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Abstract

Background: Hepatocellular carcinoma is one of the most general malignant neoplasms in adults with high
mortality. Mining relative medical knowledge from rapidly growing text data and integrating it with other existing
biomedical resources will provide support to the research on the hepatocellular carcinoma. To this purpose, we
constructed a knowledge graph for Hepatocellular Carcinoma (KGHC).

Methods: We propose an approach to build a knowledge graph for hepatocellular carcinoma. Specifically, we first
extracted knowledge from structured data and unstructured data. Since the extracted entities may contain some
noise, we applied a biomedical information extraction system, named BioIE, to filter the data in KGHC. Then we
introduced a fusion method which is used to fuse the extracted data. Finally, we stored the data into the Neo4j
which can help researchers analyze the network of hepatocellular carcinoma.

Results: KGHC contains 13,296 triples and provides the knowledge of hepatocellular carcinoma for healthcare
professionals, making them free of digging into a large amount of biomedical literatures. This could hopefully
improve the efficiency of researches on the hepatocellular carcinoma. KGHC is accessible free for academic research
purpose at http://202.118.75.18:18895/browser/.

Conclusions: In this paper, we present a knowledge graph associated with hepatocellular carcinoma, which is
constructed with vast amounts of structured and unstructured data. The evaluation results show that the data in
KGHC is of high quality.
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Background
Hepatocellular carcinoma is one of the most general malig-
nant neoplasms in adults with high mortality. It accounts
for 45% of the world’s deaths and is the most common
cause of death in people with cirrhosis [1]. Although the
prevention, diagnosis and treatment techniques have been
progress, the morbidity and mortality are still on the rise

[2, 3]. Therefore, hepatocellular carcinoma has become a
hot topic in life science researches and there is a growing
trend of using the medical knowledge from the open field.
At present, biomedical database is the main source of bio-
medical information. The majority of biomedical databases
are manually extracted and curated by human experts from
literatures. Since the amount of biomedical literatures is
increasing rapidly, it is difficult for interaction database
curators to detect and curate the information efficiently.
Therefore, biomedical knowledge usually cannot be up-
dated in time.
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Google introduced the concept of knowledge graph in
2012 [4], which aims to better represent unstructured,
semi-structured and structured information on the Inter-
net. A knowledge graph is expressed in triples which
include object, relation and subject. Compared with bio-
medical databases, the knowledge update is faster in know-
ledge graph [5, 6]. As an important vertical application
field of knowledge graph, biomedical knowledge graph has
already attracted much attention. Yuan et al. constructed a
biomedical domain-specific knowledge graph with mini-
mum supervision [7]. Knowlife is a large biomedical data-
base which applies seed facts of 13 relations to extract
sentence-level and document-structure patterns for know-
ledge graph construction and achieved high precision with
typing and mutual-exclusion constrains for pruning out
invalid candidate facts [8]. In addition, there exist many
different types of biomedical knowledge base. For example,
SIDER [9] and AMDD [10] contain the information related
to drug. Diseasome [11], ParkDB [12], and ChemProt [13]
describe disease and disease related gene information.
However, to the best of our knowledge, currently there

is not a single, aggregated source about hepatocellular car-
cinoma available. As a consequence, the healthcare profes-
sional has to traverse across several data portals to retrieve
relevant knowledge before using it for drug repurposing
or diagnosis for hepatocellular carcinoma. This is quite
inconvenient for the research of healthcare professionals.
Therefore, integrating the knowledge of hepatocellular
carcinoma from the database and excavating the know-
ledge of hepatocellular carcinoma from the large amount
of medical literatures is of great significance.
In this paper, we present a knowledge graph for hepa-

tocellular carcinoma. The main contributions of our
work can be summarized as follows.

� We constructed a knowledge graph for
hepatocellular carcinoma (KGHC) by fusing the data
extracted from structured and unstructured sources.
And we manually checked the triples to ensure the
accuracy of KGHC. The evaluation results show that

the data in KGHC has a high quality. This
knowledge graph could be an important supplement
to existing medical resources for hepatocellular
carcinoma.

� To construct KGHC, the knowledge triples need to
be from the huge amount of unstructured textual
content. Such extraction task is challenging and
requires a lot of manual efforts. And this process
can be both error-prone and labor-intensive.
Therefore, in this paper, we propose an approach to
extract the triple from unstructured data
automatically.

� Since the extracted entities are usually full of noise,
we applied a biomedical information extraction
system, named BioIE, to filter the data in KGHC.
The experimental results show that BioIE achieves
the state-of-the-art result.

� In order to integrate the extracted data from
different sources, we propose a fusion method to
fuse the extracted data.

Methods
The construction of KGHC mainly includes three parts:
data extraction, data fusion, data storage and application.
Figure 1 shows the processing flow of our method. Specif-
ically, we first extracted entities, relations and attributes
about hepatocellular carcinoma from structured data and
unstructured data. Since the extracted entities are always
full of noise, we applied a biomedical information extrac-
tion system, named BioIE, which used to filter the data in
KGHC. Secondly, we proposed a fusion method which is
used to fuse the extracted data. Finally, we stored KGHC
in Neo4j graph database. The detailed description of our
method is presented in the following sections.

Data schema
The schema of KGHC comes from the Unified Medical
Language System (UMLS) [14]. UMLS is a metathesaurus,
the largest collection of biomedical dictionaries containing
2.9 million entities and 11.4 million entity names and

Fig. 1 The processing flow of constructing the KGHC
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synonyms [15]. UMLS contains complex taxonomy,
including physical objects, events, or even medical equip-
ments. Since our knowledge graph focuses on hepatocellu-
lar carcinoma, we only choose parts of UMLS related to
our work. By dividing the taxonomy of UMLS, we have
summarized nine concepts for our knowledge graph driven
by the requirements of analyzing. The concepts of our
knowledge graph include: drug, DNA, RNA, gene, protein,
cell, disease, phenotypic abnormality and therapeutic-
technique. The concept of drug in our knowledge graph
include chemical. Then, according to the concepts, we
filter the relationship from the UMLS Semantic Network.
There are totally 22 relationships in KGHC.

Data extraction
According to the main source of biomedical information
at present, we extracted the data from unstructured data
and structured data. In data extraction section, we first
used SemRep to extract entities, attributes and relations
from unstructured information in literature and Internet.
Then, we extracted the triples from structured informa-
tion in SemMedDB. Finally, we applied BioIE filter out
the noise in extracted data. The details are described as
follows.

Data extraction from unstructured data
The unstructured data contain the latest biomedical in-
formation. To keep our knowledge graph current and
updated of this ongoing research, we decide to extract
knowledge of hepatocellular carcinoma from biomedical
literature, medical guideline and clinical trial.
Firstly, we used PubMed (https://www.ncbi.nlm.nih.

gov/) to retrieve and download MEDLINE [16] abstracts
related to hepatocellular carcinoma. PubMed [17] is an
online repository, which contains more than 24 million
citations for biomedical literature from MEDLINE and
life science journals. MEDLINE is an international data-
base of comprehensive biomedical information created
by the National Library of Medicine of the United States.
It is the most generally used bibliographic abstract data-
base of foreign literature in the field of biomedicine [18].
Secondly, we downloaded the medical guidelines about

hepatocellular carcinoma from UpToDate (https://www.
uptodate.com/home). UpToDate is a clinical decision
support system based on the principles of evidence-
based medicine. It has become the main resource for
doctors to acquire medical knowledge during diagnosis
and treatment, and provides them with continuous up-
dated information based on the principles of evidence-
based medicine.
At last, we obtained the clinical trials about hepatocel-

lular carcinoma from ClinicalTrials.gov by a rule-based
method. ClinicalTrials.gov (https://clinicaltrials.gov/) is a
resource provided by the National Library of Medicine.

It is a worldwide database of funded clinical studies that
includes 299,634 studies in 50 countries and 208 cities.
There are many unfinished trials in ClinicalTrials.gov. In
this work, we only extracted the completed trials.
All these unstructured data do not provide data dumps

directly so that we have to extract the entities and rela-
tions from these texts. Therefore, we introduce SemRep
[19], an information extraction system to extract triples
from these unstructured data. SemRep is originally de-
veloped for biomedical research and has been extended
to the fields of influenza epidemic prevention, health
promotion and medical informatics. It is a program base
on UMLS that extracts three-part propositions, called
semantic predications, from sentences in biomedical
text. Predications consist of a subject argument, an ob-
ject argument, and the relation that binds them [20].
Take the sentence “Obesity - A number of observational
studies have linked excess body fat with a higher risk for
HCC.” as an example. From the sentence, the predication
associated_with(Obesity, HCC) is extracted by SemRep.
Obesity is the subject, HCC is the object and associated_
with is the relation between subject and object.
In this paper, we used SemRep extract the entities,

relations and attributes (i. e., entity id, text name, entity_
start_index, entity_end_index, entity type and source)
from the unstructured data. Since it can obtain all the
triples that exist in sentence, we only choose parts of tri-
ples related to hepatocellualr carcinoma. Table 1 shows
the attributes of our knowledge graph.

Data extraction from structured data
Biomedical database is the main source of biomedical in-
formation which contains a lot of biomedical knowledge
related to hepatocellular carcinoma. The National Center
for Biotechnology Information (NCBI) portal [20] exposes
various biological databases, such as the GenBank nucleic
acid sequence database [21, 22] and the BioProject data-
base [23], and also provides tools for retrieval and analysis
of the data. In this work, we obtained knowledge about
hepatocellular carcinoma in SemMedDB. SemMedDB
[24] contains the data which SemRep extracted from
MEDLINE abstracts, and includes 96 million relational
prediction databases [25, 26]. We extracted data about
hepatocellular carcinoma from SemMedDB, and then fil-
tered the data according to the ontology.
In process of data extraction, we found that some in-

formation extracted from SemMedDB appears in the
sentences that are not conclusive. For example, from the
sentence “Is excessive alcohol abuse one of the causes of
hepatocellular carcinoma?”, SemMedDB extracts the
triple cause (alcohol, hepatocellular carcinoma). How-
ever, this triple maybe not accurate since it is extracted
from a question sentence. In order to solve this problem,
we use a rule-based method to filter the data to ensure
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the accuracy of the triple. And we retain the attributes
shown in Table 1. Specifically, if the sentence is a ques-
tion sentence, we delete this sentence.

Data filter
The entities which extracted by SemRep may contain
some noise. Taking the extracted entities are incom-
plete as an instance, it always affects the quality of the
knowledge graph. For example, B7–1 gene is recog-
nized as gene, and quinone reductase (QR) induction
is recognized as induction. To ensure the high-quality
of the data in our built knowledge graph, we applied
BioIE to automatically extract the multi-type entities
from biomedical literature (such as disease, drug, pro-
tein, gene, DNA, RNA and cell).

We proposed the Attention-based named entity recog-
nition model (Att-BiLSTM-CRF) [27] and used it in
BioIE. Compared with the traditional BiLSTM-CRF [28]
model, Att-BiLSTM-CRF can solve the problem of the
inconsistent labels. Attention mechanism in the model is
used to learn contextualized embedding, and it can en-
sure the consistency of entity label and the accuracy of
entity recognition. Figure 2 shows the architecture of the
Att-BiLSTM-CRF model. A document D = (X1,…, Xt,…,
Xm) containing m sentences as an input, and each sen-
tence is expressed as (x1, …, xt, …, xn), where n is the
number of the words in sentence [29]. The first layer of
the model is the embedding layer, which the concaten-
ation of the character embedding, word embedding and
addition features (i. e., POS information and chunking

Fig. 2 The architecture of Att-BiLSTM-CRF

Table 1 The Attributes of Knowledge Graph

Attribute No. Attribute Name Remarks

1 PMID The PubMed abstract ID from which the entity is extracted

2 Text Name The mention of the entity in sentence

3 Entity ID The id of the entity

4 Entity Type The type of entity

5 Entity_Start_Index The first character position (in sentence) of the text denoting the entity

6 Entity_End_Index The last character position (in sentence) of the text denoting the entity

7 Source The source of triple (e.g., UptoDate)

8 Sentence The sentence including the triple
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information, et al.) as input is fed into the BiLSTM layer.
The BiLSTM layer is used to extract sentence features
automatically. It is consisted of a forward LSTM which

computes a representation h
!

t of the sequence from left
to right, and a backward LSTM which computes a repre-

sentation h
 
t of the same sequence in reverse [30]. And

the concatenation of ht ¼ ½ h!t; h
 
t � is the output of the

BiLSTM layer.
In attention layer, we apply the attention mechanism

to focuses on the related tokens in the different sen-
tences of a document to address the tagging inconsist-
ency problem. Specifically, the attention layer is used to
capture similar word attention at the document-level.
The attention matrix A is used to calculate the similarity
between the current target word and all words in the
document. The attention matrix A, which can be de-
scribed as ai, j, can be computed by formula (1).

ai; j ¼
exp score xi; x j

� �� �
P

k¼1 exp score xi; xkð Þð Þ ð1Þ

The similarity between xi and xj can be calculated by
the following four alternatives, (i.e. manhattan distance,
euclildean distance, cosine distance and perceptron),
where W is a weight matrix [27].

score xi; x j
� � ¼

W j xi−x j j
W xi−x j

� �T
xi−x j
� �

W xi∙x j
� �

j xi‖x j j
tanh W xi; x j

� �� �

8
>>>>><

>>>>>:

ð2Þ

Then formula (3) is used to calculate a document-level
global vector G, where H is the output of the BiLSTM layer.

G ¼ AH ð3Þ
Next, to predict confidence scores for the word, a tanh

layer is constructed on top of the attention layer. At last,
instead of decoding each label independently, the CRF
layer is added to decode the best tag path in all possible
tag paths. We trained the model on the dataset of CDR
and NLPBA. And to verify the effectiveness of the
model, we selected a single category (chemical com-
pound) recognition on the CHEMDNER dataset pro-
vided by BioCreative IV for comparative experiments. As
shown in Table 2, our method achieves an F-score of
90.84% with no addition feature engineering, which is a
state-of-the-art result.
In this work, BioIE is used to extract the entities and at-

tributes of hepatocellular carcinoma from structured data
and unstructured data. Specifically, given a sentence which
has been extracted the triples from structure data and un-
structured data, BioIE extracts the entities and attributes

(as shown in Table 1) from this sentence. Figure 3 shows
an example of BioIE. However, different data extraction
method extracts different information. Take the sentence
“Combined modality doxorubicin-based chemotherapy
and chitosan-mediated p53 gene therapy using double-
walled microspheres for treatment of human hepatocellu-
lar carcinoma.” as example, BioIE extracts the entities p53
gene and hepatocellular carcinoma and SemRep extracts
the triples associated_with(chemotherapy, hepatocellular
carcinoma) and associated_with(gene, hepatocellular car-
cinoma) from sentence. So it is important to align entities
and triples between BioIE and SemRep. Therefore, we
proposed a rule-based filter method.
We used SemRep and BioIE to extract the entities and

attributes from the same sentence. If the text names of en-
tities in triple are extracted by both SemRep and BioIE,
and the attributes of entities (including text name, entity_
start_index, entity_end_index, sentence and source) are
the same, this triple is retained. Otherwise, it is removed.
For example, in the above sentence, SemRep extracts the
entities gene and hepatocellular carcinoma and BioIE ex-
tracts the entities p53 gene and hepatocellular carcinoma.
The attributes of entity are different. So we removed the
triples associated_with (gene, hepatocellular carcinoma).
The entity filter method can filter the extracted data in
KGHC. Corresponding, in order to ensure the accuracy of
the extracted relationship, we manually filter the relations
between the entities after using BioIE to filter the data.

Data fusion
The data which we extracted from structured and un-
structured data have some noise, such as redundant,
complementary, and sometimes have conflicts on some
values. To ensure the accuracy of the data in the know-
ledge graph, we fused the data in two steps: entity map-
ping and entity alignment. For entity mapping, the same
entity has different entity names or the same entity
name represents different substances. For example, both
HCC and Hepatocellular Carcinoma denote the disease
hepatocellular carcinoma. In this work, we extracted the
standard name and text name of the entity from SemRep
and BioIE (the text name is the mention of the entity in
sentence and the entity standard name is the preferred
name of the entity). We use the standard name of entity

Table 2 The result of Att-BiLSTM-CRF model on CHEMDNER
dataset of BioCreative IV

Method Precision(%) Recall(%) F-score(%)

tmChem [31] 89.09 85.75 87.39

Lu et al. [32] 88.73 87.41 88.06

RNNA-CRF [33] 91.14 88.27 89.68

BiLSTM-CRF [28] 91.31 87.73 89.48

Att-BiLSTM-CRF 91.65 90.04 90.84
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Fig. 3 An example of BioIE output

Fig. 4 A partial display of KGHC
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as the entity name, and use the text name as an attribute
of the entity to map entity. Take the sentence “Alcohol
can cause HCC” as an example. HCC is the text name
and Hepatocellular Carcinoma is the standard name.
We use Hepatocellular Carcinoma as entity name and
use HCC as an attribute of the entity.
For entity alignment, in data filter, we used BioIE to filter

the entities and attributes. The entity name (standard
name) and attributes (entity type) extracted by SemRep and
BioIE may be different. For example, in the above sentence,
the entity name of HCC is Primary carcinoma of the liver
cells in SemRep and Hepatocellular Carcinoma in BioIE.
We use the JaccardSimilarity [34] to calculate the similarity
of entity name between BioIE and SemRep. Only when the
value of JaccardSimilarity is 1, is the triple retained. Other-
wise, we manually checked the consistency of entity names.
We adopted a voting strategy to solve the inconsistencies
(e.g. the ones of entity type), i.e., for a given entity, we tend
to trust the type which has the most support.

Data storage and application
The main storage forms of knowledge graph include Re-
source Description Framework (RDF) and graph database.
RDF can establish links between data and query [35]
through Sparql. Graph database which can store entities
and relations of knowledge graph in the form of graph.

Compared with the RDF, the graph database has a better
readability. Neo4j is a graph database which can query and
update data by using graph query language Cypher. And it
provides REST structure, which can be integrated into envi-
ronments based on PHP, NET, Python and JavaScript [36].
In this work, Neo4j is used to store the data. We

imported the triples into Neo4j through the Neo4j-import
tool. Figure 4 is a partial display of KGHC. When KGHC
is opened in Neo4j, a network is displayed, in which the
nodes refer to the entities and the edges refer to the rela-
tions between the entities. The biomedical researchers can
use Cypher to search the entities and relations.
In data extraction section, we obtained a two-level relation

knowledge graph. For example, hepatocellular carcinoma
has a relationship with Hepatitis A. We extracted data from
the structure data and unstructured data that is related to
Hepatitis A and find that Glucagon has a relationship with
Hepatitis A. So the Glucagon may be related to hepatocellu-
lar carcinoma. It may help biomedical researchers discover
the substances related to hepatocellular carcinoma.
In addition, KGHC also contains a large number of

attribute information. Selecting a node or edge in the net-
work, users can see the detailed information of attributes
about the triple at the bottom of the interface, as shown in
Fig. 5. The detailed description of attribute is shown in
Table 1. When biomedical researchers propose research

Fig. 5 Parts of network between hepatocellular carcinoma and Hepatitis A
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hypotheses, they can obtain relevant research articles
through the PMID provided by KGHC. In our opinion,
KGHC can support the analysis of the hepatocellular
carcinoma network and may facilitate the discovery of the
molecular mechanisms behind the it.

Results
Overview of knowledge graph
KGHC is stored in the form of triples. It has 5028 entities
and 13,296 triples. Specifically, there are 1328 drugs, 1849
proteins, 1403 diseases, 160 cells, 140 DNAs, 54 phenotypic
abnormalities, 50 genes, 35 therapeutic-techniques and 9
RNAs (as shown in Fig. 6).
In addition, KGHC contains 799 triples directly related to

hepatocellular carcinoma, and 12,497 triples indirectly re-
lated to it. The direct relation contains 682 entities, and the
indirect relation contains 4726 entities as shown in Fig. 7.
The researchers can use the direct and indirect relations to
propose new hypotheses. Figure 8 shows the input source of
the knowledge graph. It contains four parts: 46,172 sentences
of literature, 1084 sentences of UpToDate, 5275 sentences of
ClinicalTrials.gov and 109,875 sentences of SemMedDB.
Through analyzing the data, we found the following facts,

� The number of the sentences of various sources is
162,406. It is far bigger than the number of the
triples in our knowledge graph (13,296), which
shows the large-scale redundant information exists
between different data sources. KGHC can help

researchers filter out the redundant information,
and improve research efficiency.

� KGHC contains 13,296 triples and the number of
entities is 5028. That means that an entity may be
related to multiple different entities. It is useful for
researchers to analyze the relations between

Fig. 6 Data distribution in different categories of knowledge graph

Fig. 7 Directly relation and indirectly relation
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different entities and facilitate the discovery of the
molecular mechanisms or the treatment method of
hepatocellular carcinoma.

Data evaluation
For KGHC, its data quality is of great importance. How-
ever, there is no hepatocellular carcinoma gold set cur-
rently. In data filter process, we filtered the entities and
attributes by BioIE and checked the relation manually.
Therefore, to assess the consistency of the entities and
relations, we measured the pairwise agreement of dupli-
cate annotations using the Jaccard score [37].
If we defined A as the set of annotations of team A, B as

the set of annotations of team B, then the Jaccard agree-
ment score could be calculated by counting the number of
agreements and disagreements. If a triple relation is true,
it is counted as a case of agreement. Take “Alcohol can
cause hepatocellular carcinoma.” as an example. The ex-
tracted triple is cause (alcohol, hepatocellular carcinoma).

If one annotator annotates this triple true, another anno-
tates it false, then that would count as a case of disagree-
ment. Formula (4) shows the formula of Jaccard score. We
used the simple random sampling method to draw 1000
triples from our knowledge graph to calculate the
consistency of the triples (i.e., entity and relation) manu-
ally. The accuracy ratio is 81.20%.

SA;B ¼ j A∩B jj A∪B j ð4Þ

Discussion
We analyzed the causes of disagreement for 188 facts
from the consistency annotation. As shown in Table 3,
we categorized the disagreements as follows:

� Entity recognition: Some entities are not correctly
recognized. For example, complex entities are

Fig. 8 The input corpus of knowledge graph

Table 3 Disagreement analysis

Cause of error Percentage Percentage based on text genre

literature UpToDate ClinicalTrials.gov SemMedDB

Entity Recognition 6.91%(13) 23.08%(3) 30.77%(4) 7.69%(1) 38.46%(5)

Entity Disambiguation 7.44%(14) 28.57%(4) 7.14%(1) 7.14%(1) 57.14%(8)

Nonexistent Relation 16.48%(31) 16.13%(5) 0(0) 6.45%(2) 77.42%(24)

Inaccurate Relation 47.34%(89) 16.85%(15) 2.25%(2) 2.25%(2) 78.65%(70)

Passive Relation 10.63%(20) 20%(4) 5%(1) 0(0) 75%(15)

Negation Relation 11.17%(21) 19.05%(4) 0(0) 0(0) 80.95%(17)

Li et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 3):135 Page 9 of 11

http://clinicaltrials.gov


composed of multiple simple entities and special
symbols (e. g., TGF-beta receptor-2 is recognized as
TGF-beta receptor).

� Entity disambiguation: Obtaining the wrong type
of entity caused this error. We align entity types
with a voting method, i.e., the entity type
receiving the most votes wins. If two types have
the same top votes, we will judge manually.
Perhaps the wrong type was chosen at the time
of voting.

� Inaccurate relation: There is a relationship between
the entities, but the extracted relationship is
inaccurate. Take “Phase II trial of amsacrine in
patients with hepatoma: a Cancer and Leukemia
Group B study” as example, the extracted triple is
treats (Amsacrine, hepatoma). However, this triple
may be not accurate since the entities may have the
relation associated_with, but we cannot judge the
entities have the relation treats in this sentence.

� Non-existent relation: Two entities might merely
co-occur within the same sentence without really
sharing a relation. When such a triple is extracted, it
will result in a false relation.

� Passive relation: Failure to accurately identify passive
relationships. For example, an triple cause
(hepatocellular carcinoma, alcohol) may be extracted
from the sentence “A major risk factor for human
hepatocellular carcinoma is alcohol”. However, this
triple may is not accurate since hepatocellular
carcinoma cannot cause alcohol.

� Negation Relation: This kind of error is caused
because the negation expression in the text is
not detected. For example, from the sentence “It
is disputed whether the growth hormone receptor
is present in human hepatocellular carcinoma”,
the extracted triple is associated_with(growth
hormone receptor, hepatocellular carcinoma).
However, we cannot confirm the relation
between the entities only according to this
sentence.

As shown in Table 3, the errors of relationship
accounted for about 85% of all errors, and most of them
(47.34%) belong to the class of Inaccurate Relation.

Conclusions
In this paper, we present a knowledge graph (KGHC) for
hepatocellular carcinoma, which is constructed with vast
amounts of structured and unstructured data. We first ex-
tracted the entities and relations from the different sources.
Then we applied BioIE to filter the data of KGHC. After
that, we proposed a method to fuse the extracted data.
Finally, we stored the data in the Neo4j which can help re-
searchers analyze the network of hepatocellular carcinoma.

In addition, we checked the data manually to ensure the ac-
curacy in KGHC. The evaluation results show that the data
in KGHC is of a high quality. KGHC is accessible free for
academic research purposes at http://202.118.75.18:18895/
browser/. To keep the data in knowledge graph up to date,
we plan to update KGHC every six months.
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