fig-
ure S7B). Particularly for placenta trophoblast differentia-
tion, only MARGARET was able to recover the temporal
order of cells which other methods failed to capture lead-

ing to near zero or negative KT and SR correlation scores
(Supplementary Figure S7B).

For the datasets with multifurcating reference trajectories
(oligodendrocyte differentiation and planaria parenchyme
differentiation), Monocle 3 incorrectly captured the under-
lying trajectory as a disconnected graph further justifying
our observation that Monocle 3 might be biased towards
disconnected trajectories. While all other methods were able
to capture the multifurcations in the underlying trajectory
(Supplementary Figure S6), MARGARET outperformed
all the methods based on the combined score (Figure 3B, up
to 13.37% improvement over the next best method). PAGA
performed the worst on the global-topology task with other
methods exhibiting comparable performance while Mono-
cle3 performed the worst on the cell ordering task with con-
sistent negative KT scores on both multifurcating datasets.
MARGARET consistently exhibited high IM similarity,
KT, and SR scores on both datasets (Supplementary Fig-
ure S7). We further visualized the spectrum, 
 (�), for the
ground-truth trajectory and the trajectory inferred by dif-
ferent TI methods for one multifurcating (oligodendrocyte
differentiation, Supplementary Figure S7C) and one dis-
connected (mouse cell atlas, Supplementary Figure S7D)
dataset which further demonstrated superior overlap of the
spectrum for MARGARET inferred trajectory with that
of the ground-truth trajectory spectrum as compared to
that of other methods. These results demonstrate that while
other TI methods are more suited towards specific trajec-
tory types, MARGARET can generalize much better for
different types of trajectories.

MARGARET generalizes the quantification of differentia-
tion potential for complex trajectories

Differentiation potential (DP) as introduced by Palantir
measures cell fate plasticity along a trajectory and can
also characterize key events in the underlying dynamic pro-
cess (9). However, Palantir is able to quantify DP only
for connected trajectories as it models the trajectory as a
continuum of states. To evaluate whether MARGARET’s
DP formulation can generalize to more complex discon-
nected trajectories, we benchmarked MARGARET’s DP
inference against that of Palantir for two complex simu-
lated disconnected trajectories (Disconnected 4 and Dis-
connected 6) (Figure 4, Supplementary Table S3A). For
both the datasets, MARGARET accurately captured the
DP trends in different disconnected components and MAR-
GARET inferred DP showed high negative Spearman-
Rank correlation with the ground-truth pseudotime. DP
is expected to have negative correlation with pseudotime
(9) since as cells differentiate and proceed towards termi-
nal states, pseudotime increases while the DP of the cell
decreases. In contrast, Palantir’s DP inference performed
poorly for disconnected trajectories as observed from the
correlation analysis between DP and ground truth pseudo-
time (Figure 4). The poor performance of Palantir could be
the result of its single component assumption when infer-
ring the DP which does not extend to multiple independent
disconnected components within the same dataset. Hence,
for both the disconnected datasets, the DP inference by
MARGARET was superior to that of Palantir indicating
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Figure 3. MARGARET outperforms state-of-the-art TI methods on a real benchmark. MARGARET outperformed state-of-the-art TI methods on qual-
itative and quantitative metrics when applied to a real benchmark consisting of four datasets with disconnected (placenta trophoblast differentiation and
mouse cell atlas) and multifurcating (oligodendrocyte differentiation and planaria parenchyme differentiation) trajectories. (A) Visualization of MAR-
GARET inferred pseudotime and trajectories on the real dataset benchmark. The first column shows the ground-truth trajectory represented as network-
of-milestones. The second column shows MARGARET inferred pseudotime projected on the 2D embeddings. The third column shows MARGARET
inferred trajectories where initial and terminal states were annotated with ground-truth cell-type information. (B) Combined score (higher score is bet-
ter, see Materials and Methods) comparison between MARGARET and other TI methods for the disconnected (left) and the multifurcating (right) real
datasets (see Supplementary Figure S7 and Supplementary Table S4 for a detailed comparison of IM distance, Kendall’s tau (KT), and Spearman-rank
(SR) correlation metrics).
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Figure 4. MARGARET inferred DP generalizes to disconnected trajectories. (A) (top-left) Schematic of a ground truth simulated dataset with three
disconnected components (Disconnected-4, 7500 cells). The starting cells are shown in red color while the trajectories can be uniquely identified by three
different colors. (Top-Middle-1) MARGARET inferred trajectory. (Top-middle-2) MARGARET inferred DP for this dataset. Inferred DP trends are
qualitatively consistent across independent components. (Top-right) Palantir inferred DP. The results are qualitatively inconsistent as Palantir is unable to
capture the disconnected nature of the underlying trajectory. (Bottom) Scatter plot of Normalized DP vs ground truth pseudotime for both MARGARET
(left) and Palantir (right). MARGARET shows a higher negative Spearman-rank correlation with the ground truth pseudotime as compared with Palantir.
The cells in the scatter-plot are colored by their disconnected component id in the ground-truth trajectory. (B) Same as (A) but for a disconnected dataset
with two components (Disconnected-6, 2500 cells).
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the applicability of MARGARET’s DP inference to a wider
variety of trajectories.

MARGARET learns modular cluster representations during
episodic training

Since MARGARET’s metric-learning approach is aimed at
inferring a lower-dimensional cell-state manifold where the
distinct cell states are represented by compact cell clusters,
we evaluated the compactness of the inferred clusters by
tracking the clustering modularity scores and the number of
clusters inferred at the end of each episode during training
of two single-cell RNA sequencing human hematopoiesis
datasets (9) using Phenograph (39) across Louvain and Lei-
den clustering backends. For both datasets, at the end of
each training episode, MARGARET improved upon the
modularity score of the previous episode before finally con-
verging (Supplementary Figure S8). The clustering modu-
larity score can also be used for estimating MARGARET’s
convergence. Interestingly, the number of inferred clusters
did not always increase monotonically with the number of
episodes (Supplementary Figure S8A–C), suggesting that
the increase in modularity is due to the improved cluster-
ing quality at each episode.

MARGARET can refine the single-cell embeddings learned
using other methods

To investigate the ability of MARGARET’s unsuper-
vised metric learning-based approach, we initialized MAR-
GARET with d-dimensional cell embeddings (as obtained
from a linear or nonlinear dimension reduction method
such as PCA or scVI (40)) to infer MARGARET-refined
d-dimensional embeddings. The quality of MARGARET-
inferred cell embeddings was evaluated by comparing its
cell-type clustering performance (as measured by adjusted
rand index (ARI) and normalized mutual information
(NMI) metrics) against that of the initial embeddings on
a suite of biological datasets for which the ground-truth
clustering annotations were available (Methods). As com-
pared to scVI-inferred cell embeddings, MARGARET’s re-
fined embeddings achieved higher ARI and NMI scores
across all the datasets (Supplementary Figure S9A). Simi-
lar results were observed using a PCA-based initialization
(Supplementary Figure S9B), which suggests that MAR-
GARET’s metric learning-based approach can refine the
latent representations captured during earlier dimension
reduction stages. We also assessed the impact of using
different initial clustering methods (Supplementary Note
1, Supplementary Figure S10) and training hyperparame-
ters with MARGARET (Supplementary Note 1, Supple-
mentary Figure S11) and our analysis showed that MAR-
GARET’s metric learning approach is robust to the choice
of initial clustering method and training hyperparameters.

MARGARET correctly predicts human hematopoietic
differentiation trajectory and associated gene expression
changes

Due to the availability of established lineage-specific mark-
ers, hematopoiesis (41) has been used as a model bi-
ological system by several trajectory inference methods

(9,31). Using MARGARET, we first explored early hu-
man hematopoiesis where hematopoietic stem cells (HSCs),
through a hierarchy of progenitors and bifurcation events,
give rise to different mature cell types (41). We applied
MARGARET to two human bone marrow scRNA-seq
datasets (10X Chromium) (9) (replicates 1 and 2 consist-
ing of 5780 and 6501 cells, respectively). For both datasets,
MARGARET correctly identified all major hematopoietic
cell types, including hematopoietic stem cells (HSCs), com-
mon lymphoid and myeloid progenitors (CLPs and CMPs
respectively), as well as cells committed towards erythroid
(erythrocytes and megakaryocytes), monocytic and den-
dritic cell (classical and plasmacytoid dendritic cells (cDCs
and pDCs)) lineages (Figure 5A, Supplementary Fig-
ure S12A). The cell type clusters inferred by MARGARET
were characterized by the expression of key marker genes,
obtained by manually curating a set of marker genes for
major hematopoietic cell types through prior literature re-
view (9,42–44) (Figure 5D, Supplementary Figures S12F
and 13). The expression of the marker genes corresponding
to major hematopoietic cell types correlated well with the
topology of the MARGARET inferred trajectory (Supple-
mentary Figure S14). We utilized the starting cell informa-
tion provided by (9) for pseudotime inference (Figure 5B,
Supplementary Figure S12C). For both replicates, MAR-
GARET inferred pseudotime follows expected progression,
where the pseudotime increases as cells progress towards
more specialized cell types from CD34 enriched stem cells.
Moreover, the probability of cells branching to different
lineages diminishes as cells commit towards specific lin-
eages (Supplementary Figures S15–S17). Consequently, as
expected, MARGARET inferred DP (Figure 5C, Supple-
mentary Figure S12B) decreases as we move towards ter-
minal states in the trajectory since commitment towards a
specific lineage is accompanied by a gradual reduction in
cell plasticity. Figure 5E and Supplementary Figure S12D
represent the annotated hematopoietic trajectory inferred
by MARGARET for the two replicates, where the arrows
represent transition between cell types.

To validate MARGARET inferred trajectories, we com-
puted expression trends for essential marker genes for all
major hematopoietic lineages (Figure 5f). As expected, ex-
pression of CD34 decreases with increasing pseudotime as
cells commit to particular lineages (41). In contrast, CD79B
is selectively upregulated in the lymphoid lineage (45) while
MPO and IRF8 are upregulated in the monocyte (46) and
dendritic cell (DC) (47) lineages, respectively. ITGA2B and
GATA1 are selectively upregulated in the megakaryocytic
(48) and erythroid (49) lineages, respectively. Similar ex-
pression trends were observed for replicate 2 demonstrating
MARGARET’s robustness (Supplementary Figure S12E).

MARGARET characterized progenitor populations for
monocytic and dendritic cell lineages

Interestingly, we observed an initial upregulation in MPO
expression in both the monocyte and DC lineages (Fig-
ure 5F). However, with pseudotime progression, MPO ex-
pression is upregulated in the monocyte lineage but gets
downregulated in the DC lineage. To explore the branch-
ing of monocyte and DC lineages from CMPs in replicate
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Figure 5. MARGARET delineates major lineages and identifies important transcriptional switches in early human hematopoiesis. Analysis of scRNA-seq
data for human hematopoiesis replicate 1 by MARGARET. (A) tSNE plot of cell-state embedding inferred by MARGARET for the human hematopoiesis
dataset, cells are colored by MARGARET inferred clusters. (B) MARGARET pseudotime and (C) differentiation potential calculated using one HSC as a
start cell. (D) Heat map for marker genes for all MARGARET inferred clusters. (E) MARGARET inferred trajectory annotated with cell-type and lineage
information (important marker genes are mentioned within parantheses with the cell type annotation). Ery: Erythrocyte; Mk: Megakaryocyte; MEP:
Megakaryocyte-Erythroid Progenitors; HSC: Hematopoeitic Stem Cells; CLP: Common Lymphoid Progenitors; CMP: Common Myeloid Progenitors;
GMP: Granulocyte-Monocyte Progenitors; MDP: Monocyte-Dendritic Cell Progenitors; cDC: Classical Dendritic Cells; pDC: Plasmacytoid Dendritic
Cells; Mono: Monocytes. (F) Gene expression trends for essential genes for major inferred lineages. (G) Differential expression (DE) analysis between
cluster 4 (MDP) and cluster 5 (GMP) (H) Variation of CEBPA and ID2 gene expressions in the monocyte (Mono) lineage (top) and the dendritic cell (DC)
lineage (bottom) for replicate 1. The boxplots summarize the expression of the gene in each cluster in the lineage, where the box depicts the interquartile
range (IQR, the range between the 25th and 75th percentile) with the median value, whiskers indicate the maximum and minimum value within 1.5 times
the IQR. The red dotted line represents the mean differentiation potential for each cluster in the lineage.
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1, we investigated the transitions from cluster 10 to clus-
ter 4 and cluster 10 to cluster 5 that are also associated
with substantial changes in DP indicating that these tran-
sitions accompany important molecular events correspond-
ing to lineage commitment (9). At the transition from CMPs
to monocytes, we observed elevated expressions of mono-
cyte markers ((42)) including CEBPA, and CEBPE (Fig-
ure 5D, H (top), Figure 6A), which correlated with a de-
crease in DP. The transcription factor (TF) CEBPA plays
a crucial role in cell fate decisions in granulocyte-monocyte
progenitors (GMPs) (50,51) to differentiate into granulo-
cyte and monocyte (42). Apart from elevated expression of
CEBPE and monocyte markers MPO, LYZ and MS4A6A
(43), the monocyte clusters also strongly expressed granule
genes such as CTSG, PRTN3 and ELANE (Figure 5D),
each of which were also highly correlated (>0.92) with
the MARGARET inferred monocytic branch probabili-
ties (Figure 6C). Monocytes derived from granulocyte-
monocyte progenitors (GMPs) are known to express these
granule proteases (52). Therefore, expression of CEBPA,
CEBPE and granule proteases and reduced FLT3 expres-
sion in cluster 5 (Figure 6A (left)) indicates the presence of
GMPs in cluster 5 (52). We also observed similar trends for
replicate 2 (Supplementary Figure S18).

In contrast, we observed elevated expressions of FLT3 in
cluster 4 (Figure 6A (right)) which also correlated with a
decrease in DP on the transition from cluster 10 (FLT3+

CMP) to cluster 4. Moreover, this cluster showed elevated
expression of CSF1R (CD115), dendritic cell marker IT-
GAX (CD11c) (Figure 6B), and MPO (Figure 5D). Al-
together, the FLT3+CD115hi signature of this cluster sug-
gests the presence of monocyte-dendritic cell progenitors
(MDPs) in cluster 4 which gives rise to both monocytes
and dendritic cells (52). Therefore, MARGARET inferred
branching structure in the myeloid lineage characterized the
differentiation of monocytes and dendritic cells from GMPs
and MDPs respectively and these important events were
also marked by a decrease in MARGARET inferred DP.
These progenitor populations and their lineage branchings
were not characterized in the original study (9) that used
Palantir.

MARGARET characterized the heterogeneity in DC lineage

In the DC lineage for replicate 1, MARGARET in-
ferred cluster 7 expressed markers for both cDCs (ITGAX,
CLEC10A) and pDCs (IRF7, IRF8, IL3RA) (Figure 5D)
while cluster 23 only expressed pDC markers. We made a
similar observation in replicate 2 with clusters 1 and 20
equivalent to clusters 7 and 23 in replicate 1 , respectively.
To characterize the heterogeneity in the DC lineage at a
finer resolution, we combined the cells in the DC lineage
from clusters 4, 7 and 23 in replicate 1 and clusters 5,
1 and 20 in replicate 2 and analyzed the resulting 1406 cells
using MARGARET. Figure 6D shows the MARGARET
inferred trajectory, consisting of 10 clusters (DC0-DC9).
Since MDPs give rise to DC populations, based on the
expression of MDP-specific markers CSF1R, and ITGAX
(52) (Figure 6B) we inferred cluster DC7 as the starting
cluster for our analysis. Based on manually curated set of
markers specific to pDCs and cDCs through prior litera-

ture review (53–55), we then identified pDCs marked by
high expression of E2-2 (TCF4) TF, its target TFs IRF7,
SPIB, and pDC-specific marker genes LILRA4 (ILT7) (56)
and PACSIN1 (57), in cluster DC0 (Figure 6E (top), F)
which was a terminal state. E2-2 expression serves as a key
event in pDC cell fate choice (58), IRF7 is a key regula-
tor of IFN expression and has been shown to be highly ex-
pressed in pDCs as compared to other cell types (59). Sim-
ilarly, we localized the cDC lineage by observing high ex-
pression of ITGAX (CD11b), ID2 and CD1c (60) in clus-
ters DC3 and DC8 (Figure 6F). Furthermore, we observed
high expression of cDC2-specfic TFs NR4A3, SREBF2 and
marker genes CLEC10A, CD1E, CLEC12A, CX3CR1 (54)
(Figure 6E (bottom), F) and negligible expression of cDC1
marker gene CLEC9A (61) in clusters DC3 and DC8 (data
not shown) indicating the presence of cDC2 and absence of
cDC1 cells in these clusters.

MARGARET characterized erythroid-megakaryocytic lin-
eage

We also characterized the erythroid-megakaryocytic lineage
branching in MARGARET inferred trajectory. Both ery-
throid and megakaryocytic commitment were associated
with a sharp decrease in DP (Supplementary Figure S19).
In the erythroid lineage, this decrease in DP was concordant
with the elevated expressions of TFs GATA1, KLF1 and
MYB, which are known to play crucial roles in erythro-
poiesis: GATA1 is indispensable for erythropoiesis (49),
KLF1 modulates erythroid cell differentiation by regulating
erythroid precursor genes and also antagonizes megakary-
ocyte differentiation (42,62), MYB enhances erythropoiesis
by suppressing megakaryopoiesis (63). Expression of these
TFs also highly correlated with the erythroid branch prob-
abilities (>0.9) indicating their crucial regulatory role in
erythroid commitment (Supplementary Figure S20A). In
the megakaryocyte lineage, the drop in DP was concor-
dant with increasing expression of transcription factors
PBX1, FLI1, and MEIS1 (Supplementary Figure S19),
which were also closely correlated (>0.9) with megakary-
ocytic branch probabilities (Supplementary Figure S20B).
These TFs are known to play central role in megakary-
opoiesis: FLI1 and PBX1 are essential TFs for megakary-
ocyte differentiation (42,64), and MEIS1 is essential for
fetal megakaryopoiesis (65). The cluster 15 (in replicate
1) at which the erythroid and megakaryocytic lineages di-
verged, expressed both GATA2 (driver of erythroid com-
mitment (66)) and CD41 (responsible for megakaryocytic
lineage commitment (42)), as well as genes like SLC14A1
and VWF, which are responsible for a continuous transi-
tion from megakaryocyte-erythroid progenitors (MEP) to
erythroid and megakaryocyte progenitors respectively (44)
suggesting the presence of MEPs in cluster 15.

MARGARET applied to early human embryogenesis data

To investigate MARGARET’s ability in extracting novel in-
sights from a complex biological system, we applied MAR-
GARET to an scRNA-seq dataset generated from embry-
oid bodies (EB) (18), which recapitulates the differentia-
tion process in early embryogenesis where pluripotent em-



e86 Nucleic Acids Research, 2022, Vol. 50, No. 15 PAGE 16 OF 24

Figure 6. MARGARET characterizes cellular heterogeneity in the monocytic and dendritic cell lineages. (A) Variation of the expression of CEBPE and
FLT3 across the monocyte (Mono) lineage (left) and the DC lineage (right) for replicate 1. The boxplots summarize the expression of the gene in each
cluster in the lineage, where the box depicts the interquartile range (IQR, the range between the 25th and 75th percentile) with the median value, whiskers
indicate the maximum and minimum value within 1.5 times the IQR. The red dotted line represents the mean differentiation potential for each cluster in
the lineage. (B) Mean expression of ITGAX (top) and CSF1R (bottom), projected on the MARGARET inferred connectivity graph. (C) Gene expression
trends for neutrophil-like monocyte marker genes: PRTN3, ELANE, CTSG are highly correlated with monocyte branch probability (dotted black line).
(D) MARGARET inferred trajectory for the DC sub-lineage obtained from the combined analysis of replicates 1 and 2. MARGARET accurately recovers
the cDC and pDC lineages. (E) Gene expression trends for pDC markers (top): IRF7, TCF4 and cDC markers (bottom): CLEC12A, CLEC10A. (F) Heat
map of DC-lineage specific marker genes for MARGARET inferred DC sub-lineage clusters. (G) Comparison of differentially Expressed genes between
cDCs (cluster DC8) and pDCs (cluster DC0).
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bryonic stem cells (ESCs) give rise to early lineage precur-
sors. Even though EB differentiation has been successfully
utilized to drive a diverse set of differentiation protocols
(67,68), the cellular and molecular states associated with the
early lineage precursors as well as their differentiation tra-
jectories from human ESCs remain fairly less explored. The
dataset consisted of 16821 cells, sampled at 3-day intervals
over a 27-day differentiation time course (18). Even though
the sampling time information was not utilized to learn the
cell-state manifold, MARGARET inferred embedding that
consisted of 26 clusters (Figure 7A) retained the time trend
accurately (Figure 7B), thus preserving the global topol-
ogy associated with the data. Next, we identified the ma-
jor lineages recovered by MARGARET by examining the
expression of essential marker genes for major lineages pre-
viously reported in the literature for this dataset (18) (Fig-
ure 7D, Supplementary Figure S21A,B). This preliminary
analysis revealed the presence of endoderm (EN), meso-
derm (ME), neural crest (NC), neuroectoderm (NE) and
neuronal subtypes (NS) (including neural progenitors (NP))
lineages along with ESCs in the data. To further validate
the inferred lineages, we grouped MARGARET clusters
based on their lineage information to obtain five major
clusters (Supplementary Figure S22A) for which we per-
formed differential expression (DE) analysis (Supplemen-
tary Figure S22B). Gene ontology (GO) analysis (Materials
and Methods, Data Availability) of the DE genes for these
combined clusters (Supplementary Figure S22C) revealed
major functional differences between these clusters, with the
enrichment of GO terms corresponding to these major lin-
eages suggesting the validity of the inferred lineages (Sup-
plementary File 1).

Due to the presence of ESCs in cluster 6 as marked by the
high expression of POU5F1, NANOG (essential for main-
taining pluripotency in ESCs (69)), and DDPA2/4 (Fig-
ure 7D, F), we selected a starting cell from cluster 6 for
further trajectory analysis, including the inference of pseu-
dotime and DP. MARGARET inferred pseudotime (Fig-
ure 7C) followed the progression of cell types, where the
pseudotime increased as cells progressed towards more spe-
cialized cell types from POU5F1 enriched ESCs.

Furthermore, MARGARET recovered a detailed lin-
eage specification map of embryoid bodies in a fully un-
supervised manner (Figure 7E). We further characterized
the MARGARET inferred clusters for specific cell types.
In the ectoderm lineage: neuroectoderm, neural crest, and
neuronal subtype clusters were detected as terminal states.
In the mesoderm lineage, MARGARET identified heman-
gioblasts (H), cardiac precursors (CPs), and smooth mus-
cle precursors (SMPs) as the terminal states. Lastly, a sin-
gle cluster in the endoderm lineage was also identified as a
terminal state. To characterize the recovered lineage map,
we explored the expression trends of key marker genes
for the terminal cell types (Figure 7F). The expression of
ESC marker gene POU5F1 decreased with pseudotime in
all lineages. CD34 was selectively upregulated in heman-
gioblasts, while TNNT2, and TBX18 were upregulated in
the CPs and SMPs, respectively. KLF5 and SOX10 were up-
regulated in the EN, and NC lineages respectively. LHX5
was initially upregulated in the NS, NC and NE lineages
but was subsequently downregulated in the NS and NC

lineages suggesting its importance in NE lineage commit-
ment. While we identified five NS clusters, ONECUT1
was upregulated in NS-5, the terminal neuronal subtype
cluster.

The probability of cells branching towards a specific lin-
eage as inferred by MARGARET increased towards later
stages in cell differentiation (Supplementary Figure S23).
For this dataset also, DP decreased with an increase in pseu-
dotime (Supplementary Figure S24A) with the ESC cluster
having the highest DP, followed by the transitional cell types
and the terminal states having the lowest DP (Supplemen-
tary Figures S24 and S25). Thus decrease in DP was con-
cordant with the major lineage commitments in EB differ-
entiation.

In the ectodermal lineage, ESCs differentiate into preneu-
roectoderm cells (showing downregulation of POU5F1
(Figure 7F)), which give rise to neuroectoderm cells (ex-
pressing LHX2/5, SIX3 (Figure 5D,F)). Similar to (18),
MARGARET was able to identify the bipotent precursors
(cluster 9 expressing HOXA2, HOXB1 and OLIG3 (Fig-
ure 7D)) that originated from the neuroectoderm cells ex-
pressing GBX2 and bifurcated from cluster 9 into the neural
crest and neuronal sub-lineages (Figure 7E). Further char-
acterization of this branching revealed correlation between
a decrease in MARGARET inferred DP and the up/down
regulation of important TFs in the neural crest and neu-
ronal lineages (Supplementary Figure S26). The DP drop in
the neural crest lineage was concordant with the upregula-
tion of canonical TFs SOX9/10 (70,71) (Figure 7D,F, Sup-
plementary Figure S26A,B (right)) while neuronal-subtype
cluster 3 exhibited upregulation of TFs SOX1 and LHX2
(Figure 7D, Supplementary Figure S26A, B (left)), which
have been shown to be important for subtype specifica-
tion in certain types of neurons (72,73). GO analysis at
finer resolution (Figure 7G, Data Availabililty) also re-
vealed the enrichment of both neural crest and neuronal
differentiation-related functions in cluster 9 further validat-
ing its bi-potency. We next validated the neural crest sub-
branch detected by MARGARET using the bulk RNA-seq
data provided by (18) for FACS purified CD49d+CD63−
cells. The Spearman correlation analysis between scRNA-
seq profiles of cells in the EB dataset with the bulk RNA-seq
expressions corresponding to CD49+ cells revealed the high-
est correlation in the neural crest lineage which also showed
high ITGA4 expression (Supplementary Figure S27A), sug-
gesting the accurate localization of the neural crest cells in
MARGARET trajectory.

In the mesoderm lineage, differentiation proceeds via
the primitive streak progenitor cells (cluster 22 expressing
EOMES and T), towards a number of sub-lineages within
the mesoderm. MARGARET trajectory (Figure 7E) iden-
tified a series of intermediate precursors expressing (CER1,
GATA1), (GATA6, HOXB4) and (GATA5/6, HAND1), re-
spectively which finally gave rise to cardiac precursors (ex-
pressing TNNT2). Bulk-RNA analysis for FACS purified
CD82+CD142+ cells revealed the highest correlation of
the single-cell expression profiles in the mesoderm sub-
lineage harboring cardiac precursors (cells with high CD82
and CD142 expressions) (Supplementary Figure S27B),
suggesting that MARGARET accurately detects this sub-
lineage. In the mesoderm lineage, we found three types of
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Figure 7. MARGARET characterizes the differentiation trajectory in human embryoid bodies. MARGARET reconstructs a detailed lineage map and
identifies novel cell types and differentiation intermediates in the embryoid body (EB) dataset. (A) UMAP plot of cell-state embedding inferred by MAR-
GARET for EB dataset. (B) MARGARET inferred cell embedding preserves real time information. (C) MARGARET pseudotime projected on the cell
embeddings. (D) Heat map of marker genes for all MARGARET inferred clusters. (E) MARGARET inferred trajectory annotated with cell-type and
lineage information (characteristic marker genes are mentioned within parantheses with the cell-type annotation). ESC: Embryoid stem cells; PS: prim-
itive streak; NE: neuroectoderm; NC: neural crest; NS: neuronal subtypes; EN: endoderm; H: hemangioblasts; ME: mesoderm; SMP: smooth muscle
precursors; ECP: epicardial precursors; CP: cardiac precursors. (F) Gene expression trends for the inferred lineages. (G) Gene ontology (GO) analysis of
MARGARET inferred clusters (grouped by major lineages). The heatmap value for a GO term was set to

√− log(pval ), where pval is the P-value for the
corresponding GO term.
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smooth muscle precursors (SMPs) which expressed differ-
ent markers (SIX2, PRRX2 and TBX15/18) suggesting that
SMP differentiation in the mesoderm lineage proceeds via
one or more differentiation intermediates from plate ME
cells. Thus, MARGARET accurately resolved the under-
lying trajectory structure in the EB dataset by inferring
branchings and intermediate cell populations essential for
cell lineage commitment in early embryogenesis.

Analysis of colon differentiation using MARGARET

To investigate the epithelial differentiation in colon, we ap-
plied MARGARET to a scRNA-seq dataset (11175 cells)
comprising three conditions - healthy (4249 cells), clini-
cally inflamed ulcerative colitis (UC) (2848 cells), and non-
inflamed UC (4078 cells) across three replicates (19). For
the healthy colon, MARGARET identified 15 clusters (Fig-
ure 8A) and the inferred trajectory accurately delineated the
absorptive and the secretory lineages (Figure 8F). Projec-
tion of crypt-axis (CA) scores (19) (see Materials and Meth-
ods) for each cell (obtained from the combined expres-
sion of 15 gene markers expressed in absorptive and secre-
tory cells) on the 2D representation of the MARGARET-
inferred cell embedding (Figure 8D) revealed the cells in
the absorptive lineage to have higher CA scores as com-
pared to stem cells or cells in the secretory lineage indicat-
ing the presence of these cells towards the crypt-top indi-
cating that MARGARET correctly localized the cell-types
within the trajectory. We then investigated the expression of
key marker genes (curated from prior literature (19,74)) for
different cell types in the absorptive and secretory lineages
(Figure 8E). We identified absorptive progenitors, colono-
cytes, crypt-top (CT) colonocytes, and BEST4/OTOP2 cells
in the absorptive lineage; and secretory progenitors, goblet
cells, and enteroendocrine cells (EECs) in the secretory lin-
eage. Based on high expression of stem cell markers genes
MLEC and LGR5 in cluster 0 (Figure 8E), we selected
a cell from this cluster as the starting cell for the subse-
quent inference of pseudotime (Figure 8B) and DP (Fig-
ure 8C). Terminal state prediction using MARGARET fur-
ther revealed four terminal states namely: EECs (cluster 14)
and goblet cells (cluster 5) in the secretory cell lineage, and
BEST4/OTOP2 cells (cluster 13) and CT colonocytes (clus-
ter 3) in the absorptive cell lineage. MARGARET inferred
branch probabilities (Supplementary Figure S28) and gene
expression trends (Figure 8H) in the detected lineages fur-
ther validated the cell populations detected in the absorp-
tive and the secretory cell lineages as the marker genes
MUC2, SCGN, AQP8 and BEST4, were selectively upregu-
lated in the goblet (75), EECs (76), CT colonocytes (77) and
BEST4/OTOP2 cell (19) lineages respectively.

In the absorptive cell lineage, BEST4/OTOP2 cells were
detected as a terminal state that branched from the ab-
sorptive progenitors (APs) before they gave rise to colono-
cytes. To characterize this novel branching point, we per-
formed GO analysis of BEST4/OTOP2 cells, CT colono-
cytes, colonocytes, and APs, which revealed the role of
BEST4/OTOP2 cells in maintaining metal-ion transport
and homeostasis in the colonic epithelium (Figure 8G).
The GO analysis of the BEST4/OTOP2 cell cluster did not
include any overlapping GO terms with CT colonocytes

and colonocytes, suggesting the functional variability be-
tween these cell types. However, BEST4/OTOP2 cells ex-
hibited high CA scores (Figure 8D) and expressed several
colonocyte-specific markers GUCA2A, CEACAM1 and
CEACAM7, which suggests that these cells are similar to
mature colonocytes and lie towards the crypt top. More-
over, APs showed enrichment of GO terms correspond-
ing to both BEST4 cells and colonocytes (Figure 8G). The
branching of BEST4/OTOP2 cells was also marked by
the downregulation of the TF ESRRA and the high ex-
pression of TFs CDX1 and PPARG (Figure 8I). We ob-
served a similar branching in the absorptive lineage under
non-inflamed UC (Supplementary Figure S29) with similar
GO enrichment for the BEST4/OTOP2 cells, CT colono-
cytes, and colonocytes. Therefore, our findings suggest that
BEST4/OTOP2 cells are mature colonocytes with a differ-
ent functional profile as compared to CT colonocytes and
originate from APs as a different sub-lineage within the ab-
sorptive lineage.

Given the crucial role of goblet cells in colonic barrier
maintenance (78), we further characterized the transcrip-
tional landscape of the goblet cell lineages under healthy
and inflamed UC conditions using MARGARET (Sup-
plementary Figure S30). Under both conditions, MAR-
GARET reconstructed a linear trajectory in the goblet cell
lineage from immature goblet cells to mature goblet cells
(Supplementary Figure S30G, H) (maturity of cells inferred
by pseudotime order (Supplementary Figure S30C, F)). We
observed relatively higher expression levels of WFDC2 in
immature goblet cells than in mature goblet cells under both
healthy and inflamed conditions. In contrast, MUC2 was
more expressed in mature goblet cells (Supplementary Fig-
ure S30I). Moreover, we found mature goblet cells to have
higher CA scores than immature goblet cells, suggesting
that the mature cells reside at the top of the colonic crypt
(Supplementary Figure S30B, E). The functional character-
ization (Supplementary Figure S30J) of the goblet cell clus-
ters revealed the enrichment of GO terms related to wound
healing, immune, and stress response in the mature goblet
cells under inflamed UC condition indicating their potential
role in inflammatory responses to inflammatory bowel dis-
ease (IBD). The goblet cells in inflamed UC further showed
spatial and crypt-wide transcriptional heterogeneity. The
mature goblets in inflamed UC that reside in the crypt-
top showed elevated expressions of SPINK1 and SPINK4
(Supplementary Figure S31A), genes that are normally ex-
pressed by immature goblets residing at the crypt bottom in
healthy colon. Moreover, we also observed transcriptional
dysregulation of interferon-regulated cytokines including
CD164, CD55 and IRF7 (79) throughout the goblet cell lin-
eage in inflamed UC (Supplementary Figure S31B).

MARGARET can scale to large scRNA-seq datasets

To assess MARGARET’s scalability to large scRNA-seq
datasets, we measured the runtimes of different compu-
tational stages in MARGARET on scRNA-seq datasets
of different sizes subsampled from a 1.3 million neuronal
cells dataset of 10× Genomics (20) (Supplementary Fig-
ure S32A). For a large scRNA-seq dataset consisting of
500 000 cells, training MARGARET’s neural network-
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Figure 8. MARGARET delineates the differentiation trajectory for colonic epithelial cells for healthy humans. (A) UMAP plot of cell-state embedding
inferred by MARGARET for healthy human colonic epithelium, cells are colored by clusters inferred by MARGARET. (B) MARGARET pseudotime
and (C) differentiation potential for each cell projected on the cell embeddings. (D) Crypt-axis score (See Methods) projected on MARGARET cell
embeddings. (E) Heat map showing marker genes for each MARGARET inferred cluster. Marker genes were curated from (19). (F) MARGARET inferred
trajectory annotated with cell type and lineage information (important marker genes for each cell type are mentioned within parantheses with the cell type
information). CT: Crypt-top; EEC: enteroendocrine cells (G) Gene Ontology (GO) analysis for major inferred cell types in the absorptive cell lineage.
Top GO:BP terms were included for each cell type. The value for a GO term in the heat map was set to

√− log(pval ), where pval is the P-value for the
corresponding GO term. (H) Gene expression trends for essential genes for major inferred lineages. (I) Mean expression of TFs CDX1, ESRRA and
PPARG, projected on the MARGARET inferred connectivity graph.
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based encoder in the metric learning stage took around
4 min per epoch (on a server with one Nvidia Quadro
RTX 5000 GPU). Moreover, due to extensive hardware
support in modern computation libraries, MARGARET
can also utilize multiple GPUs during the training stage,
thus making it scalable for inferring cell-state manifold
even for very large scRNA-seq datasets. For the same
dataset, undirected graph construction in MARGARET
took only ∼20 s making exploratory analysis and visual-
ization of large datasets extremely fast. For pseudotime in-
ference, MARGARET took around 2 h for the 500k cells
dataset thus exhibiting scalability across all computational
stages when run on a large scRNA-seq dataset. We also
compared MARGARET’s runtime for trajectory inference
(undirected graph construction and pseudotime inference)
with that of other TI methods on two relatively large sub-
sampled datasets consisting of 50k and 100k cells and found
that MARGARET’s runtimes were comparable to that of
other methods (Supplementary Figure S32B (left)). More-
over, on two smaller datasets sampled from our real dataset
benchmark, MARGARET outperformed all other meth-
ods in terms of runtime for trajectory inference (Supple-
mentary Figure S32B (right)).

DISCUSSION

As single-cell datasets grow in size and complexity, MAR-
GARET addresses the need for scalable and accurate de-
tection of cell-state lineages, prediction of cell fates, and the
inference of cell fate plasticity in complex topologies un-
derlying dynamic cellular processes. The end-to-end com-
putational framework of MARGARET alleviates the chal-
lenges faced by existing TI methods: inability of the clas-
sical dimensionality reduction methods to accurately re-
cover the underlying topology, insufficient generalizabil-
ity to connected and disconnected graph trajectories be-
yond tree-structured topologies, accurate detection of less-
sampled cell fates, and inference of cell fate plasticity for
complex trajectory types. Our analysis of a diverse simu-
lated benchmark as well as real benchmark consisting of
challenging topologies showed that MARGARET gener-
alizes to complex trajectories and can accurately infer the
underlying topology and pseudotime order of cells in the
trajectory while outperforming state-of-the-art methods on
the same. Specifically, the benchmarking with the real bi-
ological datasets showed MARGARET’s ability to reca-
pitulate the cell pseudotime order for complex trajectories
where other methods completely failed (e.g. placenta tro-
phoblast differentiation). Moreover, using synthetic discon-
nected trajectories, we showed that MARGARET can ac-
curately infer DP for each component in the disconnected
trajectories whereas Palantir’s DP inference is mostly incor-
rect for such datasets. (Figure 4).

Using multiple biological datasets, we also showed that
MARGARET’s metric learning-based approach can refine
the cellular latent space inferred by other dimensionality
reduction methods. On a variety of important biological
systems, we showed that MARGARET identified all the
major lineages and the established cell fates and recov-
ered the marker gene expression trends. In early human
hematopoiesis, MARGARET identified progenitor popula-

tions associated with the branching points (MDP and GMP
in the myeloid and MEP in the erythroid lineages respec-
tively), which were not characterized in the original study
that used Palantir. MARGARET also identified cDC2 as a
terminal state in the dendritic cell lineage along with pDCs.
For embryoid body differentiation, MARGARET recon-
structed a detailed lineage map of all major and sub-lineages
and further validated the presence of novel differentiation
intermediates in the neuroectoderm and mesoderm lineages
and identified novel smooth muscle precursor populations.
For colonic epithelial differentiation, MARGARET helped
identify a branch point for BEST4/OTOP2 cells in the ab-
sorptive lineage, while also uncovering the dysregulation of
essential marker genes and cytokines in goblet cells under
the inflamed UC condition. Our runtime experiment with
a 1.3 million cells dataset (20) further demonstrated that
MARGARET’s trajectory inference scales even to datasets
with millions of cells.

Similar to other pseudotime methods, MARGARET as-
sumes unidirectional cell differentiation where immature
stem cells differentiate into more mature cell types. This
assumption is violated for trans-differentiation and de-
differentiation, events that can lead to ancestral cell-states
and scRNA-seq data alone might be insufficient in char-
acterizing such events (9). Recent methods (80–82) utilized
naturally occurring somatic mutations or synthetic muta-
tions for lineage tracing. It would be an interesting direction
to extend MARGARET by incorporating auxiliary signals
like lineage information and real-time information for elu-
cidating reprogramming. Lastly, while we focus on scRNA-
seq datasets in this study, it is worth noting that our frame-
work can easily be extended for other single-cell omics as
well as multi-omics datasets. The modular structure of our
method also allows for effortless integration with other di-
mension reduction, clustering and omics-integration meth-
ods. The implementation of MARGARET also allows the
users to provide their own clustering as an input to MAR-
GARET and thus supports the inclusion of domain knowl-
edge in subsequent stages of trajectory inference. Given the
explosion of single-cell datasets fuelled by collaborative ef-
forts such as Human Cell Atlas (HCA) project (83) and Hu-
man Biomolecular Atlas Program (HubMAP) (84), we an-
ticipate MARGARET to be a valuable tool for a scalable
and multifaceted exploration of dynamic cellular processes
from varied biological systems.

DATA AVAILABILITY

All data needed to evaluate the conclusions in the
paper are present in the paper and/or the Supple-
mentary Materials. The human hematpoiesis dataset
is available through the Human Cell Atlas portal at
https://prod.data.humancellatlas.org/explore/projects/
29f53b7e-071b-44b5-998a-0ae70d0229a4. The scRNA-
seq and bulk RNA-seq datasets for the embryoid body
dataset can be accessed via the Mendeley Data repos-
itory at https://doi.org/10.17632/v6n743h5ng.1. The
scRNA-seq data for colon differentiation can be ac-
cessed using the GEO accession number GSE116222.
All the real datasets used for demonstrating the cluster-
ing efficiency of MARGARET (PBMC-8k, PBMC-4k,

https://prod.data.humancellatlas.org/explore/projects/29f53b7e-071b-44b5-998a-0ae70d0229a4
https://doi.org/10.17632/v6n743h5ng.1
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Heart Cell Atlas and CORTEX) and runtime bench-
marking (1.3M neuron dataset) can be accessed via
the scvi-tools package (22). The Gene-Ontology terms
used for the EB dataset can be accessed via Zenodo at
https://doi.org/10.5281/zenodo.5751235. All simulated
and real datasets (Placenta Trophoblast differentiation,
Mouse cell atlas, Oligodendrocyte differentiation and
Planaria parenchyme differentiation) used for comparing
MARGARET to other TI methods can be accessed via
Zenodo at https://doi.org/10.5281/zenodo.5850114.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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