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Assessment of Collagen-Induced Arthritis Using Cyanine 
5.5 Conjugated with Hydrophobically Modified Glycol 
Chitosan Nanoparticles: Correlation with  
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Ji Hyeon Cha, MD1, Sang Hoon Lee, MD1, Sheen-Woo Lee, MD1, Kyeongsoon Park, PhD2, 
Dae Hyuk Moon, MD3, Kwangmeyung Kim, PhD2, Sandip Biswal, MD, PhD4

Departments of 1Radiology and Research Institute of Radiology and 3Nuclear Medicine, Asan Medical Center, University of Ulsan College of 
Medicine, Seoul 138-736, Korea; 2Korea Institute of Science and Technology, Biomedical Research Center, Seoul 136-791, Korea; 4Department of 
Radiology, Division of Musculoskeletal Imaging, Stanford University School of Medicine, Stanford, CA 94305, USA

Objective: To evaluate the potential and correlation between near-infrared fluorescence (NIRF) imaging using cyanine 5.5 
conjugated with hydrophobically modified glycol chitosan nanoparticles (HGC-Cy5.5) and 18F-fluorodeoxyglucose-positron 
emission tomography (18F-FDG-PET) imaging of collagen-induced arthritis (CIA).
Materials and Methods: We used 10 CIA and 3 normal mice. Nine days after the injecting collagen twice, microPET imaging 
was performed 40 minutes after the intravenous injection of 9.3 MBq 18F-FDG in 200 μL PBS. One day later, NIRF imaging was 
performed two hours after the intravenous injection of HGC-cy5.5 (5 mg/kg). We assessed the correlation between these 
two modalities in the knees and ankles of CIA mice.
Results: The mean standardized uptake values of 18F-FDG for knees and ankles were 1.68 ± 0.76 and 0.79 ± 0.71, 
respectively, for CIA mice; and 0.57 ± 0.17 and 0.54 ± 0.20 respectively for control mice. From the NIRF images, the total 
photon counts per 30 mm2 for knees and ankles were 2.32 ± 1.54 x 105 and 2.75 ± 1.51 x 105, respectively, for CIA mice, and 
1.22 ± 0.27 x 105 and 0.88 ± 0.24 x 105, respectively, for control mice. These two modalities showed a moderate correlation 
for knees (r = 0.604, p = 0.005) and ankles (r = 0.464, p = 0.039). Moreover, both HGC-Cy5.5 (p = 0.002) and 18F-FDG-PET (p 
= 0.005) imaging also showed statistically significant differences between CIA and normal mice.
Conclusion: NIRF imaging using HGC-Cy5.5 was moderately correlated with 18F-FDG-PET imaging in the CIA model. As such, 
HGC-Cy5.5 imaging can be used for the early detection of rheumatoid arthritis.
Index terms: HGC-Cy5.5; 18F-FDG PET; Near-infrared fluorescence imaging; Rheumatoid arthritis
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INTRODUCTION

Rheumatoid arthritis (RA) is one of the most frequently 
diagnosed inflammatory joint diseases. Early diagnosis is 
the prerequisite of proper therapy in RA, and the diagnosis 
should be followed by a therapy regimen. Thus, modifying 
the course of the disease and reducing the degree of severe 
late sequelae, diagnostic approaches that detect early RA 
are important (1, 2).

Collagen-induced arthritis (CIA) is an animal model of RA 
that has been widely used to address the pathogenesis of 
this disease and to validate therapeutic targets. The main 
pathological features of CIA include proliferative synovitis, 
with infiltration of polymorphonuclear and mononuclear 
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cells, pannus formation, cartilage degradation, erosion of 
bone, and fibrosis. As in RA, pro-inflammatory cytokines, 
such as tumor necrosis factor-α and interleukin-1β, are 
abundantly expressed in the arthritic joints of mice with 
CIA, and a blockade of these molecules reduce disease 
severity (3, 4). 

Although several imaging techniques have been used to 
diagnose early RA, they are generally limited to delineating 
lesions at the anatomical level. Most currently used clinical 
imaging methods, such as X-ray, computed tomography, 
magnetic resonance imaging (MRI), and ultrasound 
rely predominantly on energy/tissue interactions. 
18F-fluorodeoxyglucose-positron emission tomography 
(18F-FDG-PET), a metabolically-based imaging method, has 
shown significant 18F-FDG uptake in RA joints because of 
inflammatory processes. Moreover, positive 18F-FDG uptake 
has been found to correspond to early synovial swelling, 
and to correlate with ultrasound results (5, 6). MRI has to 
been known to be the best soft tissue contrast in anatomic 
imaging, but the field of view is limited in assessing 
multiple joints, and 18F-FDG-PET can evaluate whole joints 
as well as quantify the degree of inflammation (7). Hence, 
we selected 18F-FDG-PET as the gold standard method of this 
study. 

Recently, near-infrared fluorescence (NIRF) imaging, 
using native cyanine 5.5 (Cy5.5), fluorochrome-labeled 
antibodies, and indocyanine green or carbocyanine dyes 
has been used to detect early arthritis in a murine model, 
indicating that this method may be suitable for the 
detection of inflammatory joints (8-10). 

The natural polyaminosaccharide, chitosan, is a non-toxic, 
biocompatible, biodegradable, and poorly immunogenic 
biopolymer (11). Specific antibody targets for arthritis have 
been developed and contribute to improving diagnosis 
(10, 12, 13). Exogenous antibodies or proteins, however, 
can elicit an immune response, which may lead to side-
effects or loss of efficacy (14). Thus, a contrast agent for 
perfusion or permeability could be of benefit in the imaging 
of patients with RA. 

NIR fluorescent polymeric particles labeled with Cy5.5 are 
suitable for optical imaging because of their relatively long 
wavelength and their minimal absorbance by hemoglobin, 
lipids, water, and other tissues in the NIR region (15, 
16). In addition, hydrophobically modified glycol chitosan 
nanoparticles conjugated with Cy5.5 (HGC-Cy5.5) have 
been found to reach high local concentrations within active 
angiogenic tissues, such as tumors (17), suggesting that 

these HGC nanoparticles may also accumulate in arthritic 
joints. As a nonspecific contrast agent, HGC-Cy5.5 will 
accumulate in areas of increased vascularity and vascular 
leakiness, which are characteristics of arthritic joints. 
Additionally, fluorescence imaging can quantify the signal 
intensity of the lesions. Finally, we have evaluated the 
effectiveness of NIRF imaging using HGC-Cy5.5 to detect 
early CIA, and compared these results with those of 18F-FDG-
PET imaging in a murine model.

MATERIALS AND METHODS

The study was approved by the Institutional Committee 
on Animal Research.

Animals and Induction of Arthritis
Ten male DBA/1J mice (age 9-10 weeks, weight 20-25 

g) were used for the CIA model (20 knees and 20 ankles) 
and 3 DBA/1J mice were used as normal controls (6 knees 
and 6 ankles). In the CIA model, mice were injected in 
the subcutaneous region of the tail with 100 μg bovine 
type II collagen (5 mg/mL; Chondrex, Redmond, WA, USA) 
emulsified in an equivalent volume of Freund’s complete 
adjuvant, followed three weeks later by a booster injection 
of 100 μg bovine type II collagen emulsified in Freund’s 
incomplete adjuvant. RA developed 1 week after the second 
injection. Nine days after the second injection, 18F-FDG-
microPET, and one day after, NIRF imaging were performed. 

Preparation of Hydrophobically Modified Glycol Chitosan 
(HGC) Conjugates Labeled with Cy5.5

Glycol chitosan (Mw = 250 kDa; degree of deacetylation 
= 82.7%) and 5β-cholanic acid were purchased from 
Sigma-Aldrich (St. Louis, MO, USA), while the thermo 
reactive hydroxysuccinimide ester of Cy5.5 was purchased 
from Amersham Biosciences (Piscataway, NJ, USA). HGC 
conjugates were modified by chemically conjugating the 
amine groups of glycol chitosan with the carboxylic group of 
5β-cholanic acid (18). HGC particles were labeled with Cy5.5 
by chemically coupling 1 wt. % of the hydroxysuccinimide 
ester of Cy5.5 to glycol chitosan-cholanic acid conjugates 
dissolved in DMSO at room temperature in the dark for 6 
hours. Unreacted Cy5.5 molecules were removed by dialysis 
for 2 days (molecular weight cutoff = 7 kDa), and the 
Cy5.5 glycol chitosan conjugate was lyophilized. The Cy5.5 
concentration in each glycol chitosan conjugate was similar 
(0.7 wt. %), as determined by measuring the extinction 
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coefficient at 675 nm (2.5 x 105 M-1 cm-1), according to the 
manufacturer’s instructions.

The morphological shapes of HGC and DTX-HGC 
nanoparticles were confirmed by transmission electron 
microscopy (TEM) (CM30 electron microscope, Philips, 
Eindhoven, the Netherlands), and operated at an 
acceleration voltage of 80 kV. Each sample (1 mg/mL in 
distilled water) was placed on a 300-mesh copper grid 
coated with carbon. Negative staining was performed using 
a droplet of 2% (w/v) uranyl acetate.

Fluorescence Imaging
The position of all images was acquired at prone and 

frog leg position for the good exposure of knee and ankle 
joints. The HGC-Cy5.5 probe (23 wt. %; 5 mL/kg) was 
injected intravenously (i.v.) into the tail veins of mice, 
and the biodistribution and joint accumulation of HGC-
Cy5.5 were monitored. All mice were shaved around the 
knee joint for the better evaluation of NIRF imaging. NIRF 
imaging was performed 2 hours after i.v. injection of the 
HGC-Cy5.5 probe. Mice were positioned on an animal plate 
heated to 36°C in the eXplore Optix system (ART Advanced 
Research Technologies Inc., Montreal, Canada). Laser power 
and count time settings were optimized at 25 μW and 
0.3 s per point. The excitation and emission spots were 
raster-scanned in 1 mm steps over the selected region of 
interest to generate emission wavelength scans. A 670 nm 
pulsed laser diode was used to excite the Cy5.5 molecules, 
and NIRF emission was monitored at 700 nm. To evaluate 
HGC accumulation, a dynamic time curve of fluorescence 
intensity was acquired using a Kodak image station 4000 
MM (Kodak, New Haven, CT, USA) every 20 seconds, 
beginning immediately after HGC-Cy5.5 injection and 
ending 120 minutes after injection. Accumulation of glycol 
chitosan nanoparticles was confirmed by measuring NIRF 
intensity at each joint. Mean fluorescence signal intensities 
were determined at knee and ankle joints (region of interest 
[ROI]; 30 mm2) using an Analysis Workstation software (ART 
Advanced Research Technologies Inc., Montreal, Canada) 
(18).

18F-FDG-PET Imaging
18F-fluorodeoxyglucose-positron emission tomography 

imaging was performed using the MicroPET scanner focus 
120 (Siemens Medical Solutions inc., Erlangen, Germany). 
The covering field of view was 7.6 cm. Mice were injected 
in the lateral tail vein with 9.3 MBq of 18F-FDG in 200 μL 

PBS. After a resting period of 40 minutes to allow uptake of 
FDG, mice were transferred to the scanning room. The mice 
were placed in the prone position, and whole body imaging 
was performed at a suitable single bed position; acquisition 
time was about 10 minutes. From the 18F-FDG dose and 
weight of each mouse, we calculated a mean standardized 
uptake value (mean SUV) as activity (Bq/g)/(injected 
activity [Bq]/body weight [g]). All data were calculated 
using a circular ROI with a 3 mm diameter and analyzed 
using microPET Data Analysis Software (ASIPro VM).

Confocal Laser Scanning Microscopy
Collagen-induced arthritis and normal mice were sacrificed 

immediately after the NIRF image acquisition. Their knee 
joints were removed, imbedded in the OCT compound (Miles 
Scientific), and snap-frozen in liquid nitrogen. Each sample 
was sectioned at 7 μm thickness with a cryostat and the 
distribution of HGC-Cy5.5 was evaluated by confocal laser 
scanning microscopy (LSM510 NLO; Zeiss, Zurich, Germany).

Statistical Analysis
Following calculation of the mean SUV of 18F-FDG-PET and 

the mean fluorescence signal of NIRF in CIA and normal 
mice, we assessed the correlation coefficients separately for 
knees and ankles in CIA mice using Pearson’s correlation 
coefficient. The Mann-Whitney U test was used to assess 
the differences in mean SUV and mean fluorescence signal 
between CIA and normal mice. 

RESULTS

The chemical structure of HGC-Cy5.5 is shown in Figure 
1. A TEM image of HGC-Cy5.5 showed that it consisted of 
round particles, with an average diameter of 230 nm (Fig. 2). 
A time intensity curve of the mean photon counts of HGC-
Cy5.5 in CIA mice showed a plateau at 20 minutes after 
injection, which was maintained until 120 minutes after 
injection (Fig. 3).

The mean SUVs of 18F-FDG for knees and ankles were 1.68 
± 0.76 (average ± SD) and 0.79 ± 0.71, respectively, for CIA 
mice; and 0.57 ± 0.17 and 0.54 ± 0.20, respectively, for 
control mice. From NIRF images, the total photon counts 
per 30 mm2 for knees and ankles were 2.32 ± 1.54 x 105 
and 2.75 ± 1.51 x 105, respectively, for CIA mice, and 1.22 
± 0.27 x 105 and 0.88 ± 0.24 x 105, respectively, for control 
mice. HGC-Cy5.5 uptake was significantly higher in CIA 
lesions in a murine model than in control joints, with the 
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average increase in uptake being 90% in affected knees 
and 213% in affected ankles. These two imaging modalities 
showed moderate correlations for knees (r = 0.604, p = 

0.005) and ankles (r = 0.464, p = 0.039). Both HGC-Cy5.5 (p 
= 0.002) and 18F-FDG-PET imaging (p = 0.005) also showed 
statistically significant differences between CIA and normal 
mice, but showed large overlap in range (Fig. 4) because all 
knee and ankle joints were included after twice injection 
of CIA model even though not every joint developed 
arthritis in the CIA model. Normal mice showed low FDG 
and florescence uptake for both knees and ankles (Fig. 5), 
whereas CIA, in contrast, mice showed significantly higher 
FDG and photon uptake for both knees and ankles (Fig. 6).

Confocal laser scanning microscopy of arthritic knees 
showed that HGC-Cy5.5 nanoparticles were distributed in 
the synovial and subsynovial layers as a bright red color (Fig. 
7). No HGC-Cy5.5 nanoparticles were detected in normal 
knees.

DISCUSSION

We have shown here that HGC-Cy5.5 uptake was 
significantly higher in CIA lesions in a murine model than 
in control mice, with the average increase in uptake being 
90% in affected knees and 213% in affected ankles. Hansch 

Fig. 1. Chemical structures and in this study.
A. Chemical structure of Cyanine 5.5-labeled hydrophobically modified glycol chitosan (HGC-Cy5.5) conjugates. B. Chemical structure of 
cyanine 5.5. C. Schematic diagram of HGC-Cy5.5 nanoparticles
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5β-cholanic acid
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Fig. 2. Transmission electron microscopy images of 
hydrophobically modified glycol chitosan nanoparticles.
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et al.(8) reported the increase uptake of the knee joints 
seen by NIRF was only 64% higher 2 hours after injection 
of Cy5.5. In contrast to Cy5.5, which binds covalently to 

proteins, HGC-Cy5.5 may have a different biodistribution 
and life cycle in vivo. These findings indicate that HGC-
Cy5.5 uptake may be more sensitive than NIRF in the 
detection of murine CIA lesions.

Indocyanine green has been clinically used and approved 
to assess hepatic function and for fluorescence angiography 
in ophthalmology (19, 20). This dye, however, is rapidly 
cleared from the blood by the liver, which limits its ability 
to reach a target. Compared with indocyanine green, 
cyanine dyes have been found to show better tissue uptake 
and slower clearance (21).  

We found that HGC nanoparticles accumulated in the 
synovial and subsynovial layers of arthritic knees. In 
a tumor model, HGC nanoparticles showed high tumor 
uptake and low trapping by the liver and spleen (18). The 
biodistribution of these particles was unexpected, in that 
smaller micelles were more efficacious than larger ones, 
whereas larger liposomes (> 200 nm in diameter) showed 
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rapid clearance from the RES system because of enhanced 
RES recognition (18, 22). Coating materials and the 
hydrophilicity and flexibility of the coating polymer layer 
may be important in reducing the RES uptake of particles 
(23). The limited uptake of HGC nanoparticles by the 
liver and spleen were probably due to the characteristics 
of chitosan and the deformability of particles in the 
bloodstream (24).

Non-invasive and functional NIRF imaging systems are 
emerging as promising diagnostic tools for live animals. 
These imaging systems are relatively inexpensive, easily 
accessible, do not generate radiation, and provide 
quantitative information (16). They have been used to 
monitor the fate of tumors in vivo, thus facilitating the 
characterization of pathophysiological states (18). Among 
the various optical imaging systems, NIR light shows the 

highest tissue penetration because of minimal uptake by 
surface tissue of light of the NIR region. Specifically, water, 
hemoglobin (a principal absorber of visible light), and lipids 
(primary absorbers of infrared light), show lower uptake of 
light in the NIR range (15, 16). 

The main limitation of fluorescence imaging is that 
the absolute quantification of target signal is impossible 
and has depth limitation (25). In this study, ankle joints 
in arthritic mice showed higher uptake of total photon 
counts in NIRF imaging than the uptake of knee joints. In 
contrast, control mice showed lower uptake in ankle joints 
than knee joints. These might reflect the thick penetration 
range in the knee joint relative to the ankle joint. Hence, 
the quantification of NIRF imaging might be limited to the 
comparison in the same joint or similar penetration depth. 
Fluorescence molecular tomography could be provided at 
a deeper depth limitation up to 20 cm (25), such that 
fluorescence molecular tomography is more reliable for 
imaging and quantification of living animals or superficial 
targets of human. RA in humans predominantly affects the 
small joints of the hand and wrist. Our findings indicate 
that NIRF imaging of these small joints could become 
feasible in the near future (10, 12).

18F-fluorodeoxyglucose-positron emission tomography 
imaging shows the metabolic activity of RA. At present, 
18F-FDG-PET is not used diagnostically because of high cost 
and limited accessibility (7). However, 18F-FDG-PET offers 
unique information on glucose metabolism and is able to 
detect early inflammation (6, 26), indicating that 18F-FDG-
PET may be a promising tool for monitoring RA progress and 
therapeutic response (7, 27).

We found that 18F-FDG-PET and NIRF using HGC-Cy5.5 
yielded data that correlated positively in our CIA murine 
model. However, neither 18F-FDG nor the HGC-cy5.5 probe 
is specific for detecting synovial lesions in RA. Activated 
macrophages are thought to be intimately involved in the 
pathogenesis of RA by directly destroying articular tissue, 
secreting matrix metalloproteinases, and attracting or 
activating other immune cells via the release of cytokines. 
The quantification of activated macrophages in joint 
tissues may therefore be of diagnostic value because 
activated macrophage content correlates well with articular 
destruction and poor disease prognosis in humans (10, 28).

We found that 18F-FDG uptake was higher in the knees 
than in the ankles of CIA mice, whereas NIRF imaging 
showed higher uptake in ankles than in knees. As we 
mentioned above, comparison of the quantification of 

Fig. 5. Results of 18F-fluorodeoxyglucose-micro positron 
emission tomography imaging (A) and near-infrared 
fluorescence imaging (B) using cyanine 5.5 conjugated with 
hydrophobically modified glycol chitosan nanoparticles at 
knees (arrows) and ankles (arrowheads) in normal mice.

A B

Fig. 6. Results of 18F-fluorodeoxyglucose-micro positron 
emission tomography imaging (A) and near-infrared 
fluorescence imaging (B) using cyanine 5.5 conjugated with 
hydrophobically modified glycol chitosan nanoparticles at 
knees (arrows) and ankles (arrowheads) in collagen-induced 
arthritis mice.

A B
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A B
Fig. 7. Confocal laser scanning microscopy of arthritic knee (A) and control knee (B), showing that cyanine 5.5-conjugated, 
hydrophobically modified, glycol chitosan nanoparticles emit bright red light (arrows) at synovial and subsynovial layers of 
arthritic knees (x 400 magnification).

NIRF imaging in different joints is limited. Hence, the 
quantification of different joints is better in 18F-FDG 
PET imaging. Glucose uptake was increased in early 
inflammatory arthritis, but glucose metabolism was not 
correlated with regional blood flow (29). Thus, different 
imaging data may be related to different uptake values in 
various joints.

In conclusion, NIRF images using the HGC-Cy5.5 probe 
showed increased uptake at the joints of CIA mice, and 
correlated with 18F-FDG-PET imaging. These findings indicate 
that NIRF images using a high wavelength optical probe 
may be clinically useful in the detection of RA.
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