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Driven by transmembrane electrochemical ion gradients, F-type ATP synthases are the
primary source of the universal energy currency, adenosine triphosphate (ATP), through-
out all domains of life. The ATP synthase found in the thylakoid membranes of photosyn-
thetic organisms has some unique features not present in other bacterial or mitochondrial
systems. Among these is a larger-than-average transmembrane rotor ring and a redox-
regulated switch capable of inhibiting ATP hydrolysis activity in the dark by uniquely
adapted rotor subunit modifications. Here, we review recent insights into the structure
and mechanism of ATP synthases specifically involved in photosynthesis and explore the
cellular physiological consequences of these adaptations at short and long time scales.

Introduction
Cellular life depends on the energy that is ultimately powered by sun light. Its direct users are plants,
algae and some clades of bacteria, e.g. cyanobacteria and purple bacteria. These photoautotrophic
organisms convert solar energy into chemical forms of energy by photosynthesis, a process in which
7 × 1016 g of carbon is fixed by autotrophs globally each year [1]. The light-dependent reactions of
photosynthesis involve a series of large, macromolecular complexes, which are capable of harvesting
light energy to split water molecules releasing electrons for the reduction in NADP+ into NADPH
and releasing protons (H+) into the thylakoid lumen generating the proton-motive force, pmf, required
for ATP synthesis. The resultant pools of NADPH and ATP are essential substrates for the Calvin–
Benson–Bassham cycle (CBB) where carbon fixation occurs [2,3]. The four large protein complexes
involved in the production of NADPH and ATP are photosystem II, cytochrome b6f, photosystem I
and ATP synthase. The first three complexes form the electron transport chain for NADP+ reduction
and the latter complex synthesising ATP, the cells’ universal energy currency [4–6]. This review
focuses on ATP synthase from photosynthetic organisms, which possesses some unique features not
observed in other forms of life.
The pmf is the direct energy source of the rotary F1Fo-ATP synthase; a large, membrane-embedded

protein complex that converts the substrates adenosine diphosphate (ADP) and inorganic phosphate
(Pi) into ATP by a unique rotational mechanism. The process of ATP synthesis by ATP synthases is
entirely reversible. Under particular cellular conditions, the ATP synthase can operate in reverse, con-
verting energy from ATP hydrolysis and pumping ions across the membrane to generate a pmf [7].
The pmf itself is composed of two components, a transmembrane electrical potential (Δψ) and a trans-
membrane chemical proton gradient (ΔpH). The ATP synthase from bacterial, chloroplast and mito-
chondrial sources plays a key role in cellular bioenergetics and has been studied by biochemical and
structural methods already for many decades [8–11]. More recently, electron cryo-microscopy
(cryo-EM) has revealed the structure of fully intact F-type ATP synthases from chloroplasts at high-
resolution, resolving the intermediary conformational states and other key mechanistic and regulatory
aspects (Figure 1) [12,13].
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Figure 1. Structure of the spinach chloroplast F1Fo-ATP synthase.

(A) The F1Fo-ATP synthase from spinach chloroplast is found embedded in the thylakoid membranes and couples the proton-motive

force, pmf, with the synthesis of ATP. The water-soluble, catalytic F1 subcomplex consists of subunits α3β3γδε. The

membrane-embedded Fo subcomplex consists of subunits ab2c14. During ATP synthesis, protons enter via an aqueous half-channel

on the a-subunit exposed to the thylakoid lumen and bind successively to the binding sites on the c14-ring. As protons bind, the

c14-ring rotates almost a full turn before the protons exit through a second half-channel formed by an aqueous wedge between the

c-ring and the a-subunit into the stroma. The torque generated by the rotating c14-ring is transferred to the catalytic F1 head group

via the central stalk (γε). In the catalytic β-subunits ADP and Pi condenses to ATP. Each of the three β-subunits is in different

conformational state at any given time point, either empty (βE), bound to ADP (βDP) or bound to ATP (βTP) [15,76]. Arrows indicate the

direction of proton flow through Fo during ATP synthesis. (B) Open view with βDP and one adjacent α-subunit removed; bound ADP

and ATP nucleotides are indicated (sphere models). (C) Bottom view, from lumen side. (D) Top view from stroma, including cutaway

showing a-subunit (cartoon model) in association with c14-ring at the level of the ion binding sites of the c-ring (see Figure 2).

(E) Illustrative representation of ATP synthases embedded in a thylakoid membrane. The structure models are from [12], in surface

representation.
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Structure and function of ATP synthase and its F1 complex
The F-type ATP synthase found in bacteria and chloroplasts is ∼550 kDa in size with a protein subunit stoichi-
ometry of α3β3γδεab2c8–17 (Figure 1). The complex can be divided into two biochemically and functionally dis-
tinct subcomplexes: The water-soluble, catalytic head subcomplex, F1, composed of α3β3γδε subunits and the
membrane-embedded rotor–stator subcomplex, Fo, composed of ab2c8–17 subunits. F1 and Fo are connected by
a central and peripheral stalk. From an operational point of view, terms such as rotor and stator are applicable,
with the rotor (c8–17γε) and the stator (α3β3δab2) subcomplexes.
In F1, the synthesis and hydrolysis of ATP occurs at a hexamer of alternating α- and β-subunits (α3β3) where

one ATP molecule is able to bind at a Walker A motif (GxxxxGK[TS]), also known as the P-loop, found in
each of the three β-subunits [14]. Additionally, each of the three α-subunits contains a non-catalytic
nucleotide-binding site that usually bind unreactive (‘structural’) bound ATP molecules (Figure 1B) [15]. The
central stalk, composed of the γ-subunit and ε-subunit, induces the necessary conformational changes in the
α3β3 hexamer head for ATP synthesis by transferring torque generated in the membrane-embedded Fo subcom-
plex into the F1 catalytic head.
The peripheral/outer stalk, consisting of δ-, b- and b0-subunits, acts as a stabilising stator element between F1

and Fo preventing futile co-rotation. The δ-subunit has an N-terminal domain that connects to the three
α-subunits in F1, and a C-terminal domain that binds to the b-subunits of the peripheral stalk. A flexible hinge
connects the two domains of the δ-subunit and gives rise to a highly dynamic coupling of F1 and Fo [16]. The
two b-subunits are copies of each other with high sequence identity; structurally they split at their membrane
sections and sit on the a-subunit, similar to a horse saddle. In the soluble, outer stalk region they connect to
form a right-handed coiled-coil motif (Figure 1B) with the purpose to counteract torque that is transmitted
into F1 during ATP synthesis [17]. At the other end, the two b-subunits bind at the F1 hexamer head and form
several contacts to different domains at the outer surface of α-subunit as well as contacts to the δ-subunit on
top of the F1 headpiece at several locations.
F-type ATP synthases have only one outer stalk, while other rotary ATPases (A-type, V-type) have two or

three [11]. One can, therefore, speculate safely that the determination of the peripheral stalk stoichiometry in
F-type ATP synthases must lie in the structural attachment of the δ-subunit, which is asymmetrically bound on
top of the F1 headpiece, which once bound, irreversibly determines the position of two b-subunits composing
the peripheral stalk (Figure 1D).

The Fo complex: ion translocation pathways and the role of
the c-ring
The Fo subcomplex accommodates the membranous ion motor of the ATP synthase. The motor comprises the
rotor ring, also known as the c-ring due to its oligomeric assembly of a species-specific number of c-subunit
copies [18], and the stator a-subunit that lies outside, adjacent to the c-ring and forms two water accessible, sepa-
rated aqueous half channels (Figure 1) [19]. The two half channels are laterally adjacent but spatially and electro-
statically separated by a highly conserved and positively charged arginine side chain, and each channel provides
an ion access pathway to and from the c-ring ion binding sites to opposite sides of the membrane [20–22].
The c-rings are structurally highly conserved and resemble hourglass-shaped cylinders with a central pore

(Figure 2). The ion binding sites on the c-ring lie at their outside surface, each in between two adjacent
c-subunits; all binding sites are accessible from the outside. Ion coordination is mediated by a particular set of
conserved amino acid residues, which also determine ion specificity either for protons or Na+ [23–25].
Common to all binding sites in all rotary ATPases is a highly conserved carboxylate group, which plays the key
role in H+ (and sometimes Na+) coordination. While in the ion bound state the site remains in a locked con-
formational state [18,25], it has been shown that the binding and unbinding events themselves are dependent
on hydration events at the ion binding site [26]. These events can also be viewed from the perspective of shifts
in pKa values of the binding site carboxylate groups, with a pKa of a hydrated carboxylate being ∼4.5 and a
much-increased pKa (7.5 or higher, [24,27] for the same carboxylate in a hydrophobic environment, e.g. within
a membrane or a detergent micelle. Hence, while the ion remains locked at its c-ring ion binding site during its
travel along the hydrophobic membrane interface, upon reaching the hydrophilic amino acid residues of the
exit channel, the site encounters a new chemical environment that lowers the pKa and leads the carboxylate to
open its conformation and ultimately release the ion into the channel towards the opposite side of the mem-
brane [26,28]. Recent structural studies of ATPases have elucidated a range of these ion translocation pathways
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[12,16,29–32]. While the overall mechanism of ion access and release involving the a-subunit and the ion
binding mode on the c-ring is highly conserved in all rotary ATPases, including the V-type and A-type rotary
ATPases/synthases, the details of their individual channels and the exact ion paths along conserved hydrophilic
or charged amino acid residues varies between different species [10].

The c-ring stoichiometry and the ATP synthase’s ion-to-ATP
ratio
The c-ring in Fo is composed of a variable number (n) of monomeric c-subunits, with each monomer forming
an ∼8–9 kDa hairpin of two transmembrane α-helices, connected by a loop that non-covalently connects to the
F1 subcomplex via γ- and ε-subunits [33,34]. The known range covers most integers between n = 8 (Bos
taurus) [35] and n = 17 (Burkholderia pseudomallei) [36] (exception: n = 16). The available evidence suggests
that the stoichiometry of cn-rings is determined solely by the primary structure of the c-subunit and thus
remains constant within a given species but varies across different species [10,18,25,37–39]. This notion is not
only supported by the formation of functional chimeric ATP synthases, where resulting chimeric ATP
synthases have a cn-ring stoichiometry matching the source organism [40–43], but it is also strongly suggested
by heterologous expression of a variety of c-rings in Escherichia coli cells, all showing native (i.e. non E. coli)
c-ring stoichiometries [44–46].
In tightly coupled F1 and Fo complexes a key bioenergetic parameter known as the ion-to-ATP ratio can be

derived, which equals the number of c-subunits in the cn-ring (n) divided by the number of ATP molecules
synthesised per full turnover, three. The ratio, therefore, determines the bioenergetic cost of making a single
ATP molecule for a given organism [35] and it also contributes strongly to the thermodynamic efficiency of
membrane systems [47]. Remarkably, when experimentally varying the c-subunit stoichiometry of a given ATP
synthase by site-directed mutagenesis of the c-subunit and thereby experimentally inducing variation of the
ion-to-ATP ratio, it effects both on the enzymatic level of ATP synthase kinetics [42] as well as on the growth
level of the given bacterium [43]. This fact holds high hopes for similar future engineering approaches of ATP
synthases to be adapted to externally imposed bioenergetic challenges, such as low light conditions in cyano-
bacteria or plants.
In the plant ATP synthase, the c-ring stoichiometry is c14 [48], while in cyanobacteria the stoichiometry

varies between 13 and 15 [49]. Compared with most bacterial or mitochondrial ATP synthases this is a rather
large stoichiometry, leading to an ion-to-ATP ratio of 4.7 in plants and 4.3–5.0 in cyanobacteria. With the total

Figure 2. Examples of F-type ATP synthase cn-ring stoichiometries from c8 to c17.

The c-rings are shown in cartoon representation. Upper row: View from the cytoplasm (matrix/stroma). Lower row: view from

the membrane plane in the same orientation as in Figure 1A. The membrane borders are indicated by grey lines. From left to

right: c8-ring from B. taurus mitochondria [35], c11-ring from M. phlei [50], c11-ring from Ilyobacter tartaricus [18], c13-ring from

Bacillus pseudofirmus OF4 [43], c15-ring from Spirulina platensis [25], c17-ring from Burkholderia pseudomallei [36]. The

location of the conserved carboxylate amino acid residue required for ion binding is coloured red. All the examples here are

proton-binding cn-rings, except for the c11-ring from I. tartaricus which is Na+-binding. Plant chloroplast ATP synthase

harbours a c14-ring (Figure 1D), while cyanobacterial ATP synthases have c13–c15 rings [49]. The resulting overall range of

ion-to-ATP ratios in fully coupled ATP synthases is 2.7–5.7. For a functional description, see text.
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range of known c-rings known (c8–c17, Figure 2) the variation of this ratio becomes impressively wide, 2.7–5.7
ions per ATP. The photosynthetic active organisms take their place in the upper regions of this range.

Bioenergetic consequences of c-ring stoichiometry
variation
The differently primed functions as well as the cellular physiological environments of ATP synthase in various
organisms may explain the large variation in cn-ring stoichiometries and hence also help understand the varia-
tions found in the ion-to-ATP ratios in plant and cyanobacterial ATP synthases. For an ATP synthase operating
under sufficiently high pmf (or smf ), smaller cn-ring stoichiometries are advantageous as they ‘consume’ fewer,
albeit higher energised, protons per ATP synthesised. The hypothesis is supported by the smallest known stoi-
chiometries, which belong to F-type ATP synthases found in animal (and plant) mitochondria: Mammalian
mitochondrial ATP synthase operates with a c8-ring [35] and is known to operate almost exclusively in ATP
synthesis direction. Some bacteria, such as Mycobacterium phlei, E. coli or some Bacillus species have cn-ring
stoichiometries of n = 9, 10, 11, 12 and 13 [39,50-53]. Some of these bacteria are living in physiologically chal-
lenging environments, e.g. high temperature and high pH and hence specifically adapted in stoichiometry and
ion binding chemistry [39,50,54], while others are challenged by aerobic–anaerobic environmental changes
[55-57]. Hence in these latter cases, occasionally acting as ion pumps (ATPases) to maintain the pmf is more
efficient with larger cn-ring stoichiometries as more ions can be translocated per ATP hydrolysed. In its
extreme with the largest c-ring found so far (c17-ring, B. pseudomallei) the ATP synthase is suggested to exclu-
sively consume ATP to pump protons out, allowing the pathogen to survive in acidic environments of macro-
phages during the early stages of an infection [36].
In photosynthetic organisms with their larger cn-ring stoichiometries, this disparity in stoichiometries and

their relatively high ion-to-ATP ratios reflects the requirement for ATP synthesis to occur even under conditions
where only a low total pmf is available. In photosynthetic organisms or organelles (Table 1) light fluctuations
can lead to rapid changes of the pmf. Under high-light conditions, photosynthetically active organisms can
establish a remarkably high ΔpH across the thylakoid membrane, up to a pH gradient of 2.5 [58,59]. This cor-
responds to −180 mV of total pmf, mainly provided by the ΔpH component of −150 mV. While the electric
component (ΔΨ) in this proton gradient is much lower (−30 mV), the high concentration of protons reflected
by the high ΔpH component in the lumen of thylakoid membranes compensates for the overall phosphoryl-
ation potential (ΔG00) required for the synthesis of ATP between 42 kJ/mol (low light) and 60 kJ/mol (high
light) that has been determined under various experimental conditions [60]. The c-rings in the ATP synthases
from these organisms are generally enlarged in their stoichiometry, transporting more protons per ATP (higher
ion-to-ATP ratio). In contrast, the pmf in animal mitochondria is mostly stored as Δψ (∼150 mV) and a steady
supply of protons favours a small cn-ring stoichiometry as this requires fewer protons per ATP molecule synthe-
sised (Table 1). In the case of bovine mitochondrial F-type ATP synthase, which has a c8-ring, the ion-to-ATP

Table 1. Comparison of overall pmf, the pmf components (ΔΨ and ΔpH) and the c-ring stoichiometry found in
organisms from different kingdoms of life. The photosynthetic active organisms are shown in bold.

Kingdom (Phylum)
Species (organelle or
adaptation to pH)

Overall pmf
(mV) ΔΨ (mV) ΔpH (mV)

c-ring
stoichiometry

Plantae Spinacia oleraceae
(chloroplast)

−180 mV [58] −30 mV [59] −150 mV 14 [48]

Bacteria
(Cyanobacteria)

Synechococcus
PCC 7942* (neutrophile)

−190 mV [77] −90 mV [77] −100 mV [77] 13-15 [49]

Animalia Bos taurus (mitochondria) −210 mV [78] −150 mV −60 mV 8 [35]

Bacteria
(Proteobacteria)

E. coli (neutrophile) −170 mV −135 mV −35 mV 10 [51]

Bacteria (Firmicutes) Bacillus pseudofirmus
OF4 (alkaliphile)

−50 mV −180 mV +130 mV 13 [39]

*previously known as: Anacystis nidulans or Synechococcus R-2.
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ratio is 8/3 = 2.7 [35]. A similarly high contribution to pmf by Δψ is not favourable in photosynthetic systems
as high membrane potentials lead to more recombination events and results in photodamage [61]. The differ-
ences in cn-ring stoichiometries are an example of how ATP synthases have adapted to different physiological
and environmental conditions over longer, evolutionary time scales. In photosynthetic organisms, the unique
bioenergetic demands and environmental pressures have favoured larger cn-ring stoichiometries, resulting in
the higher ion-to-ATP ratios.

Regulation of ATP synthases in photosynthetic organisms
A second unique feature of ATP synthases from plant chloroplasts and other photoautotrophic organisms is
how they adapt their ATP synthesis activity in response to light intensity through a redox-modulated thiore-
doxin system [62–64]. Under sufficient light intensity, linear electron flow reduces thioredoxin which in turn
reduces a redox switch found in the γ-subunit of ATP synthase. In this reduced state, ATP synthase remains
active —– this can be artificially induced with the addition of the reducing agent dithiothreitol (DTT) [65]. On
the other hand, with insufficient light intensity, the redox switch in ATP synthase is oxidised and enzyme activ-
ity is inhibited. This mechanism helps to down-regulate ATP synthase operation in the reverse direction
(ATPase) and avoids wasteful ATP hydrolysis in the dark [57,63,64,66,67]. In plants, ATP is readily available
for anabolic reactions of the CBB cycle.

Figure 3. Chloroplast ATP synthase redox regulation by the γ-subunit.

(A) Overlay of the reduced and oxidised conformations in cyan and blue, respectively. (B) The 40-residue insert forming an

L-shape with two β-hairpins is shown in yellow and the interacting β-subunit is in green. (C) In the dark, the γCys240 and

γCys246, on the shorter β-hairpin, are oxidised (green box) and form a disulfide bond which causes conformational changes in

the longer β-hairpin of γ-subunit that lead to clashes with the β-DELSEED motif when rotating in the ATP hydrolysis direction

(cyan square). While in the light, γCys240 and γCys246 are reduced (red square) and the γ-subunit does not clash with the

β-DELSEED motif (blue square). Figure 3 is based on knowledge of both oxidised and reduced structures of the plant

chloroplast ATP synthase [12,13].
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To understand this regulatory feature from a structural point of view, the plant chloroplast F1Fo-ATP syn-
thase has been recently solved by cryo-EM at high-resolution in both an oxidised (inactive) state [12] and a
reduced (active) state [13]. The latter was obtained by reducing the sample with DTT and stabilising this state
with the uncompetitive inhibitor, tentoxin. The structures reveal that the rotor γ-subunit is the key structural
element in the redox regulation in this enzyme (Figure 3).
The γ-subunit across all organisms typically consists of an antiparallel coiled-coil of the N- and C-terminal

α-helices and a globular Rossmann-fold domain [68]. Relative to ATP synthases from non-photosynthetic bac-
teria and mitochondria, the γ-subunit from chloroplasts and cyanobacteria contains a unique, 40-residue inser-
tion that forms an L-shape with two β-hairpins. The longer C-terminal β-hairpin extends towards the central
cavity of the F1 hexamer where it can interact with a highly conserved DELSEED motif found near the bottom
of the β-subunit (Figure 3C). Exclusively in plants, the shorter, N-terminal γ-subunit β-hairpin contains a
motif (CDxNGxC) with cysteine residues on each of the two strands, capable of forming a disulfide bond in
response to the chloroplast redox potential [64,69]. In the darkness, the disulfide bond forms under the oxidis-
ing conditions leading to a conformational change in the C-terminal β-hairpin that inhibits the rotation of the
rotor in ATP hydrolysis direction by causing clashes between the coiled-coil of γ-subunit and the β-DELSEED.
In light, the disulfide bond is once again reduced and there are no such clashes preventing rotary catalysis.
In contrast with chloroplast ATP synthase, the insertion found in cyanobacterial γ-subunits is only ∼25

amino acid residues and missing the shorter N-terminal β-hairpin and cysteine motif. However, experimental
evidence suggests that the shorter insert in cyanobacterial γ-subunit provide regulatory capabilities through the
induction of ADP-dependent inhibition [70]. Additionally, the rotor ε-subunit that is attached to the γ-subunit
and the c-ring (Figure 1A/B) is observed in a retracted conformation that is not consistent with the
ε-inhibition seen elsewhere in non-photosynthetic bacteria [29,67,71-73], where regulation involves the
C-terminal part of the ε-subunit to reversibly interact with β-DELSEED in a so-called up-state (inhibited) or
down-state (active) conformation [67,73,74]. In cyanobacteria though, the ε-subunit may be responsible for
inducing the required conformational change in the γ-subunit to inhibit rotation in the ATP hydrolysis direc-
tion [72,75]. Structural studies of the cyanobacterial ATP synthase will help to identify which regulatory
mechanisms play the most significant roles in cyanobacteria.

Conclusions
Rotary F-type ATP synthases from photosynthetic active organisms such as plants (chloroplasts) and cyanobac-
teria show a set of unique rotor subunit adaptations for the regulation of their activities and functionality. On a
short and immediate time scale, they control wasteful ATP hydrolysis during the anabolic biochemical reactions
at day/night times by the γ-subunit. On the longer, evolutionary time scale, they adapted their c-ring stoichi-
ometry to the ATP synthesis’ driving force, the pmf. The effects of these adaptations affect the operation modes
of these ATP synthases and manifest in measurable cellular effects. Most conserved biochemical reactions in
living organisms are achieved by enzymes with remarkable differences in their individual subunit compositions
and structural features. In the case of ATP synthases from photosynthetic organisms, the adaptations to indi-
vidual physiological requirements of the species are restricted to specific subunit modifications in their rotor
subunits c and γ. These adaptations reflect the power of life to cope with environmental challenges at short and
long time scales, but also bear interesting potential for future biotechnological advances.

Perspectives
• F-type ATP synthases play a major role in the light-dependent reactions of oxygenic photo-

synthesis and have unique features compared with those found in mitochondria and non-
photosynthetic bacteria.

• A wide range of ATP synthase structures are available, with mitochondrial and bacterial ATP
synthases being particularly interesting with regards to health and medicine. Whilst, studying
photosynthetic ATP synthases may help to reveal the complex interplay of the many cellular
reactions of photosynthesis and their evolutionary past.
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• Photosynthetic ATP synthases themselves may be a suitable target for engineering photosyn-
thetic efficiency in plants or as a way to address an altered demand in ATP/NADPH, e.g. in C4
photosynthesis.
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