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Recent advances in neuroscience have raised the hypothesis that the underlying pattern of neuronal activation which results in
electroencephalography (EEG) signals is via power-law distributed neuronal avalanches, while EEG signals are nonstationary.
Therefore, spectral analysis of EEGmaymissmany properties inherent in such signals. A complete understanding of such dynamical
systems requires knowledge of the underlying nonequilibrium thermodynamics. In recent work by Fielitz and Borchardt (2011,
2014), the concept of information equilibrium (IE) in information transfer processes has successfully characterized many different
systems far from thermodynamic equilibrium.We utilized a publicly available database of polysomnogram EEG data from fourteen
subjects with eight different one-minute tracings of sleep stage 2 and waking and an overlapping set of eleven subjects with eight
different one-minute tracings of sleep stage 3. We applied principles of IE to model EEG as a system that transfers (equilibrates)
information from the time domain to scalp-recorded voltages. We find that waking consciousness is readily distinguished from
sleep stages 2 and 3 by several differences in mean information transfer constants. Principles of IE applied to EEG may therefore
prove to be useful in the study of changes in brain function more generally.

1. Introduction

In electroencephalography (EEG), scalp electrodes measure
electrical potential as a function of time [1]. EEG measures
the sum of local field potentials in the region of cortex below
the electrode, comprising ∼109 cortical neurons [1]. EEG is
typically analyzed by spectral analysis (Fourier transform)
that assesses power in frequency bands [1]. However, many
studies over the last 20 years have demonstrated that the
underlying cortical neuronal dynamics is nonlinear and that
EEG signals are nonstationary (themean and variance change
over time unpredictably). This has been mostly convincingly
demonstrated both in vivo and in vitro using multielectrode
arrays on cortical tissue, demonstrating the presence of
“neuronal avalanches” [2, 3].

Given that the cortical neuronal dynamics largely respon-
sible for the summed local field potentials that comprise
EEG are characterized by scale-free avalanches consistent

with a system at a critical state that is well described
by power-law dynamics, many attempts have been made
to analyze EEG using methods derived from fractal and
other nonlinear theories, with some degree of success [4–
9]. Another avenue of physical understanding of cortical
avalanche dynamics would be via statistical physics and
thermodynamics; however, the relatively large magnitude
changes in scalp-recorded voltages in EEG clearly could not
be characteristic of a system in thermodynamic equilibrium
[10]. Therefore, a thorough statistical physics understanding
of EEG would involve a complete description of cortical
nonequilibrium thermodynamics, which is not possible for
a noninvasive technique such as EEG [10, 11]. Similarly,
previously published information-theoretic shortcuts to a
thermodynamic understanding (such as maximum entropy
approaches) for EEG suffer from insufficient knowledge of
appropriate constraints for microscopic variables [12, 13].
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Instead, we propose to utilize the concept of generalized
information transfer, where EEG could be modeled as an
information transfer process [11, 14]. Generalized infor-
mation equilibrium (IE) has been proposed as a system-
independent mechanism to study systems far from ther-
modynamic equilibrium, with applications to astrophysics,
economics, materials science, Newtonian physics, and ther-
modynamics [11, 14, 15]. The principles of IE were developed
from Hartley’s original description [16] of an amount of
information (𝐼):

𝐼 = 𝐾 ⋅ 𝑛, (1)

where 𝑛 is the number of selected symbols and 𝐾 = ln 𝑠
is a constant which depends on the number of symbols (𝑠)
available at each selection. Note that we use the natural
logarithm, so that our natural information measure is in
“nats” instead of “bits.” Following Fielitz and Borchardt
(2014) we will use the Hartley definition of information to say
that the information in a given process 𝑥 is

𝐼

𝑥
= 𝐾

𝑥
⋅ 𝑛

𝑥
with 𝐾

𝑥
= ln 𝑠
𝑥
, (2)

where 𝑠

𝑥
is the size of the alphabet of symbols used to

encode 𝑥 and 𝑛

𝑥
is the number of symbols we select. A key

assumption is that 𝑛 ≫ 1 (which we have from the 108 to 109
neurons in the cortex underlying an electrode).

Note that the more commonly utilized Shannon entropy
(𝑖) defined as [17]

𝑖 =

𝐼
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= −

𝑠

∑

𝑗=1

𝑝

𝑗
ln𝑝
𝑗 (3)

reduces to the Hartley definition of information (𝐼) when the
probability of each symbol in the alphabet is equal (i.e., 𝑝

𝑗
is

a constant). The use of Hartley’s information theory, lacking
any probabilistic assumptions, thus allows an estimation
of information flow in any system even without access to
knowledge of microscopic states or appropriate constraints
in the case of maximum entropy approaches [11, 14]. It should
also be noted here that Hartley information is a special case
of the Rényi entropy for 𝛼 = 0 [18]:
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It has been demonstrated that one can use Hartley’s informa-
tion theory to define a natural amount of information for any
system [11, 14]:

𝐼

𝑥
= 𝜅

𝑥

|Δ𝑥|

|𝛿𝑥|

, (5)

where 𝜅

𝑥
is the information transfer constant, |Δ𝑥| is the

absolute value, and |𝛿𝑥| is the signal of the process variable 𝑥,
with |𝛿𝑥| ≪ |Δ𝑥|. Using this relationship, virtually any system
where information flows from a source (𝑦) to a destination
(𝑥) can be considered from the point of view of information
transfer [11, 14]. The important point is, however, that the
amount of information (𝐼) must generally obey the inequality

𝐼

𝑥
≤ 𝐼

𝑦
, (6)

when the process variable 𝑥 is related to the information
destination and the process variable 𝑦 to the information
source. For the current study, we assume ideal information
transfer (𝐼

𝑥
= 𝐼

𝑦
) and, hence, information equilibrium (IE).

Considering (5) one gets
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For convenience we will denote the ratio 𝜅
𝑦
/𝜅

𝑥
as 𝜅 and call it

the information transfer constant for ideal information trans-
fer or for IE. For EEG, we use (7) to define an information
transfer constant (𝜅) for each time interval (Δ𝑡) to the voltage
reading (|Δ𝑉|). We analyze the distribution of 𝜅 values to see
if they are peaked around awell-definedmean. In that casewe
can interpret (7) (for small changes in the process variables𝑑𝑥
and 𝑑𝑦) as a differential equation:

𝑑 |Δ𝑉|

𝑑 |Δ𝑡|

= 𝜅avg
|Δ𝑉|

|Δ𝑡|

, (8)

which has the solution

|Δ𝑉| ∼ |Δ𝑡|

𝜅avg
. (9)

We will make a few observations here about the IE approach
and its relationship to other physical descriptions of dynamic
systems. For general information equilibrium, the solution to
(8) can be rewritten as

|Δ𝑉|𝑡0+Δ𝑡
= |Δ𝑉|𝑡0

exp(𝜅 log(
𝑡

0
+ Δ𝑡

𝑡

0

)) . (10)

Let us now set a new parameter, 𝜆 = 𝜅𝑡

0
. Over short time

scales (𝑡
0
≫ Δ𝑡), (10) reduces to

|Δ𝑉|𝑡0+Δ𝑡
= |Δ𝑉|𝑡0

exp 𝜆Δ𝑡. (11)

Equation (11) is precisely the form of a Lyapunov exponent if
the voltagemeasurement is considered as a superposition of a
large number of neurons at different distances from the EEG
sensor (i.e., |Δ𝑉| is a sum over 𝑛 individual neuron voltages
near the sensor, mapping a 4n dimensional “phase space”
to a voltage measurement (R3 × 𝑉)𝑛 → |𝑉|). Lyapunov
exponents are deeply related to the study of chaotic dynamical
systems, with positive values indicating a chaotic system
with exponential divergence from initial conditions [19].
For systems with power-law sensitivity to initial conditions,
Lyapunov exponent analysis has been generalized to the
scale-dependent Lyapunov exponent, which has been utilized
to successfully describe many dynamic physical systems,
including EEG-based seizure identification in humans (e.g.,
[5, 20–22]).

For the current study, we utilize a publicly available
database of polysomnographic data for fourteen subjects with
eight minutes each of waking and sleep stage 2 EEG (and
eleven subjects with eight minutes of sleep stage 3 EEG) to
assess for differences in patterns of 𝜅 values to assess the
utility of IE in distinguishing different states of consciousness.
Our hypothesis is that different states of consciousness can
be identified by different distributions of 𝜅 and different 𝜅avg
values.
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Table 1: Mean information transfer ratio comparisons.

Δ𝑇 Waking versus Sleep stage 2 F
(1,221)

Sleep stage 3 F
(1,184)

0.004 1.08 (0.097) 1.21 (0.08) 170.8∗∗∗ 1.17 (0.08) 144.1∗∗∗

0.04 1.60 (0.18) 1.65 (0.12) 19.8∗∗∗ 1.57 (0.14) 1.67
0.4 5.51 (0.48) 5.31 (0.47) 19.1∗∗∗ 4.51 (0.57) 263.1∗∗∗

4 −3.62 (0.33) −3.53 (0.31) 9.6∗∗ −3.01 (0.36) 280.1∗∗∗

Δ𝑇: time difference for voltage change calculations, in seconds.
Values represent mean (s.d.) for group mean information transfer ratio (𝜅).
∗∗∗
𝑝 < 0.0001; ∗∗𝑝 < 0.001 after Bonferroni correction.

2. Materials and Methods

2.1. Database. We utilized a publicly available EEG dataset
(slpdb) http://www.physionet.org/, which was a polysomno-
gram study of patients with severe sleep apnea [23]. There
were 𝑛 = 14 subjects with 8min of waking EEG and sleep
stage 2 EEG and 𝑛 = 11 subjects with 8min of sleep stage
3 EEG. An additional dataset of 𝑛 = 13 subjects of waking
EEG, 𝑛 = 10 subjects of REM sleep EEG, and 𝑛 = 8 subjects
of sleep stage 1 EEG (1 minute each, nonoverlapping with the
larger 8min EEG dataset) was also generated from the larger
dataset.The exact dataset used has previously been described
in a prior unrelated study [9]. EEG segments chosen for
further analysis were selected on the basis of the absence of
movement artifacts and disordered breathing, which limited
the amount of suitable tracings. No demographic and limited
clinical information was available from the dataset. Digitized
250Hz EEG recordings on a 10–20 international system
were used with a single EEG lead for each subject, which
differed among subjects; no information was provided about
reference electrode placement [9]. Use of the dataset for this
study was approved by the VAWest Los Angeles IRB.

2.2. 𝜅 Estimation. EEG is a time series of voltage readings
𝑉(𝑡), where 𝑡 = 1, 2, . . . , 𝑛 (length of series) for each value of 𝑡
up to 𝑛 − Δ𝑡, given a time interval Δ𝑡, so the 𝜅 values for each
instant can be calculated:

𝜅
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=

log (󵄨󵄨󵄨
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Therefore, each segment of EEG would be characterized by
a series of information transfer constant ratios, for different
values of the time interval Δ𝑡 (i.e., 1, 2, 4, 8, time steps, etc.),
and for each segment the mean 𝜅avg was calculated:

𝜅avg =
1

𝑛 − Δ𝑡

𝑛−Δ𝑡

∑

𝑡=1

𝜅

Δ𝑡
. (13)

Code for extracting 𝜅 values from EEG was written in R
[24]. We used the natural log for transformation throughout.
Values where𝑉(𝑡) = 𝑉(𝑡+Δ𝑡)were excluded from estimation
(as the logarithm of zero is undefined).

2.3. Analyses. Probability density function (PDF) estimation
was done using the R density package. Lomb-Scargle peri-
odograms were done using the R package cts [25], designed
to follow [26]. To assess statistically significant periodogram

peaks, we utilized a 𝑝 ≤ 0.01 threshold, heuristically
estimating the maximum possible number of frequencies in
the input PDF as twice the number of data points in the
PDF [26]. All statistics were done in R [24]. For the REM
sleep and sleep stage 1 dataset analysis with the reduced
size dataset, we utilized generalized linear mixed modeling
(GLMM) with unstructured covariance matrices to account
for subject-specific effects, using the R package nlme [27].

3. Results

3.1. Waking Differs from Sleep Stages 2 and 3 in 𝜅 Values at
Multiple Time Scales. We calculated the mean 𝜅 value for
each segment in our database with a range of different Δ𝑇
values (0.004, 0.04, 0.4, and 4 seconds; Figure 1, Table 1). An
example of the comparison in the PDFs of 𝜅 values for all
three states of consciousness for 1min each of EEG for a single
subject at Δ𝑇 values from 0.004 to 4 sec is shown in Figure 1.

Segment-specific mean 𝜅 values were then analyzed by
repeated-measures ANOVA with state of consciousness as
the grouping variable and subject as the repeated measure
(Table 1). These results demonstrate that waking EEG is
clearly distinguishable from sleep stages 2 and 3 via segment
mean 𝜅 values (Table 1). While waking and sleep stage 3
𝜅 values differ strongly at 0.004-, 0.4-, and 4-second time
scales, there is no difference between them at the 0.04-second
time scale (Table 1). Interestingly, while there seems to be
a pattern for waking and sleep stage 2 𝜅 values to slowly
become less different over time, if anything the opposite is
true for the waking/sleep stage 3 comparison, where the 4-
second time scale shows the largest difference between the
two (comparing 𝐹 values; Table 1).

3.2. Greater Proportion of Low Information Transfer at Δ𝑇 of
0.004 sec in Sleep Stages 2 and 3. Next, we assessed 𝜅 values
for the proportion in each segment with values <0.2, as a
heuristic indicator of low information transfer at the 250Hz
sampling rate (Table 2). Strikingly, both sleep stage 2 and
(more so) sleep stage 3 have a greater proportion of low
information transfer 𝜅 values than waking EEG (Table 2). At
larger time steps, however, there was no difference between
consciousness stages in the proportion of low information
transfer (data not shown).

3.3. Waking Differs from Sleep Stages 2 and 3 in the Extent of
Periodicity in the PDFs of 𝜅 Values at All Time Scales. As can
be noted in Figure 1, there appears to be a periodicity in the
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Figure 1: PDF estimations of 𝜅 values for one subject. One minute each of EEG from waking (black), sleep stage 2 (blue), and sleep stage 3
(green) from a single subject was analyzed for 𝜅 values and the PDF estimated and plotted for each of (a)Δ𝑇 = 0.004 sec; (b)Δ𝑇 = 0.04 sec; (c)
Δ𝑇 = 0.4 sec; (d) Δ𝑇 = 4 sec. 𝑃(𝜅): frequency of 𝜅 values. Note the characteristic amplitude fluctuations at all scales for the largest magnitude
𝜅 values.

Table 2: Fraction of values with kappa < 0.2 at Δ𝑇 = 0.004 s.

Waking versus Sleep stage 2 F
(1,209)

0.018 (0.020) 0.031 (0.023) 753.2∗∗∗

Sleep stage 3 F
(1,184)

0.018 (0.020) 0.16 (0.12) 822∗∗∗

Data represent mean (s.d.) for fraction of 𝜅 values < 0.2.
Per segment, via repeated-measures ANOVA. ∗∗∗𝑝 < 0.0001.

PDF of 𝜅 values, in that certainmagnitudes are enhanced, and
others are diminished. In order to quantify this, wemade PDF

estimations for 𝜅 values for all segments and then performed
a normalized Lomb-Scargle periodogramanalysis, in order to
assess for periodicity (Figure 2; Table 3). Sleep stage 2 exhibits
enhanced periodicity, while sleep stage 3 shows diminished
periodicity compared with waking at the 0.004 sec time step.
For all other time steps, though, sleep stage 3 shows greater
periodicity in the 𝜅 value PDF estimations than sleep stage
2 and waking consciousness (Figure 2; Table 3). Note that
although sleep stage 2 and waking appear to be very similar
at all other time steps (Figure 2), there are in fact modest
quantitative differences between their periodicities (Table 3).
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Table 3: Mean 𝑝 ≥ 0.01 Lomb-Scargle power comparisons.

Δ𝑇 (sec) Waking Sleep stage 2 F
(1,209)

Sleep stage 3 F
(1,184)

0.004 1.2 × 105 (2.2 × 104) 1.5 × 105 (2.7 × 104) 78.7∗∗∗ 9.1 × 104 (5.8 × 104) 62.6∗∗∗

0.04 9.8 × 104 (2.2 × 104) 1.0 × 105 (2.2 × 104) 11.87∗∗ 1.5 × 105 (4.2 × 104) 244.4∗∗∗

0.4 3.5 × 104 (6.7 × 103) 3.3 × 104 (5.1 × 103) 11.08∗∗ 4.8 × 104 (1.6 × 104) 100.9∗∗∗

4 5.2 × 104 (9.5 × 103) 5.0 × 104 (7.6 × 103) 6.9∗∗ 7.3 × 104 (2.4 × 103) 119.2∗∗∗

Listed values represent mean (s.d.) of 𝑝 ≤ 0.01 Lomb-Scargle periodogram power for each state of consciousness. Comparisons were done by repeated-
measures ANOVA. ∗∗∗𝑝 < 0.0001; ∗∗𝑝 < 0.01.

300

400

500

600

700

0.0 0.1 0.2 0.3 0.4 0.5

LS
 p

ow
er

p
>

0
.0
1

Nyquist frequency

∗∗

∗∗

Sleep stage 2
Sleep stage 3
Waking

(a)

0.0 0.1 0.2 0.3 0.4 0.5

LS
 p

ow
er

p
>

0
.0
1

Nyquist frequency

∗∗

∗

200

400

600

800

Sleep stage 2
Sleep stage 3
Waking

(b)

0

200

400

600

0.0 0.1 0.2 0.3 0.4 0.5

LS
 p

ow
er

p
>

0
.0
1

∗∗

Nyquist frequency

Sleep stage 2
Sleep stage 3
Waking

(c)

0.0 0.1 0.2 0.3 0.4 0.5
Nyquist frequency

LS
 p

ow
er

p
>

0
.0
1

∗∗

0

200

400

600

Sleep stage 2
Sleep stage 3
Waking

(d)

Figure 2: Lomb-Scargle periodogram power for 𝜅 value PDF estimations. Lines represent mean data for EEG of 𝑛 = 14 subjects fromwaking
(black) and sleep stage 2 (blue) and 𝑛 = 11 subjects from sleep stage 3 (green), each with eight different one-minute segments. Data was
analyzed for 𝜅 values and the PDF estimated and then normalized Lomb-Scargle periodogram area with a threshold of 𝑝 > 0.01 calculated.
(a) Δ𝑇 = 0.004 sec; (b) Δ𝑇 = 0.04 sec; (c) Δ𝑇 = 0.4 sec; (d) Δ𝑇 = 4 sec. ∗∗𝑝 < 0.0001 by repeated-measures ANOVA for Lomb-Scargle
periodogram area difference between waking and sleep stage 2 (a) and waking and sleep stage 3 (a–d); ∗𝑝 < 0.01 between waking and sleep
stage 2 (b).
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Table 4: Mean 𝜅 and LS power for sleep stage 1 and REM sleep versus waking EEG.

Δ𝑇 (sec) Waking Sleep stage 1 𝑡 stat REM sleep 𝑡 stat
Mean 𝜅a

0.004 1.06 (0.09) 1.17 (0.1) 2.46∗ 1.27 (0.09) 5.61∗∗∗

0.04 1.56 (0.19) 1.69 (0.08) 2.04 1.75 (0.16) 4.15∗∗

0.4 5.39 (0.54) 5.69 (0.42) 2.42 5.74 (0.59) 2.31
4 −3.45 (0.37) −3.62 (0.23) 1.4 −3.66 (0.41) 1.54

LS powerb

0.004 7879 (4989) 7766 (4826) 0.05 8422 (9083) 0.18
0.04 1.7 × 105 (5.2 × 104) 1.9 × 105 (3.7 × 104) 0.93 2.1 × 105 (6.2 × 104) 3.26∗

0.4 2.9 × 105 (8.3 × 104) 3.7 × 105 (9.4 × 104) 2.12 4.0 × 105 (1.3 × 105) 3.32∗

4 4.5 × 105 (1.3 × 105) 6.2 × 105 (1.9 × 105) 2.63∗ 6.3 × 105 (2.0 × 105) 2.76∗
aListed values represent mean (s.d.) of 𝜅 values for each state.
bListed values represent mean (s.d.) of 𝑝 ≤ 0.01 Lomb-Scargle periodogram power for each state.
Comparisons were done by GLMM. ∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05; bold: 𝑝 < 0.1.

3.4. Waking Also Differs from Sleep Stage 1 and REM Sleep in
Both Mean 𝜅 Values and the Extent of Periodicity in the PDFs
of 𝜅 Values at Various Time Scales. Given the limitations of
the physionet.org dataset, only a limited number of segments
with artifact-free sleep stage 1 and REM sleep EEGs were
available. As a further test of the IE description of EEG, we
compared a nonoverlapping group of 1-minute tracings of
waking, sleep stage 1, and REM sleep EEG by mean 𝜅 and
Lomb-Scargle periodogram analysis of 𝜅 PDFs, using gener-
alized linearmixedmodeling (GLMM;Table 4).Neither sleep
stage 1 nor REM sleep exhibited a significant proportion of
low information transfer 𝜅 values at the sampling rate (data
not shown). In terms of mean 𝜅 values, sleep stage 1 exhibits
a larger value than waking only at the 250Hz sampling rate,
with only a trend towards significance atΔ𝑡=0.04 and 0.4 sec,
and no difference at Δ𝑡 = 4 sec (Table 4). REM sleep mean 𝜅
values are larger than those for waking EEG at the sampling
rate and Δ𝑡 = 0.04 sec, with only a trend at Δ𝑡 = 0.4 sec, with
no difference between states at Δ𝑡 = 4 sec (Table 4).

Interestingly, both sleep stage 1 and REM sleep exhibited
no difference from waking EEG in terms of the extent of
periodicity in the 𝜅 value PDF estimations at the sampling
rate, whereas both showed stronger differences with larger
time steps (Table 4). Sleep stage 1 did not differ from waking
in periodicity in the 𝜅 value PDF estimations at Δ𝑡 = 0.04 sec,
demonstrated a trend towards an increase in periodicity atΔ𝑡
= 0.4 sec, and showed an increase in periodicity at Δ𝑡 = 4 sec
(Table 4). By contrast, REM sleep exhibited a greater degree
of periodicity in the 𝜅 value PDF estimations than waking at
Δ𝑡 = 0.04, 0.4, and 4 sec.

4. Discussion

4.1. Generalized InformationTheory and EEG. To our knowl-
edge, this report is the first application of principles of IE to
the study of EEG. Other information-theoretic approaches
have a long history of neuroscience applications [28], but
maximum entropy applications to EEG in particular have
been limited by an appropriate understanding of micro-
scopic constraints [12, 13]. The theoretical advantage of IE
approaches to the analysis of EEG (or any other system) is that

an explicit probabilistic understanding of the underlying sys-
tem states (i.e., cortical local field potentials) is unnecessary;
thus an estimation of “natural” information transfer can be
assessed from amacro-observable (like time-dependent scalp
voltage) alone [11, 14].

4.2. Utility of IE for the Study of Sleep Stage Discrimination.
Our study demonstrates several interesting findings with
regard to the application of IE to the analysis of polysomno-
gram data in EEG. Firstly, there is a clear distinction between
waking, sleep stage 2, and sleep stage 3 consciousness in terms
of mean 𝜅 values across different time scales (Table 1), with
sleep stage 1 and REM sleep consciousness having distinction
at fewer time scales (Table 4). Secondly, waking differs from
both sleep stage 2 and sleep stage 3 (but not sleep stage 1 or
REM sleep) in terms of the proportion of low information
transfer 𝜅 values at the sampling rate (250Hz). Thirdly and
perhaps most surprisingly, there is a clear periodicity of the
PDF of the 𝜅 values at all time scales, which differs strongly
between waking, sleep stage 2, and sleep stage 3, with more
limited differences between waking and sleep stage 1 and
REM sleep (Figure 2, Tables 3 and 4). Thus, there is an
overall richness of the IE description of differences in sleep
and consciousness states that may well suit it to be used as
a general tool to study states of altered cortical function.
Indeed, the apparent discriminative power of IE (Tables 1–
4) for sleep staging compares favorably with many other
descriptions of computer-based analytic techniques for EEG,
including fractals [6], multifractals [7, 9, 29, 30], and Tsallis
entropy [4], not tomention automatic feature extraction from
spectral analysis (reviewed in [31]).

4.3. Limitations. We utilized a publicly available dataset with
minimal clinical or demographic information available. The
number of subjects available was relatively small, and the
number of EEG segments available was smaller still for sleep
stage 1 and REM sleep. Waking consciousness is likely to
be a heterogeneous state of brain activities; thus identifying
this state only based upon clinical polysomnogram staging
may limit the ability of any technique to assess for differ-
ences between waking and sleep stages. We can not exclude
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the possibility that some of the observed differences between
states of consciousness were caused by differences in motor
or muscle activity.

5. Conclusions

Given the highly significant results from application of IE
to EEG, with the ability to discriminate between waking
and sleep consciousness stages via multiple distinct statistical
descriptions, the study of EEG-based information transfer
constant (𝜅) certainly deserves to be tried more generally
with other sleep EEG datasets to ensure replicability. The
application of IE to EEG is very straightforward, with
extremely simple programming algorithms compared to
other techniques. Indeed, if the results of the present study
are a guide, it may be interesting to apply IEmore widely with
states of brain dysfunction to see if it will become a useful tool
in the quantitative analysis of EEG.
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