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With the advent of genomic sequencing, a number of balanced and unbalanced structural
variants (SVs) can be detected per individual. Mainly due to incompleteness and the
scattered nature of the available annotation data of the human genome, manual
interpretation of the SV’s clinical significance is laborious and cumbersome. Since
bioinformatic tools developed for this task are limited, a comprehensive tool to assist
clinical outcome prediction of SVs is warranted. Herein, we present SVInterpreter, a free
Web application, which analyzes both balanced and unbalanced SVs using topologically
associated domains (TADs) as genome units. Among others, gene-associated data (as
function and dosage sensitivity), phenotype similarity scores, and copy number variants
(CNVs) scoring metrics are retrieved for an informed SV interpretation. For evaluation, we
retrospectively applied SVInterpreter to 97 balanced (translocations and inversions) and
125 unbalanced (deletions, duplications, and insertions) previously published SVs, and
145 SVs identified from 20 clinical samples. Our results showed the ability of SVInterpreter
to support the evaluation of SVs by (1) confirming more than half of the predictions of the
original studies, (2) decreasing 40% of the variants of uncertain significance, and (3)
indicating several potential position effect events. To our knowledge, SVInterpreter is the
most comprehensive TAD-based tool to identify the possible disease-causing candidate
genes and to assist prediction of the clinical outcome of SVs. SVInterpreter is available at
http://dgrctools-insa.min-saude.pt/cgi-bin/SVInterpreter.py.
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INTRODUCTION

Structural variants (SVs) are a class of genomic alterations that include balanced (translocations and
inversions) and unbalanced (deletions, duplications, and insertions), as well as complex (cx) SVs
(Collins et al., 2017). Currently, genome sequencing technologies allow a broader view of genomic
variation. Nevertheless, technical issues, as breakpoints located in low complexity sequence regions

Edited by:
Thomas Liehr,

Friedrich Schiller University Jena,
Germany

Reviewed by:
Christopher Grochowski,

Baylor College of Medicine,
United States

Edgar Ricardo Vázquez-Martínez,
Universidad Nacional Autónoma de

México, Mexico

*Correspondence:
Joana Fino

joana.fino@insa.min-saude.pt
Dezső David

dezso.david@insa.min-saude.pt

Specialty section:
This article was submitted to

Human and Medical Genomics,
a section of the journal
Frontiers in Genetics

Received: 11 August 2021
Accepted: 12 October 2021

Published: 01 December 2021

Citation:
Fino J, Marques B, Dong Z and
David D (2021) SVInterpreter: A

Comprehensive Topologically
Associated Domain-Based Clinical

Outcome Prediction Tool for Balanced
and Unbalanced Structural Variants.

Front. Genet. 12:757170.
doi: 10.3389/fgene.2021.757170

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7571701

TECHNOLOGY AND CODE
published: 01 December 2021

doi: 10.3389/fgene.2021.757170

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.757170&domain=pdf&date_stamp=2021-12-01
https://www.frontiersin.org/articles/10.3389/fgene.2021.757170/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.757170/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.757170/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.757170/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.757170/full
http://dgrctools-insa.min-saude.pt/cgi-bin/SVInterpreter.py
http://creativecommons.org/licenses/by/4.0/
mailto:joana.fino@insa.min-saude.pt
mailto:dezso.david@insa.min-saude.pt
https://doi.org/10.3389/fgene.2021.757170
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.757170


that defy the bioinformatic mapping and detection tools
capability, still hinder the identification of SVs (Guan and
Sung, 2016).

Determining the phenotypic consequences of SVs is
challenging. The diversity of its size, genomic content,
location, and the intricacy of cxSV make these difficult to
interpret, especially considering that they can impinge
functional elements located not only within but also outside
the affected genomic region (Weischenfeldt et al., 2013).
Indeed, SVs alter the genome architecture of the affected
regions and have a high probability of changing the position
of regulatory elements, known as position effect, whichmay result
in altered gene regulation (Spielmann et al., 2018). Previous
studies showed the importance of 3D genome architecture on
gene regulation, and how topologically associated domain (TAD)
disruption and modification can lead to phenotypic
consequences, including the alteration of chromatin loops that
are recurrently associated with enhancer–promoter interaction
(Lupiáñez et al., 2015; Spielmann et al., 2018)

Therefore, considering the complexity of mechanisms that can
link a SV to human disease, the large number of variants
identified per individual, and the substantial revision of
dispersed data that this entails, ascertainment of SV
pathogenicity is a daunting task (Smedley and Robinson, 2015;
Zitnik et al., 2019). Furthermore, scarce integration of the
available human genome annotation resources and databases
also hampers clinical impact prediction of the identified
variants (Lindblom and Robinson, 2011).

To date, a number of tools have been shown to tackle the role
of unbalanced SVs or copy number variants (CNVs) in human
diseases. Tools such as StrVCTVRE and SVscore focus on a single
genomic feature to classify CNVs, as overlap with exons of
important genes and precomputed pathogenicity scores of
affected single nucleotide polymorphisms, respectively (Ganel
et al., 2017; Sharo et al., 2020 [preprint]). ClinTAD provides
annotation based on TAD context of each CNV, and a possible
phenotypic overlap (Spector and Wiita, 2019), whereas SVFX
uses artificial intelligence approach, based on genomic,
epigenomic, and conservation features (Kumar et al., 2020).

For SVs, AnnotSV collects clinically relevant information on
the genomic elements directly affected by breakpoints (Geoffroy
et al., 2018) and position_effect predicts genes affected by position
effects due to balanced chromosomal abnormality (BCA)
breakpoints (Zepeda-Mendoza et al., 2017).

To assist the evaluation of balanced and unbalanced SVs, we
previously published two useful bioinformatic tools: TAD-
GConTool and CNV-ConTool. TAD-GConTool automatically
defines the regions for following analysis, based on TADs
affected by the breakpoints, and retrieves relevant information,
whereas CNV-ConTool performs an overlap search against
curated CNV databases (David et al., 2020). However, they are
still limited in their scope.

Here, we present a more comprehensive tool, SVInterpreter,
which combines the strengths of our previously published tools,
with new features, to retrieve a ready-to-use data table.
SVInterpreter gathers the information using breakpoints or
genomic positions of balanced or unbalanced SVs, highlighting

the relevant data for variant evaluation. Additionally, it performs
similarity calculation between the proband’s Human Phenotype
Ontology (HPO)-based clinical features and those from disorders
reportedly associated to genes located within the defined regions
(Köhler et al., 2019). Specifically, for CNVs, it performs an overlap
search with reported CNVs in public databases and establishes
classification scores according to the guidelines of American College
of Medical Genetics and Genomics (ACMG) (Riggs et al., 2020).

To demonstrate the robustness of SVInterpreter, we
retrospectively applied it to a set of 97 balanced (including 80
translocations and 17 inversions) and 125 unbalanced (5
insertions, 60 deletions, and 60 duplications) previously
published SVs as well as 145 SVs identified in 20 clinical
samples, by chromosomal microarray (CMA) or genome
sequencing. Overall, we demonstrated the efficacy of this tool
in retrieving exhaustive genome annotation data of genomic
elements affected by SVs, allowing the prediction of their
clinical significance.

METHODS

Code and Data Sources
SVInterpreter is a Python-CGI developed Web application, freely
available on https://dgrctools-insa.min-saude.pt/cgi-bin/
SVInterpreter.py. The code is accessible at https://github.com/
DGRC-PT/SVInterpreter, and can be run locally with an Apache
configuration.

TAD data from 10 tissue or cell types, available at YUE Lab
website1, were accessed for SVInterpreter. The regions bordering
TADs–TAD boundaries—known to potentially restrict
interactions of regulatory elements, were predicted using the
Dixon pipeline (Dixon et al., 2012), whereas loops were
established by Peakachu (Salameh et al., 2020).

For the chromosome Y, the TAD average size was calculated
for each tissue or cell line, varying from 815 kb for
lymphoblastoid cell line GM12878 to 1.8 Mb for bladder tissue
(human genome assembly GRCh38/Hg38), and used as reference
(Supplementary Table S1).

Full description of data sources used by SVInterpreter is
available in Supplementary Table S2.

Features and Functionality
SVInterpreter analyzes any type of balanced and unbalanced SVs
larger than 1 kb (translocations, inversions, insertions, deletions,
and duplications) and retrieves a table of compiled information to
assist their interpretation. Complex SVs must be subdivided in
distinct SVs and analyzed separately (Supplementary Figure S1).
Optionally, the user can apply SVInterpreter to any genomic
region, without specifying the SV type.

SVs can be mapped within cell- or tissue-specific TADs, using
the breakpoints as signpost. In this case, by default, TADs affected
by breakpoints (brTADs) are retrieved, with the possibility of
including up to five additional breakpoint flanking TADs

1http://3dgenome.fsm.northwestern.edu/publications.html
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(TAD−5 to TAD+5). Alternatively, instead of a TAD based
analysis, SVs can be analyzed within a genomic region defined
by its genomic position (Supplementary Figure S2).

To run SVInterpreter, a series of general parameters, such as
genome version, tissue, or cell line to be used as reference for TAD
and loop definition, and SVs or genomic region-specific
parameters (Figure 1 and Supplementary Figure S2), are
required.

From the selected specific genomic regions, SVInterpreter data
were downloaded from public databases (last updated by March
31, 2021) or are automatically retrieved through an Application
Programming Interface (API). From the breakpoints, all
functional and non-functional genomic elements are retrieved,
whereas from the remaining region, only protein-coding genes,
lincRNAs, lncRNAs, functional, and non-functional genomic
elements with a GTEx expression pattern are selected (Ardlie
et al., 2015). Then, associated data are collected, including human
disorders, cancer-specific rearrangements, phenotypes reported
in animal models, genome-wide association studies (GWAS)

data, and bibliography (Supplementary Table S2). The data
are organized into a table, with indication of the breakpoint
positions following the International System for Human
Cytogenomic Nomenclature 2020 (McGowan-Jordan et al.,
2020). In addition, to help visualization and interpretation of
the SVs within the analyzed genomic regions, links to UCSC
genome browser are made available on the output table. In this
UCSC genome browser session, the selected genomic region is
depicted, highlighting the SV (breakpoint or deleted/duplicated
region). Native UCSC genome browser tracks compatible with
the output table are shown, together with custom tracks,
including the cell line/tissue-specific TADs and chromatin
loops. Further description is available in Supplementary
Methods.

For CNVs, SVInterpreter offers an option of performing an
overlap search between the query CNV and those curated in
several public CNV databases and published datasets
(Supplementary Figure S2). The overlap specifications are
similar to our previously published CNV-Content Tool (David

FIGURE 1 | SVInterpreter input form overview. The form starts with (A) the selection of the human genome version (Hg19/Hg38), and then (B) the tissue or cell line
to use as reference for TAD and loop definition. Optionally, the user can (C) insert the SV-associated phenotype using HPO terms or (D) define an inheritance of interest
that will be highlighted on the output. In (E), the type of SV is chosen, which will open a submenu to input the SV-specific parameters as chromosome, breakpoints, and
TAD/genomic region to analyze, among others. All SVInterpreter options are shown in detail in Supplementary Figure S2.
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et al., 2020), which retrieves the best hit by database, with the
respective overlap percentage and variant frequency. In addition
to the SVInterpreter standard output table, a detailed overlap
table is available for download on the output web page.

Furthermore, to facilitate the evaluation of CNVs according to
the ACMG guidelines, together with the standard output, the
scoring parameters, as presented on the CNV pathogenicity
calculator2, are retrieved. SVInterpreter outputs the scores for
the parameters that are possible to be established automatically
and then performs an automatic calculation of the final score and
their respective class (Riggs et al., 2020).

The output table(s) are written in XLSX format and made
available for download. Further description of the output, a step-
by-step tutorial, and an application example is available in
Supplementary Methods and Supplementary Table S3.

Phenotypic Similarity Search
Optionally, the proband’s HPO-based phenotypic features can be
inputted for phenotype comparison (Köhler et al., 2019).

For this, the HPO ontology provided by the HPO.db package3

and the links between genes, diseases, and terms provided by R
data file (RDA) are a prerequisite. Since these were deprecated, we
developed in-house scripts and used the June 2021 HPO release
data4 (Köhler et al., 2019) to create state-of-the-art HPO.db and
RDA files. The scripts and guidelines are available at https://
github.com/DGRC-PT/HPOSim_Helper_Scripts.

The phenotype similarity is evaluated based on phenotype
similarity score (PhenSSc), maximum similarity score (MaxSSc),
and p-value (p), which are calculated for each combination of
inputted phenotype and Online Mendelian Inheritance in Man
(OMIM)5 phenotype associated with functional genomic elements
within the analyzed region. This is performed by
HPOSim—getTermListSim function that calculates pairwise
similarities between HPO terms, using the information content
(IC) of the most informative ancestor shared by both terms (Deng
et al., 2015). The IC is a numeric value associated to each term,
which inversely reflects the number of diseases annotated by the
term, or any of its descendent terms. That is, terms with higher ICs
annotate fewer diseases, being more specific, whereas lower ICs are
associated to most common terms. When comparing groups of
HPO terms, the getTermListSim result is the mean of the ICs of the
pairwise comparisons, and reflects the similarity between the said
groups, where higher scores represent higher similarities.

For PhenSSc, the inputted clinical features and the ones
associated to a disorder are compared. This score reflects the
similarity between the inputted phenotypic traits and the ones
used to describe the disorder.

For MaxSSc, the inputted clinical features are compared with
themselves, which means that MaxSSc consists of the mean of the
ICs of the inputted terms. This metric was developed by us to

reflect the maximum similarity score that can be obtained from
the inputted terms, and to be used in comparison with PhenSSc.

The p-value, which reflects the probability of obtaining the
PhenSSc by random chance, was adapted from Redin et al.
(2017). In sum, for each disorder that PhenSSc and MaxSSc was
previously calculated, a random set of HPO terms is selected. Most
importantly, this set must have the same number of terms as the
input, to limit the bias. The similarity score is then calculated
between this set of terms and a disorder-associated phenotype
(simulated score). Then, this is repeated 100 (n) times, where
each time a different set of HPO terms is selected, and a new
simulated score is obtained. Finally, the disorder specific p-value is
calculated as:

P � ∑
n
i�1[simulatedscorei ≥PhenSSc]

n
(1)

Phenotypes mainly composed of terms common in a wide range
of disorders, as global developmental delay, or intellectual disability
(with 1,386 and 1,619 associated OMIM disorders4, respectively),
can present high PhenSSc, close to MaxSSc, and a high p-value as
well. In these cases, the high p-value reflects the high probability of
the phenotype to overlap by chance, warning for the limited
significance of PhenSSc. Hence, ideally, the PhenSSc should be
close to MaxSSc and present a p-value as close to zero as possible.

SVs and Clinical Cases
For retrospective analysis, 97 and 125 previously published and
unpublished balanced (translocations, inversions) and unbalanced
(insertions, deletions and duplications) SVs were selected,
respectively (Table 1; Supplementary Table S5) (David et al.,
2003, 2009, 2015, 2018, 2020; Redin et al., 2017; Riggs et al.,
2020). Of note, about half of those published by Redin et al.
(2017) were previously analyzed by Zepeda-Mendoza et al.
(2017), with the position_effect6 tool, for identification of
additional candidate genes.

For effectiveness evaluation in clinical setting, nine prenatal cases
(three without associated ultrasound abnormalities, four with
isolated increased nuchal translucency, one with limb
abnormalities, and another with multisystemic traits) and 11
postnatal cases (with isolated organ-specific or complex
multisystem disorders) were used (Table 1; Supplementary
Table S5). These were randomly selected among those referral
for clinical diagnosis, of which genomic variants were identified
by CytoScan 750K (nine cases), CytoScan HD microarrays (six
cases), and long-insert genomic sequencing (liGS) (five cases).
Microarray and liGS analysis was carried out as previously
described (David et al., 2018, 2020).

Criteria for SV Interpretation and Clinical
Prediction
Themicroarray data were processed using Chromosome Analysis
Suite 4.2.0.80 with NetAffx 20200828 (GRCh37/Hg19) and with
the detection criteria of, at least, 15 probes within 35 kb for gains2https://cnvcalc.clinicalgenome.org/cnvcalc/

3http://www2.uaem.mx/r-mirror/web/packages/HPO.db/index.html
4https://hpo.jax.org/app/
5https://omim.org/ 6https://github.com/ibn-salem/position_effect
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and losses. Selected SVs were manually interpreted based on the
following criteria: absence/presence of OMIM genes, their
association with autosomal dominant (AD) or recessive (AR)
disorders, disruption of genes by the breakpoints,
haploinsufficiency/triplosensitivity, and genotype/phenotype
correlation (Silva et al., 2019). For this, data available at UCSC
genome browser7, Decipher8, ClinGen9, ClinVar10, OMIM,
DGV11, Unique12, and Orphanet13 databases were used.

For liGS, SVs larger than 1 kb, and CNVs identified by
discordant pair clustering and coverage analysis, were selected.
Then, among these, novel variants and SVs overlapping a
reported variant (Collins et al., 2017; Chaisson et al., 2019,
Gnomad14) with a database frequency <1%, and affecting loss-
of-function (LoF) sensitive genes [with an expected vs. observed
ratio (oe) of LoF variants of <0.35] and/or associated to AD
disorders, were indicated for clinical evaluation. On average, per
individual, 11 SVs were selected for analysis.

Three evaluators classified the Riggs dataset (Riggs et al., 2020) of
unbalanced SVs. Therefore, based on the following criteria: (1) a
classification equal by at least two of the evaluators, or (2) a median
classification that reflects dissimilar evaluations, we merged them
into a consensus classification (Supplementary Table S5).

To allow the comparison between published predicted outcomes
of SVs and SVInterpreter-based prediction, criteria for
translocations, inversions, and insertions were adapted from the
previously described ones (Table 2) (Redin et al., 2017; David et al.,
2020). ForCNVs, ACMGguidelines were applied (Riggs et al., 2020).
In addition, the same genome version and reference cell line as in the
original publications was used. If available, the proband’s phenotype
was inputted. For variants without pre-set of reference cell line, the
human embryonic stem cell was used. By default, for all types of
variants, the brTAD was used as reference, with rare exceptions. For
CNVs, the overlap search against all available databases with a
minimummutual overlap of 70%was applied. The full set of variants
and parameters used is available at Supplementary Table S5.

RESULTS

Retrospective Reevaluation of
Published SVs
For retrospective analysis, 97 balanced and 125 unbalanced
previously published SVs were reevaluated (Table 1;

TABLE 1 | SVs analyzed with SVInterpreter.

Retrospectively reevaluated SVs Clinical cases (PND; PN)d Total by SV
(retr. SVs/Clin. Cases)David et al.a Redin et al.b Riggs et al.c Microarray (9; 6)e liGS (0; 5)

Translocation 9 71 0 0; 0 0; 2 80 / 2
Inversion 2 15 0 0; 0 0; 9 17/9
Deletion 2 0 58 26; 24 0; 24 60/74
Duplication 4 0 56 19; 21 0; 5 60/45
Insertion 4 1 0 0; 0 0; 13 5/13
cxSVs 0 0 0 0; 0 0; 2 0/2
Total by Publication 21 87 114 45; 45 0; 6 222/145

aDavid et al., 2003, 2009, 2015, 2018, 2020
bRedin et al., 2017
cRiggs et al., 2020
dPND, Prenatal diagnosis; PN, Postnatal diagnosis
ePN diagnosis performed by Cytoscan HD with microarray; PND performed by Cytoscan 750K.

TABLE 2 | Parameters used for the classification of SVs.

Classification Parameters (translocation, inversion, insertion)

Pathogenic Variant affecting or encompassing genes associated with dominant developmental disorders
Likely Pathogenic Variant affecting or encompassing genes with a pli ≥ 0.9 not associated with disease

Or Breakpoint located near a candidate gene associated with AD developmental disorders in a subject showing significant
phenotype overlap with the referred disorder and predicted to impact long-range regulatory interactions

Variant of unknown significance (VUS) All other variants not fitting Pathogenic, Likely Pathogenic, Likely Benign, and Benign parameters
Likely Benign Variant affecting or encompassing genes only associated with AR disorder

And No other data that support at least a partial overlap between the proband’s phenotype and the affected genomic region
Benign Variant not affecting or encompassing any genes

And No human pathology reported to be associated with genomic elements localized within the disrupted TAD or no other
data that support at least the partial overlap between the proband’s phenotype and the affected genomic region

7https://genome.ucsc.edu/
8https://decipher.sanger.ac.uk/
9https://clinicalgenome.org/
10https://www.ncbi.nlm.nih.gov/clinvar/
11http://dgv.tcag.ca/dgv/app/home
12https://rarechromo.org/
13https://www.orpha.net/consor/cgi-bin/index.php
14https://gnomad.broadinstitute.org/
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Supplementary Table S5). With the exception of chromosome
21, SVs are distributed regularly along the genome, with an
average of 12 rearrangements per chromosome. Nevertheless,
the larger number of translocations (n � 15), inversions (n � 5),
and insertions (n � 3) involved chromosome 1, chromosomes 2
and X, and chromosome 3, respectively (Supplementary
Table S4).

These variants were reevaluated by SVInterpreter, and based
on its retrieved data, their clinical outcome was predicted
according to the established parameters (Figure 2;
Supplementary Table S5).

The first level of analysis involves functional and non-
functional genomic elements localized within the brTADs and
their annotation data, which is usually sufficient to evaluate a SV.
For clinical outcome prediction of a gene disruption,
SVInterpreter retrieves gene-specific annotation data such as
the LoF sensitivity, Genomics England PanelApp15 data, its
association with disorders and respective phenotypic overlap,
animal model data, gene expression patters, and GWAS data.

FIGURE 2 |Comparison between the original and the SVInterpreter-based clinical outcome prediction. Each graphic presents the comparison between the original
classification, and tool-based clinical outcome prediction for (A) total of SVs, (B) balanced SVs, (C) unbalanced SVs, (D) translocations, (E) inversions, (F) deletions, (G)
duplications, and (H) insertions. Bars are color-coded, according to the clinical outcome prediction, as benign (dark green), likely benign (light green), VUS (gray), likely
pathogenic (light red), and pathogenic (dark red). Number of variants is shown above the bars.

15https://panelapp.genomicsengland.co.uk/
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Concomitantly, the disruption of major genes by de novo BCA
breakpoints leading to major AD developmental disorders, as
retrieved by SVInterpreter, indicated the pathogenicity of
ANKRD11 (OMIM *611192; proband DGRC0016) and
WDR26 (OMIM *617424; proband DGRC0025) (David et al.,
2020). In the abovementioned cases, the calculated similarity
between the inputted phenotypes and of gene-associated
disorders localized within the analyzed regions played a major
part on the interpretation, where ANKRD11 PhenSSc was 2.64
(p � 0.02; MaxSSc � 4.01) and WDR26 PhenSSc was 2.31 (p � 0.
02; MaxSSc � 2.91).

If the full extent of the clinical features cannot be explained by
disruption ormisregulation of a candidate gene, or the breakpoint
is within an intergenic region, in search for potential position
effect, annotation data of all genomic elements within a brTAD
must be evaluated. Several data retrieved by SVInterpreter can
suggest position effect events. In addition to the phenotypic
overlap and expression pattern, disruption of chromatin loops
and GeneHancer clusters of interactions are important signs for
possible position effect (Gloss and Dinger, 2018).

DGAP131 t(1;5)(p31;q33)dn, was originally classified by
Redin et al. (2017) as variant of uncertain significance (VUS).
SVInterpreter showed MEF2C’s (OMIM *600662) GeneHancer
cluster of interactions and 10 of its 14 chromatin loops disrupted
by the chromosome 5 breakpoint. The PhenSSc of 1.82 (p � 0.02;
MaxSSc � 3.1) corroborated the proposed position effect.
Likewise, MEF2C was indicated as a potential candidate gene
by Zepeda-Mendoza et al. (2017).

Then, if the protein coding genes or functional genomic
elements localized within the brTADs are insufficient to
explain the observed phenotype, additional upstream (–1 to
–5) and downstream (+1 to +5) flanking TADs are analyzed.

Accordingly, the t(2;11)(q14.2;q14.2) breakpoints reported in
proband DGRC0001 were located in intergenic regions, and no
gene at the brTADs, capable of explaining the verified phenotype,
was found. At TAD+1, SVInterpreter shows that the GeneHancer
cluster of interactions of the proposed candidate gene GLI2
(OMIM * 165230) was disrupted by the 2q14.2 breakpoint,
confirming the previously proposed position effect (David
et al., 2009). Furthermore, the involvement of GLI2 was
reinforced by its PhenSSc of 1.33 (p � 0.3; MaxSSc 4.2), with
disorders OMIM#615849 and OMIM#610829. Ergo, the
translocation was predicted to be likely pathogenic and
confirmed the published assertion of the involvement of GLI2
(David et al., 2009).

Furthermore, DGAP107 t(Y;3)(p11.2;p12.3)dn, reported by
Redin et al. (2017), presents, among others, neurological defects,
urinary tract, and genital abnormalities. They originally classified
the SV as potentially pathogenic, due to the disruption of ROBO2
(OMIM *602431). By assessing the associated disorder (OMIM
#610878), we realized thatROBO 2 only explained the urinary tract
defects (PhenSSc � 1.12; p � 0.08; MaxSSc 1.48). However,
SVInterpreter brTAD analysis suggested a position effect on
PCDH11Y (OMIM * 400022), which had its GeneHancer
cluster of interactions disrupted. The gene function, expression
pattern, and animal model data suggest its role in the development
of the nervous system, and therefore may explain the neurological

defects observed in the proband. Besides, Zepeda-Mendoza et al.
(2017) also indicate SRY (OMIM *480000), located at TAD-3, as a
candidate gene due to the overlap with the genital abnormalities.

The overlap search of query CNVs in public database data and
the automatic ACMG scoring showed to be of utmost utility,
since it can clarify immediately the potential significance of
deletions and duplications, even in cases where the genomic
data are scarce. As such, a 374-kb deletion, arr[GRCh37]
10q22.3(81,603,169_81,976,925)x1, in case CK without
associated phenotype, was classified by Riggs et al. (2020) as
VUS. According to SVInterpreter, the CNV deleted five genes
that were not associated to phenotype or reported to be
haploinsufficient. The CNV had 100% overlap with a likely
benign ClinGen deletion (nsv3896137), and according to its
ACMG CNV score of −0.9, the deletion was classified as likely
benign.

Overall, more than half (57.2%) of the reevaluated SVs (45
translocations, 8 inversions, 32 deletions, and 42 duplications)
were originally classified as VUS, whereas only 10.4% (23) were
classified of benign and likely benign (Figures 2A–C).
SVInterpreter-based reevaluation of published SVs provided a
consistent finding with the original studies on 62.6% of all SVs (39
translocations, 9 inversions, 44 deletions, 45 duplications, and 2
insertions) (Supplementary Table S5). Comparatively with the
original classification, the number of variants predicted as VUS
decreased by 40% (from 127 to 76) (Figure 2A). For balanced
SVs, SVInterpreter-based interpretation led to the reevaluation of
81.1% of the original VUS as pathogenic (9.4%), likely pathogenic
(32.1%), and benign (39.6%) (Figures 2B,D,E). In addition,
position effect events identified by SVInterpreter sustained the
categorization of 30.2% of the potentially pathogenic balanced
SVs (Supplementary Table S5). For deletions, the differences
between published and tool-based prediction were minor, with
similar results obtained by both (Figure 2F). Differently, 19% of
the duplications categorized the VUS transited to another
category, whereas only three insertions were reclassified from
benign to likely pathogenic (Figures 2G,H).

To assess the position effect on distal genes and their
contribution on the observed phenotypes, from the 87
balanced SVs published by Redin et al. (2017) and reevaluated
by us, Zepeda-Mendoza et al. (2017) also analyzed 44
(Figure 3A). Similar candidate genes were identified in 11 of
the SVs (Figure 3B), whereas in 5, neither of them proposed a
candidate gene (Figure 3A). SVInterpreter and position_effect
identified the same candidate genes for two originally classified
VUS and two pathogenic SVs (Figure 3B; Supplementary Table
S5). The position_effect tool uniquely identified 24 candidate
genes in 19 SVs, where, in 14 of them, the genes were located
outside the brTAD (Figure 3C; Supplementary Table S5). Based
on expression, phenotypic overlap, and animal model data,
SVInterpreter predicted six candidate genes not foreseen by
the other two approaches, in five SVs (Figure 3C;
Supplementary Table S5).

Variant Interpretation in Clinical Setting
The effectiveness of this bioinformatic tool in a clinical setting
was evaluated by comparative (manual vs. SVInterpreter-based),
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clinical outcome prediction of SVs identified by Cytoscan 750K
microarray in nine prenatal cases, by Cytoscan HDmicroarray in
six postnatal cases, and by liGS in five postnatal cases. Altogether,
145 variants (SVs, CNVs, and cxSVs) were analyzed (Table 1).
The average number of SVs per individual, identified by genomic
array, was 6, whereas for liGS, it was 289, with 44 balanced and
244 unbalanced variants. From the latter, on average, only 11 SVs
(3 balanced and 8 unbalanced) were recognized to be potentially
disease causing or pathogenic, and consequently selected for
clinical outcome prediction (Supplementary Table S5).

Proband DGRC0004 presented a severe phenotype
characterized by global developmental delay, facial
dysmorphisms, and heart defects. Among other, the liGS data
analysis identified a 67.3-Mb inversion inv(2)(p16.1q14.3) and a
589-kb duplication dup(2)(q21.1). Since, based on the
SVInterpreter data, none of the inversion breakpoints
disrupted a gene, nor any gene localized within the brTAD
supported the verified phenotype, the inversion was classified
as benign. Concerning the dup(2)(q21.1), although SVInterpreter
identified an identical CNV in a cohort of patients with
developmental delay (nsv999864) (Coe et al., 2014), the
duplication has the same gene content as reported in benign
SVs and did not affect triplosensitive genes, which led to its likely
benign classification (ACMG CNV score � −0.9). Furthermore,
none of the remaining eight clinically evaluated SVs was
predicted to be likely pathogenic or pathogenic; therefore,
genomic disorder was excluded in this case. Indeed, exome
sequencing identified a pathogenic single-nucleotide variant
within KAT6A (OMIM *616268) exon 18, causing AD
Arboleda-Tham syndrome (OMIM #616268) (data not
shown). The clinical features of this syndrome overlap that of
the proband.

As CMA is the technique of choice for identification of CNVs
in a clinical setting, the automatic mutual overlap search with
CNV public databases and the inclusion of the ACMG scoring
system is especially valuable for faster and more informed clinical
outcome prediction of these.

A female in her 40s presented a dichorionic diamniotic
pregnancy with an elevated risk for aneuploidy following first
trimester combined screening test and normal ultrasound
examination. Microarray analysis of chorionic villus sample
DNA (CS750K07) identified five deletions and two
duplications. By manual analysis, due to the absence of
genes within the five deleted regions, these were classified as
benign, whereas one of the two duplications, encompassing
only a non-morbid gene, was classified as likely benign.
SVInterpreter confirmed the benign and likely benign
classifications, and the absence of overlapping CNVs and
triplosensitive genes. In contrast, the remaining 1.1 Mb
duplication at 16p13.11, arr[GRCh37]
16p13.11(15,416,498_16,527,659)x3, was classified as VUS,
since the CNV was overlapped by the 16p13.11
microduplication syndrome, which likely presents an
incomplete penetrance and phenotypic variability.
SVInterpreter identified four overlapping disorder-
associated genes, NDE1 (OMIM *609949), MYH11 (OMIM
*160745), ABCC1 (OMIM *158343), and ABCC6 (OMIM
*603234). Although these genes are associated to AD or AR
disorders, neither of them is triplosensitive or is disrupted by
the breakpoints. SVInterpreter identified overlapping
duplications that were reportedly classified as pathogenic
(nssv15605791), likely pathogenic (nssv15149610), likely
benign (nssv15159627), and VUS (nssv15159626). In
addition, automatic bibliography search identified
publications that described the 16p13.11 microduplication
syndrome (PMID: 30287593, PMID: 23637818). Hence, in
the absence of prenatal phenotype–genotype correlation, the
contradictory classifications of similar duplications, and the
overlap with the microduplication syndrome, we maintained
the original classification of VUS.

We confirmed the reported manual clinical prediction of SVs
identified in 20 individuals analyzed in a clinical setting, with
marginal variability between these two approaches
(Supplementary Table S5).

FIGURE 3 | Result comparison of 44 SVs analyzed by SVInterpreter (blue), Redin et al. (2017) (orange), and position_effect (green), in three different perspectives.
(A) SVs with associated candidate genes, including five SVs with no candidate gene identified by any of the approaches (“None”, light gray). (B) Similarity between the
sets of candidate genes identified by SV, including four SVs where the retrieved candidate genes were different in the three approaches (“Distinct”, dark gray). (C)
Intersection between the identified candidate genes. For (A) and (B), the numbers inside the circles correspond to the number of SVs, while in (C), the numbers
represent the number of candidate genes.
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DISCUSSION

Here, we describe SVInterpreter, a web-based tool to assist the
clinical outcome evaluation of balanced and unbalanced SVs.
SVInterpreter assesses the regions affected by SVs, retrieves
associated genome annotation data, and organizes the results
in a user-friendly table. Furthermore, it scores CNVs according to
ACMG criteria and assesses the overlapped variants from public
databases. SVInterpeter can be used in a straightforward
identification of gene disruption, evaluation of phenotypic
similarities, and the indication of potential position effects
within the breakpoint or flanking TADs.

As shown by retrospective analysis of the BCA cases DGRC0016
and DGRC0025 (David et al., 2020), assessment of
genotype–phenotype correlation through comparison between the
probands’ clinical features and of disorders caused by the disrupted
genes localized within the affected genomic regions easily and
quickly pointed out the pathogenicity of the analyzed variants.

Importantly, clinical setting requires tools that retrieve
sufficient and adequate information to allow exclusion of the
pathogenicity of SVs, in a timely fashion.

Due to the limited clinical manifestations, phenotype similarity
search cannot assist in guiding the clinical outcome prediction of SVs
in prenatal cases. Certainly, the availability of a dedicated fetal
genotype–phenotype correlation database would further assist
prenatal evaluation of SVs. Indeed, ultrasound features were
absent in our prenatal sample CS750K07, making
genotype–phenotype correlation practically impossible, for the
1.1-Mb duplication at 16p13.11. However, long-term follow-up
would be warranted to exclude any later-onset disorder that
might be associated with the SV (Halgren et al., 2018). By
SVInterpreter, we were able to corroborate the manual prediction
results in clinical setting, although the main advantage was
essentially a more straightforward, comprehensive, and faster
evaluation process.

As demonstrated by DGAP131 and DGRC0001, combination of
phenotypic overlap search and identification of disrupted
GeneHancer cluster of interactions and chromatin loops within
the breakpoint or flanking TADs is essential for prediction of
position effect events. This is true not only for breakpoints within
intergenic regions where assessment of a position effect is crucial, but
also for SVs where disruption of amain candidate gene is insufficient
to explain the full spectrum of clinical features.

In most cases, gene disruptions or position effects within brTADs
were sufficient to explain the phenotypes. Even in comparison with
candidate genes uniquely identified by position_effect (Figure 3C),
most of the ones located outside the brTAD showed to be associated
to phenotypic traits that were already explained by genes inside the
brTAD. However, in DGAP107, the full extent of associated clinical
features was only resolved by a potential position effect on the third
flanking TAD. This, combined with the current lack of knowledge in
respect to TADs, shows the difficulty of establishing, at first hand, the
region to be reviewed when evaluating an SV. This includes the
arduousness of choosing, among the few, the adequate cell line or
tissue to use as reference, as only recently has the TAD boundaries
variability between tissues been documented (Sauerwald et al., 2020).
SVIntepreter allows users to develop their own strategy to tackle this;

nevertheless, we suggest to progressively increase the size of the
analyzed genomic region, from the brTADs up to the fifth
flanking TADs.

SVInterpreter retrieves the most comprehensive information,
unraveling the role of genes not yet associated with disease. This
was demonstrated by the identification of the potential candidate
gene PCDH11Y in DGAP107, which was neglected by both Redin
et al. (2017) analysis and position_effect (Zepeda-Mendoza et al.,
2017).

For CNV analysis, SVInterpreter takes advantage of the
resources available for unbalanced SVs. As displayed on CK
and CS750K07, the overlap with database-classified CNVs and
the automatic ACMG scoring made the evaluation much easier.
Also, the automatic bibliography search complements the analysis,
by presenting to the user a selection of publications of interest,
which can provide data that eventually is unavailable on databases.

According to the features and results presented above, and
especially the decrease of the previously classified VUS by 40%, we
conclude that SVInterpreter alone provided enough support for
assessment of the SVs. Nevertheless, we recognize that differences
between Redin et al (2017) and our evaluation were affected by the
fact that their classification criteria weremore stringent and did not
comprise benign and likely benign categories, and that additional
knowledge has been acquired since their publication (El Mecky
et al., 2019). Supporting this is the small number of deletions that
were reclassified, since the ACMG criteria were equally used for the
original and SVInterpreter-based analysis.

A major improvement of SVInterpreter was the inclusion of a
function for phenotype comparison, developed mainly based on
Köhler et al. (2009), Deng et al. (2015), and Redin et al. (2017).
Since the phenotypic similarity scores are based on the HPO
terms’ IC (Köhler et al., 2009), the score has no scale, varying with
the specificity of the term, and the number of terms used for
phenotype description, making it difficult to evaluate PhenSSc by
itself. Therefore, MaxSSc, which reflects the upper limit of the
scale for each specific set of inputted clinical features, together
with the p-value, which measures the probability of the PhenSSc
being obtained by chance, are used to interpret the PhenSSc.

Comparatively with other recent tools that support the
evaluation of SVs, such as position_effect (commit: fced2c49,
13 June 2017), AnnotSV (Version 1.0, 21 December 2017) and
ClinTAD (commit: 09b4925fb, 18 September 2019),
SVInterpreter seems to be more comprehensive (Zepeda-
Mendoza et al., 2017; Geoffroy et al., 2018; Spector and Wiita,
2019). First, SVInterpreter showed to be the one that allows more
customization and adjustments, since, for example, AnnotSV and
ClinTAD only work with one genome version, and ClinTAD only
uses TAD boundaries of human embryonic stem cell data. Then,
SVInterpreter shows a broader view of the affected regions,
accounting for both gene disruption and position effects:
AnnotSV is focused on the identification of genes directly
affected by a breakpoint, and position_effect was designed to
identify candidate genes essentially from position effect events. In
regard to phenotypic comparison, as AnnotSV does not perform
any, and ClinTAD is limited to the full HPO term overlap,
position_effect is the only one with a similar functionality.
Also, SVInterpreter is the one that retrieves the most
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information, including the position effect important data,
GeneHancer cluster of interactions and chromatin loops,
phenotypic data from DDG2P and clinGen, Gene-phenotype/
disease associations in animal models, and GWAS data.
Therefore, the existence of overlooked information by
position_effect and AnnotSV, as shown in DGAP107, may
contribute to limited results, biased candidate gene
prioritization, and the need of additional resources.

Nonetheless, SVInterpreter still presents some limitations. The
retrieved data are limited to the content of the available databases,
which are regularly outdated with respect to the state of the art.
This is currently remedied by the inclusion of the bibliographic
search, but it can be improved by application of automatic text-
mining systems (Luque et al., 2019). For cases of multisystemic
phenotypes where more than one gene may be involved, the
phenotypic overlap search could eventually be improved by
adding individual phenotypic scores calculated for HPO
supercategories. Additionally, SVInterpreter is prepared to
analyze one variant at a time, which can be a disadvantage
when dealing with complex rearrangements, or clinical cases
with a large number of variants. Therefore, periodical update
of this bioinformatic tool seems warranted.

The interpretation of any SV is not a straightforward task, even
with the help of the right tools, since it is difficult to make sure
that all factors are being considered. We do not expect
SVInterpreter to change the result of the current SV
evaluation, since it depends on the level of genome
annotation, our current knowledge on pathological
mechanisms in human disease, and, ultimately, reported data.
Instead, this tool allows a well-informed and faster way to
interpret SVs. Regardless of the bias given by the currently
available data, attempts are being made to automate the
clinical SV interpretation, which will change the current
paradigm (Kumar et al., 2020). We believe that SVInterpreter,
a tool to support the evaluation of balanced and unbalanced SVs,
represents one more step towards this goal.
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